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Abstract

This paper mainly describes a unified system
for hallucination detection of LLMs, which
wins the second prize in the model-agnostic
track of the SemEval-2024 Task 6, and also
achieves considerable results in the model-
aware track. This task aims to detect hallu-
cination with LLMs for three different text-
generation tasks without labeled training data.
We utilize prompt engineering and few-shot
learning to verify the performance of different
LLMs on the validation data. Then we select
the LLMs with better performance to generate
high-quality weakly supervised training data,
which not only satisfies the consistency of dif-
ferent LLMs, but also satisfies the consistency
of the optimal LLM with different sampling
parameters. Furthermore, we finetune different
LLMs by using the constructed training data,
and finding that a relatively small LLM can
achieve a competitive level of performance in
hallucination detection, when compared to the
large LLMs and the prompt-based approaches
using GPT-4.

1 Introduction

The emergence of Large Language Models
(LLMs)(Zhao et al., 2023) has sparked a signif-
icant transformation in the field of Natural Lan-
guage Processing (NLP), ushering in a new era of
unparalleled advancements in text generation and
comprehension. This revolutionary technology has
elevated the capabilities of AI systems, enabling
them to perform complex reasoning and problem-
solving tasks with remarkable proficiency(Zhao
et al., 2023). At the heart of this transformation
lies the LLMs’ ability to compress vast amounts of
knowledge into neural networks, effectively turning
them into versatile agents capable of engaging in
natural language conversations with humans(Hadi
et al., 2023). This has broadened the scope of
AI applications beyond traditional domains such

as chatbots and virtual assistants, into areas pre-
viously thought to be the exclusive domain of hu-
mans, particularly those involving creativity and
expertise. LLMs are not only limited to language-
related tasks but can also function as generalist
agents, collaborating with external systems, tools,
and models to achieve a wide range of objectives
set by humans(Triguero et al., 2024).

However, recent advancements in research have
uncovered a concerning weakness: their proneness
to hallucinate content across a range of applica-
tions(Ji et al., 2023). Hallucination is defined as
the generation of information that either conflicts
with established sources or cannot be substanti-
ated by available knowledge. The occurrence of
hallucination in LLMs poses a significant threat
to their practical deployment. While prior works
have delved into the roots of hallucination within
specific, smaller-scale language models and tasks,
there is still a notable gap in understanding the ex-
act nature and prevalence of content that LLMs are
likely to hallucinate(Cui et al., 2024; Chang et al.,
2023).

To address this challenge, we implements a uni-
fied system for hallucination detection of LLMs,
when there is no labeled training data. This sys-
tem comprises five parts: Base Model Selection,
Prompt Engineering, Weakly-supervised Data Gen-
eration, SFT and Ensemble Learning. We first ver-
ify the performance of different base LLMs on this
task. Then we select the best LLMs and prompt
is optimized to improve the performance. And
weakly-supervised dataset is generated by using
the selected LLMs. For further improvement, SFT
is done based on the constructed dataset and en-
semble learning is adopted.

2 Related Work

In this section, we will introduce other work related
to the subsequent methods.
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Mixture of Experts(MoE)(Jacobs et al., 1991)
is an AI technique that involves a group of spe-
cialized models (experts) being coordinated by a
gating mechanism to address various aspects of
the input space, in order to optimize performance
and efficiency. This approach capitalizes on the
idea that an ensemble of weaker language models,
each focusing on specific tasks, can yield more
precise results, similar to traditional ML ensemble
methods. However, it introduces a novel concept
of dynamically routing the input during the gen-
eration process. In the subsequent methods, we
will conduct comparative experiments using the
intelligent model base of MoE. This paper(Chen
et al., 2022) integrates POS information and word
semantic representation using an MoE approach.

