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Abstract

The inception of a research agenda typically
commences with the creation of a comprehen-
sive research proposal. The efficacy of the pro-
posal often hinges on its ability to connect with
the existing scientific literature that supports
its ideas. To effectively assess the relevance
of existing articles to a research proposal, it
is imperative to categorize these articles into
high-level thematic groups, referred to as top-
ics, that align with the proposal. This paper
introduces a novel task of aligning scientific
articles, relevant to a proposal, with researcher-
provided proposal topics. Additionally, we
construct a dataset to serve as a benchmark
for this task. We establish human and Large
Language Model (LLM) baselines and pro-
pose a novel three-stage approach to address
this challenge. We synthesize and use pseudo-
labels that map proposal topics to text spans
from cited articles to train Language Models
(LMs) for two purposes: (i) as a retriever, to
extract relevant text spans from cited articles
for each topic, and (ii) as a classifier, to cat-
egorize the articles into the proposal topics.
Our retriever-classifier pipeline, which employs
very small open-source LMs fine-tuned with
our constructed dataset, achieves results com-
parable to a vanilla paid LLM-based classifier,
demonstrating its efficacy. However, a notable
gap of 23.57 F1 score between our approach
and the human baseline highlights the complex-
ity of this task and emphasizes the need for
further research.

1 Introduction

Researchers frequently draft research proposals to
present new ideas, define research agendas and seek
funding grants. An integral part of the proposal
writing process is reviewing relevant literature and
relating it to different aspects of the proposal. Sev-
eral existing approaches designed for automatic
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retrieval of scientific articles can be applied to iden-
tify articles relevant to a proposal, with a detailed
description (abstract) of the proposal serving as the
query (Cohan et al., 2020b). However, there is of-
ten a further need to formulate high-level thematic
categories (henceforth referred to as topics) rele-
vant to the proposal and map retrieved relevant sci-
entific articles to these categories for fine-grained
contextualization. Such fine-grained mapping can
further facilitate motivating the research problem,
identifying its novelty, establishing baselines, syn-
thesizing methods, and automatic literature review
generation.

Given a set of reference article abstracts relevant
to a proposal, Zhu et al. (2023); Martin-Boyle et al.
(2024) auto-generates the thematic categories in
a hierarchical form (termed as a catalogue) and
organize references. However, the results demon-
strate that the auto-generated catalogue does not
match with the original-author-defined catalogue,
leading to discrepancies in downstream literature
review generation. This is due to inability of state-
of-the-art LMs as well as subjectivity of the task.
As opposed to this, we consider a more realistic
setting, where we assume the availability of not
only the reference papers retrieved to be relevant
to a proposal; but also high-level topics provided
by the researcher, for further literature categoriza-
tion. With this assumption, we focus on the novel
task of alignment of these reference papers, to one
or more of these topics, offering a comprehensive
understanding of its distinct contributions to the
target proposal. This ensures a more personalized
approach, aligning the cataloguing process closely
with the researcher’s unique perspective represent-
ing their understanding of the field.

Figure 1 illustrates an example, showcasing pro-
posal topics, relevant reference papers and their
mappings to the topics, with distinct text spans
from the reference paper representing the relevant
context (henceforth termed as the reference text
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Figure 1: A sample from the dataset illustrating the many-to-many relationship between the proposal topics and
reference papers. Reference Papers pi and pl are cited under Topic tk, while Reference Paper pi is cited by both
Topics tj and tk with distinct reference text spans from the paper. The highlighted texts emphasize the similarities
among the Topic, Citation Text, and Reference Text Spans.

span). Thus, a reference can be cited in more
than one proposal topic with distinct context (ref-
erence text spans) (Li et al., 2023). Considering
the token lengths of scientific articles, vanilla paid
LLM-based approach for this task would be ex-
pensive. We consider the requirement of using
smaller open-source LMs without compromising
on the performance of LLMs. Hence, there is a
need for a dataset to fine-tune domain-specific LMs
for the task. As existing datasets for scientific docu-
ment understanding (Clement et al., 2019; Lo et al.,
2020; Saier et al., 2023; Kasanishi et al., 2023; Li
et al., 2022) are not well-suited for this task, we
extend the UnArXiv dataset (Saier et al., 2023),
originally designed for literature review generation.
We establish human and vanilla LLM baselines and
define a novel three-stage approach for topic-based
alignment of papers. Since ground truth labels for
the reference text spans relevant to topics are not
available, we augment the data by retrieving the
reference text spans using the text around the arti-
cle citation within the proposal topic (citation text),
which is assumed to be available only for training.
We use the synthesized pseudo pairs to train lan-
guage models (LM) for retrieval of text spans from
articles for a topic, and for classification of the re-
trieved articles to the topic. As opposed to all the
prior approaches (Hoang and Kan, 2010; Hu and
Wan, 2014; Chen and Zhuge, 2019; Wang et al.,
2020; Pandey et al., 2022; Deng et al., 2021; Va-
jdecka et al., 2023), considering the realistic need
of initial proposal writing stage, we neither assume
the availability of citation text for the cited papers
nor detailed description of the topics during infer-
ence. Our primary contributions are:

• We define the novel task of aligning reference

articles relevant to a target proposal with user-
defined proposal topics.

