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Abstract

Citation generation aims to generate a citation
sentence that refers to a chosen paper in the con-
text of a manuscript. However, a rigid citation
generation process is at odds with an author’s
desire to control specific attributes, such as 1)
the citation intent, e.g., either introducing back-
ground information or comparing results, and
2) keywords that should appear in the citation
text. To provide these degrees of controllabil-
ity during citation generation, we propose to
integrate the manuscript context, the context
of the referenced paper, and the desired con-
trol attributes into a structured template and
use it to fine-tune a language model (LM) via
next-token prediction. We then utilize Proxi-
mal Policy Optimization to directly optimize
the LM in favor of a high score of our proposed
controllability metric. The proposed workflow
harmoniously combines citation attribute sug-
gestion and conditional citation generation into
one LM, allowing for better user control. 1

1 Introduction

A common practice in scientific writing is to cite
and discuss relevant papers that support an argu-
ment, provide background information, or com-
pare results (Penders, 2018). Recent studies aim
to facilitate this citation process by using neural
networks to generate a citation sentence based on
the context of the manuscript and the paper to be
cited. These efforts focused primarily on devel-
oping a sequence-to-sequence pipeline that works
in a fully automated, uncontrolled manner, leav-
ing little room for users to control the generation
process. We believe control is desirable because
authors often have a clear motivation before writ-
ing a citation sentence. For example, they may
have a specific intent to cite, such as comparing
results or presenting background information, or
they may have keywords in mind to appear in the

1Our code and data are available at https://github.
com/nianlonggu/LMCiteGen

citation sentence. When the generated citation does
not match an author’s motivation, the author may
wish to change the generation by specifying certain
attributes, such as citation intent or keywords.

This study aims to develop a citation generation
model that is controllable, such that users can alter
the citation intent or topic by explicitly providing
the citation intent and keywords. Our proposed
method involves the following two phases:
Supervised fine-tuning. We design a structured
prompt template that systematically and consecu-
tively incorporates contextual information, citation
attributes (intent and keywords), and the citation
sentence into a sequence of tokens, and fine-tune
an LM via next-token prediction. Through super-
vised fine-tuning, the LM learns to generate citation
sentences not only based on the manuscript/cited
paper’s context but also conditioned on the citation
attributes, thus allowing flexible control of genera-
tion by altering the citation attributes (Keskar et al.,
2019).
Controllability enhancement via reinforcement
learning. We propose measuring the controllabil-
ity of a citation generation system from multiple
aspects with the following metrics: i. Intent Align-
ment Score (IAS), which measures whether the
intent of the generated citation sentence matches
the given control intent; ii. Keyword Recall (KR),
which measures the recall of the control keywords
in the generated citation; iii. Fluency Score (FS);
and iv. ROUGE-F1 (Lin, 2004) score of the gener-
ated sentence compared with the groud-truth cita-
tion. These controllability evaluation metrics pro-
vide a further opportunity to guide the training of
our system by using them to estimate a reward
function for Proximal Policy Optimization (PPO)
(Schulman et al., 2017). This allows us to explore
the effect of using feedback from our chosen met-
rics to improve our system’s controllability.

Our contributions are summarized as follows:

• We present a novel strategy that unifies cita-
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tion attributes and citation sentence generation
within one language model, thereby enabling
user control of the citation generation process.

• We evaluate the control exerted by the various
attributes, employing a multi-metric system
that includes an intent matching score, key-
word recall, ROUGE score, and a reference-
less fluency score, and we use these controlla-
bility metrics as a reward for Proximal Policy
Optimization (PPO) to effectively improve the
controllability of our model following its ini-
tial supervised training.

• We curate a comprehensive dataset, parsing
both contextual text and citation attributes, to
offer a valuable resource for future control-
lable citation generation research.

2 Related Work

Previous work in citation generation, including
Xing et al. (2020); Ge et al. (2021); Wang et al.
(2022), approached the task as a sequence-to-
sequence translation problem, utilizing recurrent
networks and knowledge graph enhancements.
Nikiforovskaya et al. (2020) proposed a BERT-
based extractive summarizer (Liu, 2019) that pro-
duces a paper review by extracting one sentence
from each of the related papers. Chen and Zhuge
(2019) proposed automatically generating a related
work section by extracting information on how pa-
pers in the reference list have been cited in pre-
vious articles. Xing et al. (2020) developed an
RNN-based pointer generator network that can
copy words from the manuscript and the abstract
of the cited paper based on cross-attention. Ge
et al. (2021) further extended this work by enhanc-
ing citation generation using information from the
citation graph. Despite their advances, these ap-
proaches do not fully address the complexities of ci-
tation sentence generation. Our research highlights
the importance of user-specified attributes and il-
lustrates the limitations of large language models
in reliably inferring key attributes such as topic
keywords. We propose that this semantic gap ne-
cessitates a shift towards models that take explicit
user control into account in citation generation.

Recent research Jung et al. (2022); Wu et al.
(2021); Yu et al. (2022) has also explored con-
trolled citation generation, though the focus is often
limited to controlling a single attribute like cita-
tion intent. Our work extends this concept to a

broader range of attributes, introducing methods
to suggest potential attributes and balance the au-
tomation and controllability of citation generation.
We further differentiate our research by conducting
extensive experiments with cutting-edge language
models and investigating the augmentation of con-
trollability via reinforcement learning, contributing
to a more comprehensive understanding of con-
trolled citation generation. In addition, we go be-
yond prompt-based approaches (Yang et al., 2022)
by investigating enhancing the controllability of
our citation generation system with reinforcement
learning.