Model ensembling combines the predictions
from multiple models together. Traditionally this
is done by running each model on some inputs sep-
arately and then combining the predictions. How-
ever, if the candidate models have the same archi-
tecture, they can be combined together to create a
new model for prediction. Many surveys system-
atically elucidate the basic concepts of ensemble
learning and various methods, including model fu-
sion and model voting(Krawczyk et al., 2017; Dong
et al., 2020; Yang et al., 2023).

LoRA (Low-Rank Adaptation of Large Lan-
guage Models) (Hu et al., 2021) is a widely used
and lightweight training technique that markedly
reduces the number of trainable parameters. It func-
tions by adding a smaller set of new weights to the
model and training only these. As a result, train-
ing with LoRA is notably faster, more memory-
efficient, and yields smaller model weights (a few
hundred MBs), which are more manageable for
storage and sharing. Some other methods(Ye et al.,
2023; Wang et al., 2023; Chen et al., 2023) have
been developed to improve LoRA.

Chain-of-Thought Prompting(CoT)(Wei et al.,
2022) is an emerging application of language
model technology. The core idea of this method
is to encourage the model to not only generate the
final answer but also gradually demonstrate its rea-
soning and the process of reaching conclusions.
Subsequent work(Zhou et al., 2022) has applied
the idea of CoT, breaking down problems into a
series of sub-problems, allowing the model to rea-
son step by step and ultimately provide the correct
answer. And another work(Wang et al., 2022) intro-
duces a method called "self-consistency" to further
enhance the effectiveness of CoT Prompting. By

generating multiple reasoning paths and selecting
the most consistent answer, the model can reduce
errors and improve the accuracy of reasoning.

3 Task Description

trial data unlabled
train data

validation
data

test
data

80 60000 1000 3000

Table 1: Dataset provided by SHROOM

SHROOM(Mickus et al., 2024) asked partici-
pants to perform binary classification to identify
cases of fluent overgeneration hallucinations in two
different setups: model-aware and model-agnostic
tracks. And three different NLG tasks: definition
modeling (DM), machine translation (MT) and
paraphrase generation (PG) are covered in both
tracks. In model-aware track, the model informa-
tion is provided. The provided development and
test sets include binary annotations from a min-
imum of five different annotators, along with a
majority vote gold label. Table 1 gives an overview
of the provided dataset.

4 Methodology

Figure 1 shows the overview of our approach. Our
method consists of five main steps. First of all,
multiple LLMs are compared on the hallucination
detection validation dataset and among which we
select the best base model. The LLMs selected
in the first step will be utilized in the subsequent
steps 2, 3, and 4. In the second step, we designed
a Prompt Engineering module consisting of three
sub-modules: few-shot prompting, instruction opti-
mization, and the utilization of Chain-of-Thought.
The subsequent experiments will demonstrate that
prompt engineering significantly enhances the ca-
pabilities of the base model.

Then moving on to the Label Generation step,
we apply the Prompt Engineering module to the
selected best LLMs. We make predictions on the
unlabeled training set and ensure the inference con-
sistency among multiple LLMs as well as the in-
ference consistency under different inference pa-
rameters of individual LLM. We also ensure label
balance in this process.

The following steps are Model Training and En-
semble Learning. We utilize SFT based on the con-
structed dataset using the LoRA (Hu et al., 2021)
method. Finally, we select a few top-performing
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1. Base Model Selection

Few-shot Prompting

Instruction Optimization

Chain of Thought

2. Prompt Engineering

Consistency among LLMs

Consistency within LLM

Label Balance

3. Label Generation

Additional Corpus

4. Model Training

LoRA Method Model Fusion

5. Ensemble Learning

Model Voting

Best Models Selection

Figure 1: Overview of our proposed method. The method consists of five main steps, each of which comprises
several modules that we have designed for SemEval-2024 Task 6.

models and perform fusion at both the model
weight level(model fusion) and the model predic-
tion probability level(model voting) in order to seek
better performance.