• We construct a dataset using a set of research
papers as proposals, the subsection headings
of the related work sections as the ‘topics’ and
the papers cited under those sections as the
reference papers relevant to those ‘topics’.

• We establish human and LLM baselines and
find that higher human F1 scores demonstrate
task feasibility.

• We define a novel approach wherein we as-
sume no citation text or detailed topic descrip-
tions to retrieve reference text spans for a topic
during inference. We devise a novel strategy
using the citation text, available only for train-
ing, as a link between the topic and the ref-
erence text spans to create pseudo-labels for
training a retriever and classifier pipeline.

• Our pipeline using much smaller LMs trained
with pseudo-labels yields comparable perfor-
mance to that of the LLM baseline, demon-
strating the efficacy of the constructed dataset
and the approach. In contrast, a significant
gap (23.57 F1 score) exists between our ap-
proach and the human baseline indicating the
need for more sophisticated solutions.

2 Related Work

2.1 Scientific Document Understanding
Literature Review Generation: Current ap-
proaches for automatic literature review generation
either independently summarize articles (Hayashi
et al., 2023; Urlana et al., 2022; Akkasi, 2022) or
generate citation text (yan Wu et al., 2021; Jung
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et al., 2022; Wang et al., 2022) for each article
without considering their inter-relations (Li et al.,
2022; Li and Ouyang, 2024). These approaches
often produce monolithic extractive (Hu and Wan,
2014; Wang et al., 2018) or abstractive (Chen et al.,
2021, 2022; Kasanishi et al., 2023; Chen et al.,
2021; Liu et al., 2023) reviews lacking any struc-
ture. Kasanishi et al. (2023); Martin-Boyle et al.
(2024) introduce a method for generating reviews
with well-structured subsections, grouping relevant
articles by specific topics. However, they either
assume the availability of the mapping of research
articles to proposal topics or take human inputs
for the same. Our task serves as an upstream task
for comprehensive literature review generation and
focuses on the automatic alignment of relevant arti-
cles to a set of proposal topics.

Citation Text Generation: Citation text gen-
eration crafts sentences that cite reference articles
based on their abstracts, aiming to integrate them
into a literature review. However, existing methods
(yan Wu et al., 2021; Jung et al., 2022; Wang et al.,
2022) assume precise knowledge of intents (back-
ground, methodology, etc), behind citing a paper
which is largely unavailable in the early stages of
proposal writing. Moreover, these approaches rely
solely on the reference paper’s abstracts, potentially
lacking adequate information for appropriate map-
ping to an intent or topic. In contrast, our approach
of extracting reference text spans from the refer-
ence paper ensures the availability of comprehen-
sive information for alignment. Prior approaches
to text span extraction from research papers use ci-
tation texts (Pandey et al., 2022; Zerva et al., 2020;
Vajdecka et al., 2023) or queries (Li et al., 2023). In
contrast, our approach considers the more practical
setting at the proposal writing stage and retrieves
text spans without relying on the availability of ci-
tation text or detailed queries assuming only the
availability of high-level topics.

Citation Intent Detection: Citation intent de-
tection (Lahiri et al., 2023; Roman et al., 2021;
Berrebbi et al., 2022) presumes the presence of
citation text to classify papers into predefined cate-
gories such as motivation, background, etc. How-
ever, during the proposal writing stage, citation text
is unavailable. Moreover, the classification cate-
gories for potential reference papers differ for each
target proposal. In contrast, our work introduces a
new task of mapping potentially relevant papers to
proposal-specific topics defined by users without
assuming the availability of the citation text.

Scientific Paper Retrieval: Several approaches
for retrieving scientific papers from a corpus rely
either on abstracts and titles of a target paper (Singh
et al., 2023; Cohan et al., 2020a), detailed textual
queries (Sesagiri Raamkumar et al., 2017; Anand
et al., 2017; Parisot and Zavrel, 2022; Medic and
Šnajder, 2023), or relevant aspects such as the prob-
lem or methodology (Mysore et al., 2022; Osten-
dorff et al., 2022; Singh et al., 2023). These ap-
proaches employ strategies to generate suitable em-
beddings for queries and research papers, often
focusing on pre-defined ’aspects’ common across
the target papers. In contrast, our work assumes
the availability of research articles relevant to a pro-
posal and perfoms a more fine-granular mapping
of these articles to a set of user-defined topics.