3 Method

We first describe our supervised method for fine-
tuning an LM, and then we describe how we mea-
sure the control of the generated sentence by the at-
tributes. Finally, we introduce strategies for enhanc-
ing controllability through reinforcement learning.
Our method is illustrated in Figure 1.

3.1 LM Supervised Fine-tuning

We fine-tune a language model (LM) to generate a
citation sentence S given the context C and citation
(control) attributes A. The context, denoted as C,
consists of information from three distinct sources:
1) the local manuscript context, including up to Ns

sentences from the same section (we use Ns = 5)
that precede the citation sentence to be generated;
2) the manuscript’s title and abstract, serving as the
global context; and 3) the title and abstract of the
paper to be cited, providing an external context.

The citation attributes denoted A, include the
combined citation intent and keywords. Following
the framework proposed in Cohan et al. (2019), we
define three categories of citation intents: 1) back-
ground: The citation offers context or background
information about a pertinent problem, concept,
method, or topic. 2) method: The citation refers
to a specific method, tool, approach, or dataset in
the cited paper. 3) result: The citation contrasts or
compares the results or findings of the manuscript
with those in the referenced paper. In terms of key-
words, we define keyword attributes as one or two
noun phrases extracted from the target citation sen-
tence that bears semantic similarity to the context
of either the manuscript or the cited paper.

The training objective is to optimize the LM to
maximize the log-likelihood of generating both the
citation attributes A and the citation sentence S
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Cited Paper Title: Perspective
transformer nets:  ...

Cited Paper Abstract: Understanding
the 3D   world is a fundamental
problem in   computer  vision. ...

Context

Manuscript Title:Soft Rasterizer:
Differentiable ...

Manuscript Abstract: Rendering is
the process of   generating 2D images
from 3D assets,   simulated in a virtual
environment ...
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...  3Dreconstruction is becoming
increasingly important as collecting
ground-truth 3D models is much
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Figure 1: A schematic representation of the workflow for generating citation sentences using a Language Model,
with subsequent controllability evaluation, and optimization using Proximal Policy Optimization (PPO) with the
summed controllability metrics as a reward.

given the context C. Let ai and si be the tokens in
A and S , with total tokens |A| and |S| respectively,
the training objective can be expressed as:

θ̂ = argmax
θ

log p(S,A|C)

= argmax
θ

[log p(A|C) + log p(S|A, C)]

= argmax
θ

[ |A|∑

i=1

log p(ai|a1 . . . ai−1, C) +

|S|∑

i=1

log p(si|s1 . . . si−1,A, C)
]

(1)
Such an objective allows us to fine-tune a sin-

gle LM for two purposes: 1) inferring citation at-
tributes A given the context C, and 2) crafting cita-
tion sentences S based on the context C and control
attributes A. This dual-purpose training strategy
enables the fine-tuned LM to switch dynamically
between controlled and uncontrolled modes: In the
controlled mode, the LM assimilates the context
and the user-specified control attributes to generate
the citation sentence. In the uncontrolled mode,
the LM initiates by automatically inferring possible
citation attributes based solely on the context, and
uses these inferred attributes to guide itself when
generating the citation sentence. This flexibility
also allows us to compare the performance of our
citation generation model between uncontrolled
and controlled modes in a fair manner, since we
can compare the performance on the same model
just with different working modes.

Structured Input Template for Supervised
Fine-tuning. We design an input template to help
the LM differentiate between input sources. The

template arranges different input components into
a unique prompt, including the cited paper’s global
context, the manuscript’s local and global contexts,
and the citation attributes, as in Raffel et al. (2020);
Keskar et al. (2019); Taori et al. (2023). The final
input text is structured as follows:

###Manuscript Title: XXX XXX
###Manuscript Abstract: XXX XXX
###Cited Paper Title: XXX XXX
###Cited Paper Abstract: XXX XXX
###Text Before Citation:

XXX XXX (manuscript local context)
###Citation Intent: XXX (one word from

‘background’, ‘method’ and ‘result’)
###Keywords: XXX; XXX (keywords relevant to

the citation, separated by ‘; ’)
###Citation: XXX XXX (target citation sentence)

For decoder-only LMs like GPT-NEO (Black
et al., 2021), the fine-tuning phase uses the
generated prompt as input for next-token pre-
diction, masking context-related tokens (from
“###Manuscript Title: XXX” to “###Text
Before Citation: XXX”) to confine prediction
loss within citation attributes A and citation sen-
tence S, as per Equation (1). In the inference
stage, the LM is fed with the template up to
“###Citation Intent:”, “###Keywords:”, and
“###Citation:” when the task is to decode the
citation intent, keywords, and the citation sentence,
respectively. In contrast, for encoder-decoder LMs
like BART (Lewis et al., 2020), context-related to-
kens are the encoder input during both fine-tuning
and inference. During fine-tuning, the LM learns
to decode tokens within A and S . At inference, the
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decoder generates citation attributes and sentences
based on the provided prompt.

3.2 Controllability Evaluation Metrics
We deem good controllability by control attributes
can be reflected in the following aspects:

1. The generated citation sentence matches the
given intent. For example, given a control
intent “background”, the model will generate
a sentence that introduces the background of
the cited paper.