4.1 Prompt Engineering

After experimenting with multiple large-scale lan-
guage models, we select the best-performing 14B
Mixtral_7Bx2_MoE as the base model for prompt
engineering to achieve better results.

Few-shot prompting. Few-shot prompting can be
used as a technique to enable in-context learning
where we provide demonstrations from the pro-
vided trial data in the prompt to steer the base
model to better performance. Considering that the
trial data contains with labels, we randomly sample
the specific task’s datapoints for different tasks, en-
suring an equal number of data points for "halluci-
nation" and "not hallucination" examples, to serve
as few-shot examples for each respective task.

Optimizing the instruction. There are some de-
ficiencies with the instruction introduced in Sec-
tion 5.1, and we name this version of instruction as
the naive version. The most obvious issue is that
the naive instruction does not include the descrip-
tions of the DM, MT, and PG tasks. The desired
task description includes the task definition and all
known useful information, rather than just focusing
on the sentence and context. We design different
instructions for different tasks, which can be found
in the Appendix A. In this way, we can append
additional information to the prompt to assist the
LLM in better understanding the problem.

Chain-of-thought prompting. Chain-of-thought
(CoT) prompting(Wei et al., 2022) is a recently
developed method that encourages the language
model to explain its reasoning. We combine the
aforementioned few-shot prompting, developed in-

struction, and CoT to utilize them together to fur-
ther enhance the capability of the base model.

4.2 Label Generation and Weakly-SFT

After improving the performance of the base model
using prompt engineering, we use the optimal set-
tings to infer on unlabeled training data and obtain
weakly supervised labels. These weakly supervised
labels are then used to finetune the base model.

Inference consistency in generating labels. Dur-
ing the process of inferring weakly supervised la-
bels for the unlabeled training data, we placed a
great emphasis on both the consistency of infer-
ence across different LLMs and the consistency
of inference within the same LLM but with differ-
ent parameter settings. To achieve this, we care-
fully selected several sets of top-performing base
models. Leveraging the prompt engineering tech-
niques mentioned earlier, we conducted inference
on the same model using various parameter con-
figurations. Subsequently, we handpicked the data
points with consistent inferences across different
parameter settings to establish the final inference
results for that particular LLM. Additionally, we
applied a filtering process to the inference results
obtained from different LLMs, ensuring that only
datapoints with consistent inferences were retained.
Through these rigorous steps, we ensured that our
generated weakly supervised labels for the train-
ing set exhibits robustness to both the choice of
LLM base and the specific sampling parameters
employed. Finally, we used sampling techniques
to balance the data volume of the two categories.

Fine-tuning LLMs. The weak supervision gen-
erated by the base model is applied to guide mod-
els of equal or smaller scale. The LLMs undergo
fine-tuning using the LoRA approach, a popular
and lightweight training technique that effectively
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Model Name Model Size Model-agnostic track Model-aware track
acc rho acc rho

Mistral-7B-Instruct-v0.2-GGUF 7B 0.649 0.380 0.707 0.461
Mistral-7B-Instruct-v0.2 7B 0.655 0.375 0.705 0.468

Mixtral_7Bx2_MoE 14B 0.747 0.518 0.764 0.475
Mixtral-8x7B-Instruct-v0.1 46.7B 0.723 0.526 0.745 0.552

Nous-Hermes-2-Mixtral-8x7B-DPO 46.7B 0.741 0.607 0.766 0.614
Nous-Hermes-2-SOLAR-10.7B 10.7B 0.725 0.592 0.722 0.588

SOLAR-10.7B-Instruct-v1.0 10.7B 0.737 0.438 0.747 0.381
SauerkrautLM-SOLAR-Instruct 10.7B 0.733 0.418 0.752 0.368

Sakura-SOLAR-Instruct-DPO-v2 10.7B 0.733 0.426 0.745 0.357

Table 2: The performance of different-sized LLMs on the validation set. The competition includes two tracks:
model-agnostic track and model-aware track. For each track, both prediction accuracy(acc) and Spearman’s Rho
value(rho) are provided.

reduces the number of trainable parameters. De-
spite this reduction, the fine-tuned models maintain
comparable training results to those of the full pa-
rameter models. The best checkpoint model files
are selected from the validation set during this fine-
tuning process.