2.2 Existing Datasets

We evaluate existing datasets for our task. The
SciReviewGen (Kasanishi et al., 2023) dataset is
designed for literature review generation, is de-
rived from S2ORC (Lo et al., 2020) and consists
of only survey papers with their contents extracted
from their PDFs, resulting in highly erroneous ex-
tractions. CORWA (Li et al., 2022), derived from
ArXiv (Clement et al., 2019), extracts information
from the LaTeX version of ACL conference papers,
ensuring relatively error-free extractions. However,
while it employs a tagger to classify transitions in
text-forming paragraphs, it falls short of extracting
the associated chapter heading (topic in our con-
text) for each text span. (Medic and Šnajder, 2023)
utilize the CORWA dataset for scientific paper re-
trieval, under the assumption that the first transition
text spans of extracted paragraphs indirectly refers
to the topic. Our analysis, however, reveals that
this assumption holds only for a smaller subset of
the samples. UnArXiv dataset (Saier et al., 2023),
derived from ArXiv papers, struggles to correctly
identify in-text citations for these papers required to
derive the mapping of topics to the corresponding
reference papers. We extend the UnArXiv dataset
and overcome this limitation with our own parser
(details in Section 4).

3 Task Definition

Consider a research proposal with its title and ab-
stract R and with a set of topics forming the cata-
logue denoted as TR = t1, ..., tK . We assume a cor-
pus of reference research papers PR = p1, ..., pn
retrieved using R via existing retrieval methods
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Figure 2: Stages of Proposal Topic based Reference Paper Alignment R: Proposal Title and Abstract, PR: papers
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such as Specter (Singh et al., 2023). The task
aims to classify the mapping of each research paper
pi ∈ PR to each topic tj ∈ TR using binary labels
yij ∈ 0, 1. The dataset consists of positive tuples
< R, pi, tj , cij >, where cij is the citation text cit-
ing the paper pi under topic tj and is only available
during training. We define a process to augment
the dataset with the reference text span sij by using
the citation text cij . The reference text span refers
to the contents of the referenced paper pi, needed
to determine whether pi is relevant to the topic tj .
Again, we do not assume the availability of sij for
training or inference in the dataset.

4 Dataset Construction

Figure 2 demonstrates the steps we have followed
for the construction of our dataset. We utilize the
papers in the UnArxiv dataset (Saier et al., 2023),
with their titles and abstracts as target proposals
R. We leverage the ArXiv tags of these papers to
obtain their domains and focus on papers in AI and

Computer Vision. This was to ensure high-quality
annotations since the human annotator who facili-
tated the establishment of the baseline (Section 6.2)
had expertise in these domains.

We use UnArxiv IDs to retrieve papers from
ArXiv, obtain LaTeX sources, and employ a LaTeX
parsing technique with Regex statements to extract
in-text citations within our simulated proposal pa-
pers. Our parser identifies section headings from
these target papers and extracts topics (tj), from
the subsection headings of the ‘Related Work’ or
‘Literature Review’ Sections. We selectively retain
only those target proposals where multiple topics
exist in the literature review. For each topic tj thus
identified, we further identify in-text citations for
referenced papers {pi} and extract the correspond-
ing citation texts {cij}. We then match the citation
text with the corresponding entry in the references
section of the paper to obtain the referenced paper
title. We obtained the PDFs of the referenced pa-
pers from various sources like ArXiv, ACL, and
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Semantic Scholar. The contents of the referenced
papers are extracted using our PDF extractor.

Table 1: Dataset Statistics

Samples Splits Total

Train Validation Test

Target Proposals 1,934 241 242 2,417

Proposal Topics 5,680 720 723 7,123

Reference Papers 39,608 4,987 4,911 49,506

Avg. Topics / Proposal 2.94 2.99 2.99 2.95

Avg Papers / Topic 6.9 6.93 6.79 6.95

Topic-Paper Pairs 50,116 6,329 6,075 62,520

Thus, our final dataset consists of set-of research
papers from selected domains from the UnArxiv
dataset with each paper simulating a target proposal
R. The dataset also includes the topics for each
target proposal TR and reference papers relevant
to the target proposal PR. Moreover, the ground
truth labels of our task, in terms of alignments of
reference papers to the topics are solicited from the
in-text citations, explicitly specified by the authors
of the target papers. For the training set, we assume
the availability of the citation text cij for every pair
tj and pi. Thus, a sample of the training data is de-
picted by the tuple < R, pi, tj , cij >. Whereas for
the test set a sample is < R, pi, tj >. We split tar-
get proposals into train, validation, and test sets to
prevent information leakage across splits. Dataset
statistics are summarized in Table 1. The result-
ing corpus has target proposals pertaining to Artifi-
cial Intelligence (AI) (2.69 %), Machine Learning
(ML) (15.56%), Computational Linguistics (CL)
(7.28%), Computer Vision (CV) (73.23%) and a
combination of CL and CV (1.24%). We make the
dataset available at1.