2. The generated citation sentence contains the
given control keywords.

3. The generated sentence is fluent so that the
control keywords are embedded into the sen-
tence in a logically coherent way.

4. The generated sentence is content-wise related
to the cited paper and fits well with the context
of the manuscript.

Along this vein, apart from the human evaluation
(Section 6.4), we propose the following four auto-
matic metrics, each corresponding to one aspect:

1. Intent Alignment Score (IAS) evaluates the
alignment between the generated citation sentence
and the specified citation intent. Suppose the con-
trol intent is i (one of three possible intents: ‘back-
ground’, ‘method’, and ‘result’) and LM generates
a citation sentence S, we use SciBERT (Beltagy
et al., 2019) to process the citation sentence (pre-
ceded by a “[CLS]” token) and compute the last
hidden state of “[CLS]”, which we input to the in-
tent scoring head, a fully connected two-layer net-
work to yields the intent logits x(intent = i|S) for
three possible intents. The intent alignment score
IAS(S) is given by the probability of the intent i
by applying softmax to the logits:

IAS(S) = exp (x(intent = i|S))∑
k∈all intents exp (x(intent = k|S))

(2)
The intent scorer is trained using the SciCite

dataset (Cohan et al., 2019) containing human-
annotated intents. Details on training and evalu-
ating are further described in Appendix A.

2. Keyword Recall (KR) is a metric that as-
sesses the presence of provided keywords in the
generated citation sentence. A higher value signi-
fies that the generated sentence includes the given
keywords, indicating good control over keyword

incorporation. Given a generated citation sentence
S, the keyword recall KR(S) is calculated using
ROUGE-L recall to compare the keyword attribute
(or a concatenated string of multiple keywords, if
applicable) with S.

3. Fluency Score (FS) evaluates the fluency
of the generated citation sentence S. In addition
to keyword recall, the fluency metric ensures that
the citation generator incorporates the keyword at-
tributes naturally and logically without compromis-
ing fluency. Drawing inspiration from Kann et al.
(2018), we employ SLOR, a language model-based
fluency metric, and we normalize this score using a
sigmoid function. FS(S) is calculated as follows:

FS(S) = 1

1 + e−(SLOR(S)−η)

SLOR(S) = 1

|S|(log(pLM (S))− log(pu(S)))
(3)

In this equation, |S| denotes the number of tokens
in sentence S, pLM (S) represents the probability
of generating the sentence with a pre-trained lan-
guage model, and pu(S) is the product of the un-
conditional probabilities of all tokens in the sen-
tence. The unconditional probability of a token
refers to the probability of that token being gener-
ated as the first token in a sentence. As SLOR(S)
does not naturally range between [0,1], we ap-
ply an offset η and a sigmoid function to normal-
ize the score. The offset η is introduced to the
SLOR scores before sigmoid normalization, al-
lowing greater distinguishability between fluency
scores for fluent and less fluent sentences. We set
the offset η to 4 based on empirical observations.
We utilize the 560m-Bloom (Scao et al., 2023) lan-
guage model to calculate the SLOR because its ex-
pansive vocabulary of 250k tokens helps to avoid
over-segmenting words into subtokens.

4. ROUGE-F1 measures the textual alignment
between the generated citation sentence and the
ground truth. A high score is desired, as it im-
plies that the produced sentence is informative and
contextually fitting. We used ROUGE-1,2,L F1
scores also to validate the effectiveness of citation
attributes in controlling generation.

3.3 Controllability Enhancement via PPO

To enhance the controllability of our citation gen-
erator, we opted for Proximal Policy Optimization
(PPO) (Schulman et al., 2017; Ramamurthy et al.,
2023) due to its capability to use controllability
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metrics (IAS, KR, FS, ROUGE) as rewards, fa-
cilitating a direct optimization of the LM. While
cross-entropy loss during supervised fine-tuning
does provide some controllability, it does not con-
sistently ensure that specific controllability criteria
are satisfied. To illustrate, consider the ground-
truth sentence centered on keywords “L1; sparse
parameters”: “L1 regularization leads to sparse
parameters after training.” Two possible generated
sentences are:

A. “L1 optimization leads to dense parameters
after training.” and

B. “We show that L1 regularization results in
sparse parameters in the model’s learned weights.”

Despite sentence A seemingly being favored by
cross-entropy loss, it misinterprets the keyword
“sparse” and thus alters the sentence’s meaning
completely. Conversely, sentence B aptly captures
the essence, emphasizing keyword recall. This un-
derscores the limitation of relying solely on cross-
entropy for optimal controllability. PPO’s adapt-
ability, allowing for controllability metrics as re-
wards, ensures the language model’s outputs are
both accurate and controllable, offering a more nu-
anced and flexible optimization strategy than other
prevalent methods like adjusting beam search or
’bag of words’ techniques (Pascual et al., 2020;
Dathathri et al., 2020).

We used the parameters of the supervised fine-
tuned model to initialize the LM. During the PPO
training process, given the context and citation at-
tributes used as input, the LM generated a batch of
citation sentences, which we refer to as “episodes”.
These episodes were evaluated using the reward:

R =
1

4

(
IAS(S)+KR(S)+FS(S)+RS(S)

)
, (4)

where RS(S) is the sum of ROUGE-1/2/L F1
scores, allowing its magnitude to be compara-
ble with the other metrics. Importance sampling
was used during the optimization step, with mini-
batches of episodes sampled along with their as-
sociated rewards, to estimate the expected return
under the new policy using data collected with the
old policy, aiming to minimize divergence from
the previous policy while improving the expected
return. We implemented the PPO training using
the Transformer Reinforcement Learning (TRL)
framework (von Werra et al., 2020).