4.3 Ensemble Learning

We also propose an ensemble learning approach for
performance improvement, utilizing fusion strate-
gies at both the model level and the inference level.

Model fusion. MergeKit1 is a toolkit designed
for merging trained language models. We care-
fully selected a few high-accuracy models and uti-
lized MergeKit to perform model fusion using the
SLERP (Shoemake, 1985), TIES (Yadav et al.,
2023) and linear (Wortsman et al., 2022) meth-
ods. Traditionally, model merging often resorts
to weight averaging which, although straightfor-
ward, might not always capture the intricate fea-
tures of the models being merged. The SLERP
technique addresses this limitation, producing a
blended model with characteristics smoothly in-
terpolated from both parent models, ensuring the
resultant model captures the essence of both its
parents. Meanwhile, the TIES method is proposed
to resolve interference issues by resetting param-
eters, resolving sign conflicts, and merging only
compatible parameters. TIES outperforms many
existing methods across diverse settings, empha-
sizing the importance of addressing interference
in model merging for enhanced performance and
versatility.

1https://github.com/arcee-ai/mergekit

Model Voting. In addition to the model-level
fusion, we also explored fusion at the probability
level of model generation, which can be under-
stood as a form of model voting. We selected an-
other group of highly accurate candidate models
and performed linear fusion at the probability level.
Specifically, we calculate the weighted summation
of the probability values on "existing hallucination"
predicted by different candidate models for differ-
ent tasks. By tuning the linear weight combination,
we are able to determine the optimal combination
of weights for each task. Finally, combining differ-
ent tasks together yields the final fusion result. In
this way, we implement weighted voting of models
at the inference result level.

5 Results and Analysis

In this section, we will present a series of experi-
ments to illustrate the effectiveness of our method.

5.1 Baseline
To begin with, our initial step entails presenting
the basic performance of LLMs of varying sizes on
the validation set. Subsequently, we will delve into
an analysis of the LLMs’ capabilities in detecting
hallucinations in the given task.

Throughout the experiments, we ensure the gen-
eration hyperparameters remain consistent across
all LLMs. Additionally, the instruction utilized for
detecting hallucinations is sourced from the official
participant_kit. This version of the instruction is
referred to as the "naive instruction" and can be
located in Appendix A for reference.

Table 2 illustrates our evaluation of LLMs from
both Mistral and SOLAR families, considering vary-
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few-shot inst. agnostic_acc aware_acc

2-shot
naive 0.745 0.774
ours 0.770 0.806

4-shot
naive 0.762 0.772
ours 0.782 0.806

6-shot
naive 0.764 0.774
ours 0.772 0.804

8-shot
naive 0.762 0.772
ours 0.774 0.804

Table 3: Our proposed instruction exhibits overall su-
perior accuracy compared to the naive version on the
validation set. We applied few-shot prompting in all
of the aforementioned experiments. The term "inst."
stands for "instruction".

ing sizes and variants, on the validation set. In gen-
eral, larger models tend to yield better results. For
instance, within the Mistral-family, the accuracy
and Spearman’s Rho value of the 7B model are
comparatively lower than those of larger models,
a trend observed in both the model-agnostic and
model-aware tracks. Furthermore, LLMs of the
same size exhibit diverse results in hallucination
detection tasks owing to distinct fine-tuning meth-
ods employed. This observation holds true in our
experiments with the SOLAR-family, emphasizing
the impact of fine-tuning on performance.