5 Approach

We break down our approach into three stages (
Figure 2): (i) Augmenting the dataset with positive
and negative reference text spans for a proposal
topic, retrieved from papers relevant to the pro-
posal, with the citation text as the query, using a
state-of-the-art retriever model (SR) (ii) Training
the Topic based reference text span Retriever (TR)
and reference paper classifier (TC) using the aug-
mented data (iii) Using TC to classify a reference
paper for its relevance to a proposal topic in context

1https://github.com/NeuralNimbus/Beyond-Retrieval un-
der license: GNU GPL v3

of the proposal and the reference text span retrieved
from the paper relevant to the topic using TR .

5.1 Stage 1: Data Augmentation
To train the retriever TR, we need positive and neg-
ative pairs of topics tj and reference text spans sij .
We do not have such pairs available in our training
data. However, we do have the citation text cij ,
which we utilize as a ‘link’ to retrieve the reference
text span sij from pi, relevant to cij and conse-
quently relevant to tj . We assess the performance
of existing retrieval models on equivalent tasks in
the science domain, viz., (i) Retrieval of paragraphs
from scientific documents given a question and (ii)
Retrieval of a text span given the citation text. We
identify a retriever model SR having the best zero-
shot performance for both these tasks, making it
generalizable for our task and dataset. Section 6.4,
details the experiments performed to choose SR.

We chunk the reference paper pi using a sliding-
window approach choosing 7 sentences as a chunk
with a stride of 3. The top-k chunks from the ref-
erence paper most relevant to the citation text cij
retrieved using the best-performing retriever SR,
serve as the retrieved reference text span ŝij of arti-
cle pi for the topic tj . The similarity score between
the citation text and a chunk of the reference paper
is calculated on the lines of (Nogueira et al., 2020),
by taking log softmax over ‘True’ and ‘False’ to-
kens to get the probability of ‘True’ token as the
score and rank the chunks. The retrieved top-k
chunks may or may not be contiguous, and we use
a higher k value for good recall, avoiding infor-
mation loss. The retrieved reference text span ŝij
functions as a pseudo-positive pair for the topic tj .
We consider three distinct types of pseudo-negative
reference text spans sij for topic tj (Figure 3): (i)
Type 1: The bottom-k chunks retrieved from pi,
with citation text cij of topic tj as query, using SR
serve as easy negatives for the topic tj in proposal
R. (ii) Type 2: Text spans (top-k chunks) retrieved
from the reference paper pl, NOT cited in topic tj ,
but cited in tk where k ̸= j, with the citation text
clk as query using SR, serve as easy negatives for
the topic tj in proposal R. (iii) Type 3: With each
cij for topic tj citing pi as the query, we retrieve
top-k chunks from reference articles pl, NOT cited
in topic tj , but cited in tk where l ̸= i and k ̸= j
using SR. The top-k chunks demonstrating max-
imum similarity with one of the cij serve as hard
negatives for the topic tj in proposal R.

We augment our training dataset with these
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Figure 3: Negative sampling reference text spans for top-
ics. Blue represents querying,Brown represents cross-
querying,Green represents positive sample pairs, Red
represents negative sample pairs

pseudo positive and negative reference text spans
for each topic leading to the resultant dataset,
where a sample is depicted by the tuple <
R, pi, tj , cij , ŝij , {sij} >. The statistics of the aug-
mented dataset are illustrated in Table 2.

Table 2: Augmented Dataset Statistics

Samples Splits Total

Train Test Validation

Positives 50,116 6,329 6,075 62,520

Easy Negatives 1,42,637 19,382 17,635 1,79,654

Hard Negatives 1,10,164 15,561 13,492 1,39,217

Total 3,02,917 41,272 37,202 3,81,391

5.2 Stage 2: Training

Topic based Reference Text Span Retriever
(TR): We train TR, which is a Language Model
(LM) using the positive and negative topic and
reference text span pairs. Following the method-
ology discussed in (Nogueira et al., 2020), we
try to maximize the probability Pr(True|tj , sij)
and Pr(False|tj , sij) using the cross-entropy loss.
Due to the significantly higher number of negative
samples compared to positives in the dataset, we
include all positives but randomly sub-sample the
negatives of each domain uniformly to maintain a
balanced training dataset. Sampling is performed
with replacement for every epoch to ensure that the
model sees all negatives.