Information Training Validation Test

# samples 233,616 1,299 1,080
# citing papers 120,425 1,175 1,005
# cited papers 69,664 998 846

Table 1: The statistics of our dataset.

4 Dataset

From a subset of arXiv computer science papers,
we extracted triplets consisting of the citing paper
(treated as the manuscript), the citation sentence
within it, and the corresponding cited paper. The
necessary components for the input context, includ-
ing the local and global contexts of the manuscript,
as well as the global context of the cited paper,
were then extracted from these triplets.

Regarding the citation attributes, we used the
SciBERT-based intent scorer, as outlined in Sec-
tion 3.2, to predict the most probable citation intent
for each citation sentence. To obtain the keywords
attribute, we extracted noun phrases from each cita-
tion sentence and ranked them based on the cosine
similarity between the keyword’s Sentence-BERT
(version “all-mpnet-base-v2”, Apache License 2.0)
(Reimers and Gurevych, 2019) embeddings and the
embeddings of both the manuscript and the cited
paper. This approach allowed us to retrieve up to
two keywords per citation sentence.

To create the training, validation, and test sets,
we used a chronological split. All the citing pa-
pers used in the training set were published before
March 1st, 2023, while those in the validation and
test sets were published after this date. This strat-
egy prevents any unfair advantage for the tested
language models (Section 5) by ensuring they have
not previously encountered the same papers and
their associated citation sentences in the validation
and test sets during pretraining. The statistics of
our dataset are shown in Table 1.

5 Experiment

We experimented with the encoder-decoder model
BART (Lewis et al., 2020) and decoder-only mod-
els including GPT-Neo (Black et al., 2021), Galac-
tica (Taylor et al., 2022), and LLaMa (Touvron
et al., 2023), which varied in size from 125M to
7B parameters. All models were pretrained with
corpora before March 1st, 2023. During super-
vised fine-tuning, the smaller models (125M to
1.3B parameters) were fine-tuned in float16 preci-
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sion with a learning rate of 1e-5. For larger models
like Galactica-6.7B and LLaMa-7B, we utilized
INT4 low-precision quantization (Dettmers et al.,
2023) and Low-Rank Adaptation (LoRA) (Hu et al.,
2021) to reduce the GPU memory footprint. We
set the LoRA parameters with the rank r = 16 and
the scaling factor α = 32. For these larger models,
we used a higher learning rate of 1e-4, in line with
the guidance from Taori et al. (2023); von Werra
et al. (2020). All models were optimized with the
AdamW optimizer, using default betas (0.9, 0.999),
weight decay 0.05, and cosine learning rate decay.
Models were fine-tuned for 5k steps with a batch
size of 128 with a maximum token length of 1024.
We selected the best model checkpoint based on
the validation set loss every 1k steps.

To enhance controllability, we subjected Galac-
tica and LLaMa to additional fine-tuning using
Proximal Policy Optimization (PPO), as described
in Section 3.3. During this process, the language
models generated batches of citation sentences
(termed ’episodes’) for subsequent mini-batch-wise
backpropagation. We set the learning rate to 1.41e-
5 for all PPO fine-tuning. The PPO-finetuned
models are named Galactica-125M-PPO, Galactica-
6.7B-PPO, and LLaMa-7B-PPO, respectively (Ta-
ble 3). More PPO hyperparameter details and hard-
ware requirements are described in Appendix B.

In addition to fine-tuning models, we leveraged
GPT-3.5-turbo-03012, the backbone of ChatGPT,
through prompt engineering. The aim was to com-
pare our fine-tuned models’ performance against
a large language model with carefully crafted
prompts. We designed specific prompts (detailed
in Appendix C) for the ChatGPT API to generate
citation sentences. We conducted this in controlled
(providing context and citation attributes) and un-
controlled (providing only context) modes.

6 Results and Discussion

We aimed to investigate several key questions: 1)
whether and to what extent controllability offers
advantages in citation generation, 2) whether PPO
helps to improve controllability, and 3) how the
model size and the nature of pretraining tasks in-
fluence overall performance. In addition, we con-
ducted a human evaluation to compare the control-
lability of our fine-tuned citation generator against
GPT-3.5. This evaluation provided insights beyond

2https://platform.openai.com/docs/models/
overview

Model Intent
precision

Keyword ROUGE-1 (%)

precision recall F1

BART-base-140M 0.6083 22.05 16.70 17.62
BART-large-400M 0.6454 24.92 18.47 19.68
GPT-Neo-125M 0.5861 21.10 16.36 17.13
GPT-Neo-1.3B 0.6352 28.00 23.18 23.58
Galactica-125M 0.6204 26.15 21.86 22.11
Galactica-1.3B 0.6602 29.89 25.53 25.86
Galactica-6.7B 0.6380 29.49 24.78 25.10
LLaMa-7B 0.6352 28.13 22.78 23.40

Table 2: Performance of LMs on citation attribute in-
ference given context. We present ROUGE-1 metrics
for keyword predictions in relation to the ground-truth
keywords of the target citation sentence, alongside the
precision of intent prediction, represented as the propor-
tion of correctly inferred intents in the test set. The top
scores are bolded, and the next best are underlined.

the automatic metrics discussed in Section 3.2.