There is a noteworthy observation in Table 2.
The medium-sized 14B Mixtral_7Bx2_MoE model
achieves comparable accuracy to the larger-sized
46.7B models in both the model-agnostic and
model-aware tracks. This suggests that the fine-
tuning approach and training corpus of the 14B
model are well-suited for the hallucination detec-
tion task. Furthermore, the 14B model outperforms
the 46.7B model in terms of inference speed and
training cost. As a result, in the subsequent sec-
tion, we will further enhance the effectiveness of
the 14B model through prompt engineering.

5.2 Performance Improvement

In this section, our focus is on enhancing the accu-
racy of the 14B Mixtral_7Bx2_MoE model through
prompt engineering methods.

Few-shot prompting. A few-shot prompting ap-
proach is applied by randomly selecting an equal
number of positive and negative samples as demon-
strations for task definition modeling (DM), ma-
chine translation (MT), and paraphrase generation

few-shot CoT agnostic_acc aware_acc

2-shot
w/o 0.770 0.806
with 0.770 0.792

4-shot
w/o 0.782 0.806
with 0.766 0.796

6-shot
w/o 0.772 0.804
with 0.774 0.806

8-shot
w/o 0.774 0.804
with 0.792 0.804

Table 4: CoT demonstrates an improved capability in
hallucination detection when provided with a larger
number of demonstrations in few-shot prompting and
utilizing our proposed instruction. The results are on
the validation set.

(PG). In the experimental setup, we use 2, 4, 6,
and 8 examples for few-shot prompting on the Mix-
tral_7Bx2_MoE model, while keeping the gener-
ation hyperparameters consistent with the exper-
iments in Table 2. The accuracy of the few-shot
prompting strategy is shown with the inst.=naive
setting in Table 3, where we observe that experi-
ments with 4, 6, and 8 shots perform better than
the zero-shot baseline(acc is 0.747 in Table 2) in
the model-agnostic track, and all the few-shot set-
tings experiments achieve better results than the
zero-shot baseline(acc is 0.764 in Table 2) in the
model-aware track.

Optimizing the instruction. As discussed in Sec-
tion 4.1, the naive instruction provided by the com-
petition organizers has some limitations. To over-
come these limitations, we enhanced the instruc-
tions by incorporating task-specific background
knowledge and multidimensional information, tak-
ing into account the unique characteristics of each
task. The improved instructions, as demonstrated
with the inst.=ours setting in Table 3, yield better
performance compared to using the initial naive in-
struction. Notably, in the 2-shot setting, both tracks
exhibited an improvement of over 2 percentage
points by leveraging our proposed instructions.

Chain of thought prompting. We adopt the CoT
approach, after generating reasons for the presence
or absence of hallucinations in the trial data. The
experimental results of CoT are presented in Ta-
ble 4, which indicates that CoT exhibits higher
efficacy in the few-shot scenario when there are
more demonstrations accessible.
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Model Name Model Size Model-agnostic track Model-aware track
acc rho acc rho

Mistral-7B-Instruct-v0.2 7B 0.806 0.708 0.790 0.699
Nous-Hermes-2-SOLAR-10.7B 10.7B 0.764 0.690 0.806 0.714

SOLAR-10.7B-Instruct-v1.0 10.7B 0.772 0.703 0.810 0.717
Mistral-7B-Instruct-v0.2-2x7B-MoE 12.8B 0.790 0.725 0.814 0.698

Mixtral_7Bx2_MoE 14B 0.780 0.675 0.796 0.657
raw: Mixtral_7Bx2_MoE 14B 0.792 0.707 0.804 0.690

Table 5: The performance of weakly-supervised fine-tuning on the validation set. Smaller LLMs perform better
than the 14B supervisor. The last line indicates the performance of Mixtral_7Bx2_MoE without SFT.

Method agnostic_acc
Mistral-7B-Instruct-v0.2-sft-v1 0.804
Mistral-7B-Instruct-v0.2-sft-v2 0.798
Mistral-7B-Instruct-v0.2-sft-v3 0.808

Linear-merged model 0.814
SLERP-merged model 0.814
TIES-merged model 0.814

Table 6: Model fusion results for the model-agnostic
track on the validation set. The merged models outper-
form any individual model in terms of accuracy.