Proposal Topic based Reference Paper Classi-
fier (TC): We train the TC using the augmented
training dataset. We form samples < R, tj , ŝij >

with label yij = 1 and < R, tj , sij > with la-
bel yij = 0. The model learns to classify if the
paper pi can be assigned to the topic tj in the con-
text of R and sij , with the supervision of the label
yij . We try to maximize the probability Pr(y =
True|R, tj , sij) and Pr(y = False|R, tj , sij) us-
ing cross-entropy loss.

5.3 Stage 3: Inference

During inference, we feed the proposal title and
abstract R and a topic tj from the test set to
TR along with chunks chq of a reference article
pi in the test set tagged as relevant to R. The
model TR provides us with the a similarity score
simjq = TR(tj , chq) for each chq. The score is
calculated by applying a softmax on the logits of
the ‘True’ and ‘False’ tokens and taking into consid-
eration the probability P (True|tj , chq) (Nogueira
et al., 2020). We rank chq for the given R and
tj based on simjq and use the top-k ranked chq
of paper pi as the retrieved reference text spans
ŝij from paper pij, for topic tj in R. We fur-
ther feed < R, tj , ŝij > to TC If probability
P (y = True|R, tj , ŝij) ≥ 0.5, then only we con-
sider pi to be aligned with tj .

6 Experimentation and Results

6.1 Evaluation Metric

To assess the performance of SR on evidence and
reference text span retrieval tasks (Section 6.4), we
compute the evidence F1 score (Dasigi et al., 2021).
For the evaluation of our pipeline (TR followed
by TC), we utilize the binary ground truth labels
depicting the alignment of each proposal topic and
each reference paper relevant to that proposal and
the labels predicted by TC in the context of re-
trieved reference text spans to compute the confu-
sion matrix for the binary classification task. We
choose the F1 score as the metric, given the label
imbalance.

6.2 Baselines

To establish baselines we evaluate the ‘Reference
Paper Topic Classification’ task with human and
LLM-generated annotations. Our human annotator
is a researcher with expertise in AI and allied fields.
The details of the annotation interface are discussed
in Appendix B. Considering the complexity, cogni-
tive load and LLM cost for the task, the baselines
are developed only on a smaller evaluation subset
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of the test set. We utilize GPT-3.5 Turbo2 LLM.
To ensure deterministic and reproducible results,
we set the temperature to 0. The structure of the
prompt is detailed in Appendix A. Acknowledging
the limitation of over-representation of CV papers
in the dataset (Section 4), we construct the evalu-
ation subset by uniformly sampling random four
proposals from each of the five domains from the
test set and thus ensuring balanced domain repre-
sentation. This results in selecting 20 proposals
with 52 topics citing 362 reference papers, forming
378 positive topic-reference paper pairs.

We have the following baselines: (i) Random:
We randomly assign Yes/No labels to the test sam-
ples, (ii) TR + Human: The human annotator is pro-
vided with information about the target proposal’s
title, abstract (R), topic tj , reference paper title
pi, and the text span of the reference paper sij ,
retrieved using the topic tj with our trained TR
model. The task is to assess the relevance of the
reference paper to the given topic, labelling it 1
if the reference paper is aligned to the topic; and
0 otherwise, (iii) LLM: For vanilla LLM baseline
we provide the complete reference paper pi to the
LLM along with information about the target pro-
posal’s title, abstract (R), topic tj as the part of the
prompt (Appendix A) and ask the LLM to classify
the reference paper’s relevance to the topic in the
context of the proposal. We truncate the tail of the
paper if the token length of the paper exceeds the
maximum token length of the LLM. This baseline
does not take into consideration text span from the
reference paper, which is relevant to the topic and
hence can be treated as is topic-agnostic reference
text span based method, (iv) TR + LLM: This is
the same has TR + Human except the relevant in-
formation mentioned above is provided to LLM as
opposed to the human annotator. In this case, the
LLM performs the job of classification of reference
paper alignment to topics in the context of the pro-
posal and retrieved reference text spans from the
paper, as opposed to the complete paper, which is
the case in vanilla LLM. Note that, on similar lines
to the LLM baseline we could have had only the
Human baseline, where the human gets to read the
complete reference paper to perform the classifica-
tion task. However, due to the very high cognitive
load of this task, we skip this baseline.

2https://platform.openai.com/docs/models/gpt-3-5-turbo

6.3 Models and Hyperparameter Setting
Topic-Based Reference Text Span Retriever
(TR): We fine-tune a T5-base model(Raffel et al.,
2019), consisting of 223M parameters with a batch
size of 120, learning rate of 3 × 10−4 with the
AdamW optimizer, on Nvidia A100 for 20 epochs
taking 84 hours, evaluated every 500 steps on the
validation split. The model with the best validation
F1 is obtained after fine-tuning for 1000 steps.