6.1 Controllability Is Necessary

We assessed LMs in three modes: 1) uncontrolled
mode, where the LMs utilize only the given con-
text to infer citation attributes, and then use the
inferred attributes to guide themselves when gener-
ating citation sentences; 2) intent-controlled mode,
where we provide the gold citation intent to con-
trol generation while the keywords are still model-
inferred; and 3) intent- and keywords-controlled
mode, where the LMs are given all relevant input:
context, citation intent, and keywords, from which
the LMs generate citation sentences taking into
account all available information.

Given only the context as input (same as the set-
ting in Xing et al. (2020); Ge et al. (2021)), we
observed limited success of LMs in matching in-
ferred attributes with ground-truth attributes ex-
tracted from the target citation sentence (Table
2). Even the best-performing model, Galactica-
1.3B, achieves an intent prediction precision of
just 0.66 and a keyword ROUGE-1 F1 of only 0.26.
Consequently, misinterpreted citation attributes can
lead to off-topic generated citation sentences, as
reflected by low ROUGE scores achieved by all
LMs in the uncontrolled mode (refer to Table 3).

Intriguingly, a marked improvement in ROUGE
scores was already observed when LMs generated
citations merely with gold citation intent in the
intent-controlled mode (Table 3). Even though the
citation intent is not an explicit part of the cita-
tion sentence, its presence guides LMs to gener-
ate sentences that are more aligned with the tar-
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Model
Uncontrolled

generation
Intent-controlled

generation Intent- and keywords-controlled generation

R1 R2 RL R1 R2 RL R1 R2 RL IAS KR FS

BART-base-140M 25.49 4.26 18.28 26.05 4.52 18.71 31.63 8.79 22.74 0.6789 0.6444 0.7156
BART-large-400M 27.39 5.67 19.85 27.90 6.00 20.17 32.33 9.12 23.20 0.6521 0.5877 0.7510
GPT-Neo-125M 23.54 3.67 17.58 23.62 3.69 17.59 30.48 9.44 22.83 0.6252 0.6793 0.7996
GPT-Neo-1.3B 28.48 6.12 20.78 29.04 6.39 21.28 36.26 13.48 26.81 0.7018 0.7936 0.7595
Galactica-125M 28.03 5.77 20.23 28.70 6.27 20.96 35.67 13.07 26.50 0.7037 0.7914 0.7540
Galactica-1.3B 30.07 7.34 22.06 30.66 7.62 22.64 38.06 15.21 28.50 0.6925 0.8299 0.7399
Galactica-6.7B 30.61 7.97 22.59 30.89 8.03 22.87 38.29 15.58 28.70 0.6734 0.8150 0.7468
LLaMa-7B 30.19 7.28 22.13 30.49 7.46 22.32 37.71 14.80 28.30 0.6688 0.8380 0.7584

Galactica-125M-PPO – – – 28.81 6.12 20.97 36.49 13.55 27.09 0.7273 0.8313 0.7651
Galactica-6.7B-PPO – – – 31.00 8.16 22.85 38.49 15.81 28.98 0.6740 0.8334 0.7519
LLaMa-7B-PPO – – – 30.64 7.64 22.51 37.72 14.83 28.31 0.6769 0.8430 0.7591

GPT-3.5-turbo 23.04 3.88 14.93 23.92 3.61 15.66 29.10 8.11 18.97 0.5716 0.8420 0.8493

Table 3: Performance comparison of various language models (LMs) in citation generation across three operational
modes: uncontrolled, intent-controlled, and intent- and keywords-controlled. The table lists ROUGE F1 scores (R1,
R2, RL) in percentages, as well as Intent Alignment Score (IAS), Keyword Recall (KR), and Fluency Score (FS),
with higher scores indicating superior performance. IAS, KR, and FS definitions are provided in Section 3.2.

get citations, as evidenced by enhanced ROUGE
scores. This enhancement is further amplified when
ground-truth keywords are provided along with the
citation intent, with some models witnessing a dou-
bling in ROUGE-2 F1 scores.
Case Study. We further demonstrated the effec-
tiveness of controllability with a case study in Ta-
ble 4. In the uncontrolled mode, the generated
citation sentence was a background sentence and
semantically mismatched with the gold citation.
By just providing the citation intent “result”, the
generated sentence presented the results accurately
that matched well with the gold citation. Finally,
introducing the control keyword “policy iteration-
based algorithms” further contributed to accurately
including the keyword in the generated citation sen-
tence, yielding the highest ROUGE-L F1. Our re-
sults underscore the importance of citation attribute
controllability in citation generation.

6.2 PPO Enhances LM Controllability

We compared the LMs’ performance in the intent-
controlled and intent- and keywords-controlled
modes before and after PPO. We excluded the
uncontrolled mode from this comparison, as we
assume that post-PPO, the LMs consistently op-
erate in a controlled mode where citation at-
tributes are given. Comparing Galactica-125M-
PPO with Galactica-125M, Galactica-6.7B-PPO
with Galactica-6.7B, and LLaMa-7B-PPO with
LLaMa-7B, we observed a consistent and marked
improvement in the IAS, KR, FS, and ROUGE

F1 scores, especially for the Galactica-6.7B-PPO
model, which achieved clear improvement in all
metrics and the best performance in terms of
ROUGE-F1. This result underscores the efficacy
of PPO in directing the language model to adhere
to the specifications of the provided attributes more
effectively. Consequently, the generated citations
better align with the specified intent, more com-
prehensively incorporate attribute keywords, and
exhibit improved fluency, suggesting the effective-
ness of PPO in enhancing the controllability of the
LM citation generator.