5.3 Weakly-supervised Fine-tuning

As mentioned earlier, we enhance the accuracy of
hallucination detection by selecting the best base-
line model and incorporating additional prompt
engineering techniques. Building upon this, we
leverage weak supervision by labeling the unla-
beled training data for training. Subsequently, the
LLMs are fine-tuned using the generated labels
to further augment the capability of hallucination
detection.

Generating weak supervision for training data.
Utilizing the 14B Mixtral_7Bx2_MoE model as
a foundation, we incorporate few-shot prompting,
our proposed instruction, and the CoT strategy to
create a supervision model known as the ‘8-shot’
setting, as mentioned in Table 4. This approach is
applied to hallucination detection across 60,000 dat-
apoints from both the model-agnostic and model-
aware tracks, ensuring a balanced distribution of
categories. Additionally, we introduce multiple
optimal models, as discussed in Section 4, to en-
sure consistent inference across multiple models
and maintain inference consistency within the same
model but with different inference parameters.

Fine-tuning LLMs. The experimental results of
weakly-supervised fine-tuning are presented in Ta-

Method agnostic_acc
Mistral-7B-Instruct-v0.2-sft-v4 0.810
Mistral-7B-Instruct-v0.2-sft-v5 0.812
Mistral-7B-Instruct-v0.2-sft-v6 0.812
Mistral-7B-Instruct-v0.2-sft-v7 0.814

voting result 0.834

Table 7: Model Voting results for the model-agnostic
track on the validation set. The voted results outperform
any individual model in terms of accuracy.

ble 5, which demonstrates that smaller models can
effectively learn from the weak supervision pro-
vided by the 14B model. In some cases, these
smaller models even outperform the 14B model in
terms of accuracy. Notably, the 14B model fails
to surpass the performance of equivalently-sized
supervisor even when multiple hyper-parameter set-
tings are employed. A comparison between lora
training and full-parameter training reveals that the
lora-style training yields superior results. Further
details can be found in Appendix C.

5.4 Ensemble Learning

In addition to fine-tuning LLMs with weak super-
vision labels as mentioned in the previous section,
we first combine different model checkpoints by
the MergeKit tool and then perform model voting
strategy to enhance performance.

Model fusion. We implement model merging
using different modes of MergeKit, i.e., SLERP,
TIES and Linear, in our study. Taking the accu-
racy optimization of the model-agnostic track as
an example, let’s begin by selecting three highly
capable candidate models. These models are fine-
tuned versions of the 7B Mistral-7B-Instruct-v0.2,
and they are different checkpoints from the same
training task. The detailed training setting can be
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found in Appendix B.2. By utilizing model fusion
techniques, we can achieve a maximum accuracy
of 0.814 with the newly merged models. For a
detailed overview of the experiments on the model-
agnostic track, refer to Table 6.

Model Voting. We also validate the effectiveness
of weighted voting at the inference result level. We
select the top-performing models from the weakly
supervised fine-tuning and model fusion phases.
By calculating weighted predictions based on their
predicted probabilities, we infer the presence of
hallucinations. Table 7 presents the details of the
voting experiments on the model-agnostic track.
Using the same method, we achieve an accuracy of
0.818 on the model-aware track as well. The SFT
models are merged models from different training
experimental setups, and the detailed training pa-
rameters can be found in Appendix B.3.

Method agnostic_acc aware_acc
baseline 0.697 0.745
GPT-4 0.741 0.756

our method 0.836 0.805

Table 8: Comparison of methods on the test set.

We compared the baseline provided by competi-
tion organizers, GPT-4, and our proposed method
on the test set in Table 8. It is evident that our pro-
posed method outperforms other mehotds, show-
casing a significant enhancement in performance.

