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Abstract

This paper explores using data augmentation
with smaller language models under 3 billion
parameters for the SemEval-2024 Task 2 on
Biomedical Natural Language Inference for
Clinical Trials. We fine-tune models from
the Flan-T5 family with and without using
augmented data automatically generated by
GPT-3.5-Turbo and find that data augmenta-
tion through techniques like synonym replace-
ment, syntactic changes, adding random facts,
and meaning reversion improves model faithful-
ness (ability to change predictions for seman-
tically different inputs) and consistency (abil-
ity to give same predictions for semantic pre-
serving changes). However, data augmentation
tends to decrease performance on the original
dataset distribution, as measured by F1 score.
Our best system is the Flan-T5 XL model fine-
tuned on the original training data combined
with over 6,000 augmented examples. The sys-
tem ranks in the top 10 for all three metrics1.

1 Introduction

In the recent years, the rapid and triumphant ad-
vance of Large Language Models (LLMs) has af-
fected virtually every area of NLP, biomedical NLP
included. We aim to prove that Biomedical NLP
can still benefit from smaller models of no more
than three billion parameters. First, as the say-
ing goes, "You must not use a steam hammer to
crack a nut, if a nutcracker would do". In other
words, while LLMs’ performance is unmatched
in complex applications, smaller models may be
perfectly sufficient for simpler tasks, such as text
classification or natural language inference. Sec-
ond, being pre-trained on extremely large corpora
of unlabelled data, modern LLMs have been shown
to exhibit dataset-related bias (Acerbi and Stubbers-
field, 2023). In fields with a high error cost, pre-
training and fine-tuning models on smaller, care-

1Our code is available at https://github.com/smilni/
semeval2024_safe_biomedical_nli

fully curated, high-quality datasets is safer and
more predictable than using black-box giant LLMs
in a zero-shot or few-shot setting. Finally, as of
now, best-performing state-of-the-art LLMs are ei-
ther largely unavailable to the end-user due to com-
putational constraints (for open-source models) or
cost-inefficient (for proprietary models with access
via API).

The NLI4CT-2024 Shared Task (Jullien et al.,
2024) consists in building a system for natural lan-
guage inference (NLI) based on a collection of
breast cancer Clinical Trial Reports (CTRs) in En-
glish. The task’s main challenge is the complex
and heterogeneous nature of the data. For each
datapoint, the premise comes from one of the four
sections of a CTR – Intervention, Eligibility, Re-
sults, or Adverse Events. Naturally, the sections
are different from each other in terms of the mean
length, the proportion of numerical data present,
and the level of world knowledge required for draw-
ing conclusions. Compared to the previous year’s
iteration of the task (Jullien et al., 2023), this year’s
challenge calls for a system robust to alterations
in the data. Apart from F1 measure, two new met-
rics are used to evaluate the model performance:
faithfulness, "measuring the ability of a model
to correctly change its predictions when exposed
to a semantic-altering intervention", and consis-
tency, "measuring the ability of a system to predict
the same label for original statements and contrast
statements for semantic preserving interventions".

According to the last year participants’ reports,
various augmentation techniques have not led to
significant performance improvement in terms of
F1 and the top-3 best-performing systems did not
use data augmentation at all (Jullien et al., 2023).
However, given the new metrics that are used in this
year’s evaluation, it seems reasonable to continue
exploring the effect that various kinds of augmen-
tation have on F1, faithfulness, and consistency at
the same time. In this paper, we fine-tune mod-
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els of Flan-T5 family with and without the use
of augmented data automatically generated using
GPT-3.5-Turbo. We find that using various kinds
of additional data leads to an increase in model’s
faithfulness and consistency, but a decrease in F1.
Our best system is Flan-T5 XL, fine-tuned on 1900
original train and development instances and 6650
automatically generated ones. The system ranks
7th for consistency, 9th for faithfulness, and 10th
for F1.

2 Related work

Language Models and Biomedical NLP There
has been a surge of LLMs fine-tuned on biomed-
ical data, from relatively small – 7 billion param-
eter ChatDoctor (Yunxiang et al., 2023), MedAl-
paca (Han et al., 2023), PMC-LLAMA (Wu et al.,
2023); 6 billion parameter DoctorGLM (Xiong
et al., 2023) and OphGLM (Gao et al., 2023) –
to extremely large ones – 540B Med-PaLM (Sing-
hal et al., 2023), 175B Codex-Med (Liévin et al.,
2022), 80B Med-Flamingo (Moor et al., 2023) –
which were reported to break state-of-the-art re-
sults on a number of biomedical NLP tasks. More-
over, without any fine-tuning on biomedical data,
GPT-4 was reported to have passed every step of
the US-medical licensing exam (Nori et al., 2023).
However, researchers argue that smaller language
models, such as T5 Base and T5 Large, still outper-
form gigantic all-purpose models when fine-tuned
for a specific task (Lehman et al., 2023).