Research Paper Topic Classifier (TC): We
chose RoBERTa (Liu et al., 2019) and Flan-T5
(Chung et al., 2022) base consisting of 125M and
248M parameters respectively, for their robust rea-
soning capabilities, as TC. Both models are fine-
tuned on a class-balanced dataset with the batch
sizes 240 and 120, using the AdamW optimizer
and learning rates 5× 10−5 and 3× 10−4, respec-
tively. Fine-tuning is performed for 50 epochs on
an Nvidia A100 taking approximately 120 hours
each. The models with the best validation F1 are
obtained at 33 and 35 epochs for RoBERTa and
Flan-T5, respectively.

6.4 Results

Table 3: Results on Evidence Retrieval Task on
QASPER and Citation Text Span Retrieval Task on Cl-
SciSumm. The numbers indicate F1 scores for top-k
retrieved chunks where k=3

Models Datasets

QASPER Cl-SciSumm

CGSN* (Nie et al., 2022) 53.98 NA

CitRet* (Pandey et al., 2022) NA 19.79

Specter 2 (Singh et al., 2023) 13.68 19.28

CoSentBert (Mysore et al., 2022) 17.28 15.08

MPNET (Song et al., 2020) 15.81 14.14

Mono T5 (Nogueira et al., 2020) 25.90 25.98

* State-of-the-Art supervised models

Citation Text based Reference Text Span Re-
trieval (SR): As discussed in Section 5.1, our
dataset lacks ground truth reference text span labels
sij from a reference paper pi, which are relevant to
a topic tj . Given the availability of citation text cij
belonging to a topic tj for the train set, we perform
experiments to identify a state-of-the-art model to
retrieve the reference text spans sij for that topic.
We evaluate existing retrieval models on the test
sets of QASPER (Dasigi et al., 2021) for evidence
retrieval and CLScisumm (Chandrasekaran et al.,
2019) for reference text span retrieval. We assess

76



the performance of models depicted in Table 3 in a
zero-shot setting, to select the model most gener-
alizable for our task and dataset. For the evidence
retrieval task with QASPER, Specter 2 is used with
the AdHoc Query Adapter for questions and the
Proximity Adapter for paragraphs (Singh et al.,
2022). For CLScisumm, Specter 2’s AdHoc Query
Adapter is employed to embed both the citation
text and candidate citation text spans. Top-3 sen-
tences are retrieved for each model, following the
approach in (Pandey et al., 2022). We observe that
Mono T5 achieves the highest F1 Score among pre-
trained models for both datasets (Table 3). While
not as good as the supervised state-of-the-art model
CGSN (Nie et al., 2022) for QASPER, it surpasses
the SOTA model CitRet (Pandey et al., 2022) in
CL-SciSumm. Hence, we select Mono T5 as SR.

Table 4: F1 scores for the reference paper topic align-
ment task on the subset of test data (Section 6.2).

Annotation Precision Recall F1 Score

Random 37.47 47.88 42.04

TR + Human 80.67 89.42 84.82

LLM [GPT-3.5 Turbo] 56.00 74.07 63.78

TR + LLM [GPT-3.5 Turbo] 57.77 72.75 64.40

TR+ TC [RoBERTa]* 52.27 65.60 61.16

TR+ TC [Flan-T5]* 56.17 72.22 63.19

* Our pipeline: models fine-tuned with our dataset. TR:
T-5-Base Model fine-tuned with our dataset

Topic based Reference Text Span Retriever
(TR) and Reference Paper Classifier (TC): Ta-
ble 4 illustrates the evaluation of our inference
pipeline discussed in section 5.3 on the subset of
test data (Section 6.2). A high F1 score achieved by
the human baseline establishes the task’s feasibility.
Higher F1 of our supervised models as compared
to Random confirms task learnability. Higher F1
scores of TR + LLM as compared to LLM demon-
strate the benefit of using our retrieval model. More
importantly, comparable scores of our fine-tuned
pipeline with very small (248M) LMs to that of
pre-trained Large LM (175B), suggest the efficacy
of utilizing our synthesized training data for task
modelling. However, the noticeable difference in
the human baseline concerning both the zero-shot
LLM-based approach and our fine-tuned LM-based
pipeline highlights the task’s inherent difficulty, in-
dicating a need for more sophisticated techniques.
For a comprehensive evaluation, we evaluate the
pipeline on our complete test set. RoBERTa and

Flan-T5 yield F1 scores of 63.40% and 62.82%,
respectively.

We conducted a detailed error analysis (Ap-
pendix C) of the errors made by the expert and
identified author subjectivity, insufficient informa-
tion in the retrieved reference text spans and lack
of in-depth subject knowledge, as the challenges
encountered by the expert. We further analyze the
errors made by LLM and fine-tuned TC models
for samples correctly classified by experts, detailed
in Appendix C. The majority of errors are due to
lexical overlap between topics and reference text
spans with no semantic alignment causing False
Positives or the models failing to perform complex
reasoning required for the task.