6 Conclusion

In this paper, we present a unified system for hal-
lucination detection with LLMs when there is no
labeled dataset, which wins the 2nd place with an
accuracy score of 0.836 in the model-agnostic track
and the 4th place with an accuracy score of 0.8053
in the model-aware track. To begin with, we gen-
erate high-quality weakly-supervised dataset by
using large-sized LLMs with prompt engineering
and few-shot learning. Then we perform weakly-
supervised fine-tuning based on the constructed
dataset with different LLMs. Our experiments yield
several noteworthy findings:

(1) The quality of the weakly-supervised dataset
we construct has a direct impact on the performance
of the models in this task. To ensure high-quality
training data, we employ multiple large LLMs in
the construction process.

(2) Relatively small LLMs can deliver competi-
tive performance in this task when trained on the

constructed dataset. However, the performance
of small LLMs drops dramatically without fine-
tuning.

(3) Using the MergeKit tool for model fusion
proves to be an effective technique in boosting the
performance of hallucination detection.

(4) Employing the model voting method leads to
improved performance compared to using a single
model alone.
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A Instructions in Prompt Engineering

A.1 Naive version

Context: {Context}
Sentence: {Sentence}
Is the Sentence supported by the Context above?
Answer using ONLY yes or no:

A.2 Our proposed version

For the PG task, the instruction is as follows:

Given the following information related to
Paraphrase Generation task:
Src: Source input sentence
Tgt: Paraphrase Generation standard answer
Hyp: Paraphrase Generation predicted answer
Please determine whether hyp contains unexpected
hallucinations based on src and tgt.

Src: {Src}
Tgt: {Tgt}
Hyp: {Hyp}
Is the Hyp supported by the Src and Tgt above?
Answer using ONLY yes or no:

For the MT task, the instruction is as follows:

Given the following information related to
Machine Translation task:
Src: Source input sentence
Tgt: Machine Translation standard answer
Hyp: Machine Translation predicted answer
Please determine whether hyp contains unexpected
hallucinations based on src and tgt.

Src: {Src}
Tgt: {Tgt}
Hyp: {Hyp}
Is the Hyp supported by the Src and Tgt above?
Answer using ONLY yes or no:
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As for the DM task, the instruction is the same
as the naive version.

B Training Experiment Setup

B.1 Constructed dataset
We constructed a total of 35,600 weakly supervised
samples, ensuring consistency in inference across
different LLMs as well as within the same LLM
but with different parameter settings.

B.2 SFT models in Table 6
The Mistral-7B-Instruct-v0.2-sft-v1, v2, and v3
models are different checkpoint models obtained
from the same training setup. These models were
trained on a total of 35,600 weakly-supervised data
points. The training process utilized a LoRA rank
of 32, a learning rate of 3e−5, and a total of 5
epochs. The training task was executed using 4
A30 GPUs. Specifically, Mistral-7B-Instruct-v0.2-
sft-v1, v2, and v3 models were saved at training
steps 1000, 3000, and 4000, respectively.

B.3 SFT models in Table 7
The Mistral-7B-Instruct-v0.2-sft-v4, v5, v6, and
v7 models are merged models obtained from dif-
ferent training setups. Each model is created by
merging two checkpoints from the same setup. The
v4 model was trained with a LoRA rank of 32, a
learning rate of 1e−4, and a total of 5 epochs. The
v5 model also had a LoRA rank of 32, a learning
rate of 3e−5, and a total of 5 epochs. The v6 model
had a higher LoRA rank of 48, a learning rate of
3e−5, and lasted for 5 epochs. Lastly, the v7 model
had a LoRA rank of 48, a learning rate of 5e−5,
and a total of 5 epochs. All of these models were
trained on the constructed dataset.

C Lora training VS. Full training

Method agnostic_acc aware_acc
lora 0.806 0.790
full 0.58 0.52

Table 9: Comparison of different training methods based
on Mistral-7B-Instruct-v0.2.
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