6.3 Model Size and Pretraining Matter

A noticeable trend of improved performance ac-
companies the increase in language model (LM)
size, underlining the role of model scale in citation
generation tasks. Additionally, notable variations
in performance exist among LMs of identical sizes.
Galactica consistently outperforms its counterparts,
while GPT-Neo tends to underperform. Despite
both models being based on the Transformer’s de-
coder, the performance disparity can be ascribed
to their distinct pretraining datasets: GPT-Neo is
pretrained on a diverse corpus with only a minor
portion of scientific literature, whereas Galactica’s
pretraining is on a large corpus of scientific texts.
This result indicates that the specificity of pretrain-
ing data can significantly enhance citation genera-
tion performance, underlining the critical influence
of pretraining corpora on performance.
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cited title: Reinforcement Learning: A Survey

cited abstract: This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be
accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad ...

text before citation: ... the agent is trained against multiple environments simultaneously and gains shared experience,
leading to faster convergence and improved performance. Besides, NNDP approach is value iteration–based RL algorithm,
whereas our approach is policy iteration–based RL algorithm. »generate a citation sentence HERE«

Ground truth citation sentence: In general, the policy iteration-based algorithms converge faster than
value iteration-based algorithms #REFR, which is another reason for the superior performance of our approach.
Our experimental results further support our arguments.

Generated citation sentences of different modes:
Mode: Uncontrolled, Intent: N/A, Keywords: N/A, ROUGE-L F1: 24.14
Value iteration-based RL algorithm learns the value function of each state, whereas policy iteration-based RL algorithm
learns the policy of each state #REFR.

Mode: Intent-controlled, Intent: result, Keywords: N/A, ROUGE-L F1: 34.62
It has been shown that policy iteration-based RL algorithm converges faster than value iteration-based RL algorithm #REFR.

Mode: Intent- and keywords-controlled, Intent: result, Keywords: policy iteration-based algorithms, ROUGE-L F1: 50.00
Policy iteration-based algorithms are known to converge faster than value iteration-based algorithms #REFR.

Table 4: A case study shows that citation sentences generated by Galactica-6.7B-PPO are guided by the citation
intent and the keywords.

Metric
User Preference (%)

GPT-3.5-turbo Neutral Galactica-6.7B-PPO

Intent Alignment 17.1 57.1 25.7
Keyword Recall 15.2 67.6 17.1
Fluency 34.3 50.5 15.2
Similarity to GT 24.8 30.5 44.8

Table 5: Percentage distribution of user preferences
for citation sentences generated by GPT-3.5-turbo and
Galactica-6.7B-PPO across four criteria. “Neutral” indi-
cates an equal preference for both sentences. Values in
bold denote the model with a higher preference.

6.4 Human Evaluation

Intriguing disparities emerge in our comparative
analysis of GPT-3.5-turbo and the fine-tuned LM
Galactica-6.7B-PPO (Table 3). Despite the second-
best KR score and the best FS, GPT-3.5-turbo’s
performance falls short in ROUGE-F1 and IAS
metrics. Such a disparity in automatic controlla-
bility metrics poses challenges in comparing the
performance and controllability between models.
To this end, a deeper understanding of these discrep-
ancies was sought through a user study involving
a subset of 105 examples randomly sampled from
the test set. For each example, two citation sen-
tences were presented - one generated by Galactica-
6.7B-PPO, the other by GPT-3.5-turbo with the
structured prompt (Appendix C), and the presen-
tation order was randomized to avoid bias. Four
voluntary participants (PhD candidates with NLP
research background, which matches well with the
domain of our test dataset) were asked to express

their preference using a four-criterion scale (intent
alignment, keyword recall, fluency, and similarity
to the ground truth), mirroring our automatic met-
rics (IAS, KR, FS, and ROUGE). A "no preference"
option was also provided (Figure 4) in case partici-
pants have equal preference for both sentences.

The results from the user study (Table 5) aligned
with our automatic evaluations (Table 3). GPT-3.5-
turbo-generated sentences, while preferred for flu-
ency, often diverged significantly from the ground-
truth citation sentences. This suggests that GPT-
3.5-turbo struggles to generate contextually accu-
rate citation sentences using our prompt template
despite its prompting capabilities. Thus, high-
capacity models like GPT-3.5-turbo may require
further prompt refinement or few-shot tuning to
enhance citation generation performance.