7 Conclusion and Future Work

We have defined a novel task of mapping relevant
scientific articles to research proposal topics as
a precursor to the Literature Review Generation
task for a new research proposal. We introduce a
large-scale dataset for the task and establishment
of competitive baselines by an expert and an LLM,
underscoring task feasibility. We define a novel ap-
proach for the task and are the first ones to simulate
the real-life scenario, at the early stage of proposal
writing, of unavailability of citation text or detailed
topic descriptions to retrieve topic-wise reference
text spans from relevant articles. We came up with
a novel strategy of using citation text (available
for the training data) as a link between the topic
and the text spans to create pseudo-labels for train-
ing a retriever. Our pipeline using much smaller
open-source LMs trained with pseudo-labels yields
comparable performance to that of the paid LLM
baseline, demonstrating the efficacy of constructed
data and designed pipeline. In contrast, a notice-
able gap of 23.57 F1 score between our approach
and the human baseline underscores the task’s com-
plexity, demanding more sophisticated solutions.

While organizing reference articles by topic, the
hierarchy among these topics (catalogue), is crucial
for a comprehensive understanding. However, we
found it difficult to capture this hierarchy due to
the PDF parsing challenges, treating every topic
as a standalone entity. In future, with more so-
phisticated PDF parsing and semantic paragraph
segmentation techniques, we plan to capture the
topic hierarchy for task completeness.
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A Prompt Structure for LLM Annotation

As outlined in Section 6.2, we employ GPT-3.5
Turbo to set a benchmark on the Annotated split
of the dataset. After experimenting with various
prompts, we find that the prompt depicted in List-
ing 1 yields the best results.

Listing 1: Prompt Structure for TR + LLM baseline.
For vanilla LLM we replace the Text Span of paper ’B’
with the actual reference paper.
system_prompt = '''
You are a Research Paper Relevance

Classifier. Given the 'Title ' and '
Abstract ' of Paper `A' and a 'Topic '
of Paper 'A', and a text span from

Paper 'B' predict whether Paper 'B'
is directly related to the topic of
Paper 'A', in context of the 'Title '
and 'Abstract ' of Paper 'A '. Output
the model's prediction as:"

Output: [1] (for 'yes ') or [0] (for 'no
')'''

user_prompt = '''
Title of Paper 'A':
<Target Proposal Title >
Abstract of Paper 'A':
<Target Proposal Abstract >

Topic of Paper 'A':
<Topic >

Text Span of Paper 'B':
<Reference Paper Title >
<Citation Text Span >

Is the content of Paper 'B' directly
related to the topic of Paper 'A' (<
Topic >)?

'''

B Annotation Interface

We have developed an Annotation tool aimed at
offering a user-friendly interface to engage the hu-
man expert for annotating samples. The Annotator
tool provides information on the target proposal’s
title, topic, reference paper title, abstract and the
retrieved citation text span of the reference paper,
as illustrated in Figure 6 (b). Moreover, we man-
date the expert to review the disclaimer prior to
the annotation process, ensuring that they are well
informed about the context and ethical guidelines
associated with the samples they are annotating, as
reflected in Figure 6 (a).

C Error Analysis

We perform error analysis for the task of reference
paper to topic mapping (classification). We use the
sub-sampled test set discussed in Section 6.2 for
the analysis.

C.1 Human Baseline

We analyze the False Positive and Negative samples
with the annotations provided by the human expert.
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The primary objective is to gain a profound under-
standing of the challenges inherent in the task. The
identified 121 erroneous annotations provided by
human are categorized into the following groups:

Figure 4: Samples illustrating Human errors due to (a)
Subjectivity and (b) Insufficiency of information in the
retrieved citation text span.

• Subjectivity: These errors, constituting
77.69% of total erroneous cases, stem from a
misalignment between the thought processes
of the author and the annotator. As shown in
Figure 4 (a), the reference paper is not cited
by the author under the given topic, however
human annotator tends to map the reference
paper to the topic due to the match between
the semantics of the citation text span and the
topic. In these instances, the annotator cor-
rectly deems the reference article relevant to
the topic, while the author holds a contrast-
ing view. This emphasizes the inherent sub-
jectivity embedded in the task, where inter-
pretations of relevance can diverge between
individuals.

• Insufficiency: Errors in this category are
4.96% of total erroneous cases and are at-
tributed to the insufficient information present
in the retrieved citation text span. The experts
face challenges in making well-informed deci-
sions due to the lack of comprehensive details,
impeding their ability to accurately assess the
relevance of the reference article to the given
topic. For example, as highlighted in Figure
4 (b), the citation text span does not carry
enough information to let the author infer its
mapping to the topic. We observe in some of
these cases the citation text span may carry in-

formation semantically similar to the citation
text and thus the topic, but the information
is not sufficient to logically reason about the
possible alignment of the reference paper to
the topic. This problem can be addressed by
having a better mechanism for citation text
span retrieval given citation text, which would
indirectly help us improve the results of topic
based citation text span retrieval model to re-
trieve more relevant citation text spans. This
can be improved by augmenting the pipeline
with an entailment task following the retrieval,
to evaluate which of the top-k retrieved ci-
tation text spans entails the citation text to
accommodate the reasoning component. We
leave this enhancement for future work.

• Inadequacy: Errors categorized under inad-
equacy, accounting for 7.44% of total erro-
neous cases, emerge due to the lack of sub-
ject matter knowledge of the expert annota-
tor. This knowledge gap prevents her from
accurately understanding the relevance of the
reference article to the proposed topic.

• True Errors: This category, constitutes
9.92% of total erroneous cases, encompassing
genuine mistakes made by human annotators.
Despite concerted efforts to maintain accu-
racy, errors of this nature occur, underscoring
the complexity and human cognitive load of
the task.

The systematic categorization of these errors
showcases the prevalence of subjectivity, arising
from differences in the author’s writing style and
thought process which constitutes the majority of
mis-classifications by human annotators.

C.2 LLM baseline and fine-tuned models
against Human baseline

We analyze instances where human annotators cor-
rectly classified the samples that are misclassified
by the LLM and fine-tuned models, as outlined in
Table 5. We majorly categorize the error into two
categories:

• Requirement of complex reasoning: These
errors are due to the absence of direct align-
ment between the topics and the citation text
span of the reference paper. It requires multi-
hop complex reasoning for the mapping task.
As demonstrated in Figure 5 (a), the refer-
ence paper is not directly relevant to the topic
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Figure 5: Samples correctly classified by humans but
erroneously classified by LLM and fine-tuned models
due to (a) Requirement of complex reasoning and (b)
Misleading Lexical overlap between topic and retrieved
citation text span but no semantic match

Table 5: Error Analysis of the Mis-classifications of
LLM and fine-tuned models against Human baseline

Models Samples Complex Reasoning Lexical Overlap

LLM [GPT-3.5 Turbo] 196 38.89% 61.11%

TC [RoBERTa]* 234 42.22% 57.78%

TC [Flan-T5]* 224 33.33% 66.67%

* models fine-tuned on our dataset.

‘Vision Language Pretraining. However, the
BERT model can be used as the text encoder
for the vision language model. The fine-tuned
models and LLM sometimes find it difficult
to perform such complex reasoning to come
up with the expected mapping.

• Lexical: Errors in this category stem from the
presence or absence of identical words in the
extracted citation text span when compared to
those in the topic, leading to misclassification.
A representative example of a lexical error
is illustrated in Figure 5 (b), where there is
lexical overlap between the topic name and
citation text span, however, the semantics do
not match.

The primary factor contributing to misclassifi-
cations of models is lexical similarity or dissimi-
larity between the topic and the retrieved citation
text span. This highlights the model’s challenge
in comprehending contextual nuances, leading to
misinterpretations.

D Limitations

Our pipeline is fine-tuned with our constructed
dataset containing papers in the AI (majorly CV)
domain. The results are demonstrated with a test
set containing papers in the AI domain only, lead-
ing to comparable results with the zero-shot vanilla
LLM baseline. Our pipeline may not perform well
in cross-domain settings. However, our dataset con-
struction technique can be easily applied to the sci-
entific articles belonging to any domain, based on
the availability of the articles. Extrapolating the cur-
rent results demonstrated for the AI - CV domain,
the retrieval-classifier pipeline fine-tuned with such
domain-specific synthesized dataset should lead us
to comparable results with the zero-shot vanilla
LLM baseline, for any domain.

We create pseudo-topic-reference text span la-
bels for the training data by considering the text
under that topic (section) which is written to cite a
reference article (citation text) as an explicit link
to connect the topic and the reference article. It
clearly carries the information of the relevance of
the scientific article with regards to the proposal, in
the context of the given topic. The citations to the
same reference article but at other places in the pro-
posal may not carry information on the relevance
of the reference article in the context of the given
topic to which the reference article is to be aligned.
However, we are not completely denying the possi-
bility of some other sections carrying information
about the relevance of the reference article to the
proposal in the context of the given topic. However
as there is no explicit signal that we can exploit
to derive this connection, we cannot consider that
information while establishing the connection.
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Figure 6: The Annotator Tool illustrating the (a) task description and disclaimer presented to the human expert
before the annotation process and, (b) the annotation interface showcasing a sample from the dataset.
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