7 Conclusion

In this study, we introduced a controllable citation
generation framework that leverages language mod-
els, highlighting the importance of user-specified
attributes in the generation process. We empha-
sized the necessity for attribute control, underlin-
ing the complexities of citation generation, and
explored the potential of enhancing controllabil-
ity through Proximal Policy Optimization (PPO).
Our experiments affirmed that large language mod-
els pretrained on scientific corpora are essential
for citation generation, with the fine-tuned model
showing advantages over GPT-3.5-turbo in both
automatic metrics and human evaluations.
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Intent Category
(# samples)

Background Method Result Average
(1,014) (613) (260) (Macro)

Jurgens et al. (2018) 84.7 74.7 78.2 79.2
Cohan et al. (2019) 87.8 84.9 79.5 84.0
SciBERT+scaffolds

(Ours) 89.1 87.1 84.0 86.7

Table 6: The F1 scores on three citation intent cate-
gories and the average (macro) F1, tested on the SciCite
dataset created by Cohan et al. (2019).
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A Training and Evaluation of
SciBERT-based Intent Scorer

To train the SciBERT-based intent scorer, we em-
ploy a multitask training strategy (Cohan et al.,
2019) with the main task being citation intent classi-
fication, which aims to minimize the cross-entropy
loss:

L = − log
exp (xintent(itrue))∑

i∈all intents exp (xintent(i))
(5)

Additionally, we incorporate two auxiliary classi-
fication tasks (scaffolds) (Cohan et al., 2019) to
enhance the main task’s performance: 1) classi-
fying the title of the section (from 5 normalized
section titles: Introduction, Related Work, Method,
Experiments, Conclusion) in which the cited sen-
tence appears, and 2) determining the citation wor-
thiness of the sentence. We utilize a separate func-
tional head, a two-layer fully connected network
for each auxiliary task, with the SciBERT-encoded
"CLS" hidden states as input. The training loss is
a weighted sum of the three cross-entropy losses
(Equation (5)), with weights of 1.0 for the main
task, and 0.05 and 0.01 for the first and second
auxiliary tasks, respectively. The accuracy of the
intent scorer is shown in Table 6.

B Hardware Requirements and PPO
Training Hyperparameters

We used 4x NVIDIA A100 80 GPUs for training
and a single NVIDIA RTX A6000 for inference.
During PPO training, we adjusted the batch and
mini-batch sizes according to the model size and
architecture. Specifically, we used (256, 16) for
Galactica-125M, (256, 4) for Galactica-6.7B, and
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(32, 2) for LLaMa-7B, and we ran the PPO steps
until no further improvement in reward.

C Prompt Templates for Querying
GPT-3.5-turbo API

The prompt templates utilized to query the GPT-
3.5-turbo (version 0301) API are presented in this
section. As illustrated in Listing 1, the template for
uncontrolled citation generation creates a citation
sentence solely based on the context. In contrast,
Listing 2 demonstrates the template for the con-
trolled citation generation mode, where citation at-
tributes are included alongside the context to guide
the generation process. Before sending the query
message to the API, we need to provide the actual
content of the parameters that are listed at the be-
ginning of the templates, such as the cited paper’s
title and abstract, the manuscript’s title and abstract,
and the local context (the text before the target ci-
tation sentence in the manuscript), and specify the
citation intent and keywords in the controlled gener-
ation mode. During the API call to GPT-3.5-turbo,
we configured the maximum token limit to 2k and
set the generation temperature at 0.1.

D Influence of Beam Size on Citation
Generation Performance

During the citation generation process with Lan-
guage Models (LMs), we conducted experiments
with multiple beam sizes: 1, 2, 4, and 8. The perfor-
mance metrics derived from the validation set sug-
gest that the use of a beam size of 1 yields the most
consistent results. Interestingly, larger beam sizes
do not enhance the performance, but negatively
influence the ROUGE scores (Table 7). These re-
sults could hint that larger beam sizes introduce a
broader diversity in the generated text, which may
affect its precision. For instance, it could impact the
accurate generation of specific topic keywords and
affect the control over the generation process. In a
scenario where a keyword citation attribute is pro-
vided, LMs operating with a larger beam size may
opt to generate a citation sentence encompassing
synonyms of the keywords rather than the keyword
itself, which could consequently lead to a decrease
in ROUGE scores. As a result, in our experiments,
we defaulted to a beam size of 1. We will delve
deeper into this phenomenon in future research.

E Citation Generation Examples

We showcase instances (Figure 2 and 3) of cita-
tion sentences produced by Galactica-6.7B-PPO in
three modes: 1) Uncontrolled, 2) Intent-Controlled,
and 3) Intent- and Keywords-Controlled. Notably,
Figure 2 is the complete example of the case study
in Table 4. With the provision of accurate citation
intent alone, the language model citation genera-
tor can align well with the stated intent, thereby
enhancing ROUGE F1 scores. The addition of key-
word attributes further boosts these scores.

F Web Interface for Human Evaluation

We have designed a web interface using Stream-
lit3 to assess the citation sentences produced by
Galactica-6.7B-PPO and GPT-3.5-turbo. As shown
in Figure 4, this user-friendly platform enables
participants to peruse context details, citation
attributes, the original citation, and the model-
generated sentences with ease. Upon rating the
generated sentences based on the four provided
criteria, participants can submit their evaluation
by clicking on the “Submit” button, thereby pre-
serving the data. A “Skip” button is also available,
allowing participants to bypass any examples that
fall outside their area of expertise and proceed to
the next one.

3https://streamlit.io/
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cited_paper_title = "**** Cited paper 's title ****"
cited_paper_abstract = "**** Cited paper's abstract ****"
manuscript_title = "**** Manuscript 's title ****"
manuscript_abstract = "**** Manuscript 's abstract ****"
manuscript_local_text_before_citation = "**** The sentences before the target

citation sentence in the manuscript (local context)****"

messages = [
{

"role": "system",
"content": "You are a scientific writing assistant. Your task is to infer

the citation intent and relevant keywords based on the provided context , and
generate a citation sentence for a given manuscript. The citation sentence
should seamlessly follow the local context , reflect the inferred citation intent
, and incorporate the inferred keywords."
},
{

"role": "user",
"content": f"""

The authors need to cite the reference paper:

Title: {cited_paper_title}
Abstract: {cited_paper_abstract}

, in the manuscript with the global context:

Title: {manuscript_title}
Abstract: {manuscript_abstract}

, immediately following the provided local context:

{manuscript_local_text_before_citation}

Your task:
Please generate a citation sentence that cites the reference paper and seamlessly

follows the local context. The citation sentence should implicitly reflect one
of the following citation intents and incorporate relevant keywords:

1) Background: The citation provides background information or additional context
about a relevant problem , concept , approach , or topic.

2) Method: The citation refers to the use of a specific method , tool , approach , or
dataset from the reference paper.

3) Result: The citation compares or contrasts the results or findings of the
manuscript with those in the reference paper.

Requirements:
1. Insert the citation marker "#REFR" at the position in the sentence where the

reference paper should be cited.
2. Put the citation marker "#REFR" correctly in the generated citation sentence. The

citation marker should replace the entire in -text citation (e.g., authors and
year of publication), should not be enclosed in any brackets , and should be
placed within the sentence before the ending punctuation.

Please return only the generated citation sentence.
"""

},
]

Listing 1: The presented template was employed for querying the GPT-3.5-turbo (version 0301) API instructing it
to generate a citation sentence given the context which comprises the title and abstract of the cited paper the title
and abstract of the manuscript and the local context (sentences before the target citation in the manuscript). The
generation was executed in an uncontrolled mode without the control of explicit citation attributes.
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cited_paper_title = "**** Cited paper 's title ****"
cited_paper_abstract = "**** Cited paper's abstract ****"
manuscript_title = "**** Manuscript 's title ****"
manuscript_abstract = "**** Manuscript 's abstract ****"
manuscript_local_text_before_citation = "**** The sentences before the target

citation sentence in the manuscript (local context)****"
citation_intent = "**** Specified citation intent ****"
keywords = "**** Specified keywords ****"

messages = [
{

"role": "system",
"content": "You are a scientific writing assistant. Your task is to generate

citation sentences for a given manuscript , following detailed instructions.
These instructions involve taking into account the context , desired citation
intent , specific keywords in your responses."
},
{

"role": "user",
"content": f"""

The authors need to cite the reference paper:

Title: {cited_paper_title}
Abstract: {cited_paper_abstract}

, in the manuscript with the global context:

Title: {manuscript_title}
Abstract: {manuscript_abstract}

, immediately following the provided local context:

{manuscript_local_text_before_citation}

Your task:
Please generate one citation sentence that cites the reference paper , seamlessly

follows the local context , reflects the specified citation intent , and
incorporates the specified keywords.

Requirements:
1. The generated citation sentence should reflect the citation intent: {

citation_intent }. Citation intents include:
1) background: The citation provides background information or additional
context about a relevant problem , concept , approach , or topic.
2) method: The citation refers to the use of a specific method , tool , approach ,
or dataset from the reference paper.
3) result: The citation compares or contrasts the results or findings of the
manuscript with those in the reference paper.

2. The generated citation sentence should contain the specified keywords: {keywords
}. All the provided keywords should be used. If no keywords are specified ,
please infer one or two keywords by yourself and generate the citation sentence
based on them.

3. Insert the citation marker "#REFR" at the position in the sentence where the
reference paper should be cited.

4. Put the citation marker "#REFR" correctly in the generated citation sentence. The
citation marker should replace the entire in -text citation (e.g., authors and

year of publication), should not be enclosed in any brackets , and should be
placed within the sentence before the ending punctuation.

Please return only the generated citation sentence.
"""

},
]

Listing 2: The presented template was employed for querying the GPT-3.5-turbo (version 0301) API instructing it
to generate a citation sentence given the context which comprises the title and abstract of the cited paper the title
and abstract of the manuscript and the local context (sentences before the target citation in the manuscript). The
generation was also controlled by the specified citation attributes including citation intent and keywords.
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Figure 2: Example citation sentences generated by Galactica-6.7B-PPO under the uncontrolled mode, the intent-
controlled mode, and the intent- and keywords-controlled mode.
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Model
Uncontrolled

generation
Intent-controlled

generation Intent- and keywords-controlled generation

R1 R2 RL R1 R2 RL R1 R2 RL IAS KR FS

Galactica-125M-beam1 27.93 6.00 20.39 28.67 6.41 21.09 35.85 13.44 26.88 0.7128 0.7667 0.7539
Galactica-125M-beam2 27.26 5.80 19.61 28.00 6.26 20.24 36.00 13.81 26.68 0.6946 0.7865 0.7526
Galactica-125M-beam4 27.15 6.01 19.50 27.69 6.29 19.98 35.44 13.59 26.13 0.6872 0.7656 0.7466
Galactica-125M-beam8 26.47 6.03 18.87 26.91 6.38 19.44 34.99 13.67 25.91 0.6724 0.7400 0.7425

Table 7: Performance of the supervised fine-tuned Galactica-125M model on the validation set, utilizing various
beam sizes for inference.

Figure 3: Example citation sentences generated by Galactica-6.7B-PPO.
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Figure 4: The user interface for the side-by-side comparison of citation sentences generated by Galactica-6.7B-PPO
and GPT-3.5-turbo.
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