Model Robustness in NLI tasks Many NLI
models suffer from bias related to superficial cor-
relations between input text features and labels in
the training dataset, which leads to a drop in per-
formance on datasets where these correlations do
not hold (Rajaee et al., 2022). Among those are
hypothesis only bias, where models rely mostly on
the hypothesis without taking premise and premise-
hypothesis relations into account (Poliak et al.,
2018), and word-overlap bias, where models rely
on the presence of shared words or phrases in
premise and hypothesis (McCoy et al., 2019). Var-
ious techniques may be used to mitigate this bias,
such as adversarial training (Stacey et al., 2020) and
data augmentation with predicate-argument struc-
tures (Moosavi et al., 2020) and syntactic transfor-
mations (Min et al., 2020).

3 Experimental setup

In our experiments, we aim to test whether lan-
guage models of relatively small size, under three
billion parameters, can achieve decent performance
on a task with a simple objective – as the model
chooses between only two options, entailment and
contradiction – and complex data – as dealing with
Clinical Test Reports requires complex reasoning
and understanding of numerical data. As a starting
point for the experiments, we have chosen Flan-T5.

3.1 Selecting the model

Flan-T5 (Chung et al., 2022) is an updated check-
point of T5 (Raffel et al., 2020), instruction-fine-
tuned on a number of new NLP tasks, which out-
performs baseline T5 models of the correspond-
ing size on a number of benchmarks. It also fea-
tures improved instruction-following capabilities
and generalizes well on new tasks, not present in
the training data. On the previous year’s iteration of
NLI4CTR, the system that featured fine-tuned Flan-
T5-XXL (Kanakarajan and Sankarasubbu, 2023)
without any biomedical pre-training data augmen-
tation showed an impressive performance, ranking
second.

First, we evaluate the model’s performance in
three scenarios – zero-shot, few-shot and after fine-
tuning. Due to computational constraints we limit
our experiments to language models of under three
billion parameters, so we test only Flan-T5 Small
(80M parameters), Flan-T5 Base (250M parame-
ters), Flan-T5 Large (780M parameters), and Flan-
T5 XL (3B parameters).

When testing the models in a zero-shot setting,
we and use one of the NLI prompt templates pro-
vided by Flan-T5 developers 2. In cases where two
CTRs are given, we concatenate them using new-
line character as a separator. For a few-shot setting,
we use the same prompt template as on the previ-
ous step, but enhance it with two hand-picked short
CTR-hypothesis pairs from the training set – one
with entailment and the other with contradiction
relation. Refer to Appendix A for the prompts used
for querying Flan-T5 in a zero-shot and two-shot
setting.

Finally, we carry out fine-tuning with the use
of HuggingFace Transformers library on the en-
tire train set. The same set of hyperparameters
is used for all models: auto_find_batch_size

2https://github.com/google-research/FLAN/blob/
main/flan/v2/flan_templates_branched.py
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Figure 1: Flan-T5 model family performance, calculated on development dataset

= True, learning_rate = 1e-3, optimizer =
adamw_torch. Flan-T5 Small and Flan-T5 Base
are fine-tuned for 5 epochs in full precision. Due
to computational constraints, Flan-T5 Large and
Flan-T5 XL, however, were fine-tuned for 3 epochs
using int8 precision and HuggingFace implementa-
tion of Low-Rank Adaptors (LoRA) algorithm (Hu
et al., 2021).

Figure 1 summarizes the results obtained after
evaluating the model on the development set in
three different settings: zero-shot, few-shot, and
after fine-tuning. There is a clear correlation be-
tween the model’s performance and its size and
between the model’s performance and the number
of train examples provided to it as well. In all cases,
providing two examples from the training data to
the model in a few-shot setting improves the per-
formance of the model slightly, while fine-tuning
it on all given training data results in a substantial
performance boost. The best-performing model so
far is fine-tuned Flan-T5 XL.

3.2 Data augmentation

We assume that the training data should be aug-
mented in two key ways to create a faithful and
consistent system. First, we should add para-
phrased versions of the original datapoints, with
semantic meaning and label preserved. It will en-
sure that the system is consistent, i.e. produces
the same output for semantically equivalent inputs.
Second, we should include semantically altered
versions of the original datapoints, with semantic
meaning changed and a reverted label assigned. It

will ensure that the system is faithful, i.e. change
its output when encountering an input semantically
different to the one seen before. The presence of
these three types of datapoints – original, para-
phrased in a semantically preserving way, and para-
phrased in a semantically altering way – is expected
to improve the model’s performance. We assume
that these examples will teach the model to consis-
tently handle the semantics of the sentence, miti-
gating the impact of superficial features like word
overlap between a premise and a hypothesis on the
model’s performance.

We apply four types of alterations to hypotheses:

1. Synonym-based semantic-preserving changes,
where certain words within a sentence are sub-
stituted with their synonymous counterparts.

2. Syntactic semantic-preserving changes, where
the syntactic structure of the sentence is
changed while the semantic meaning remains
the same.

3. Random fact addition semantic-preserving
changes, where a true random fact is appended
to the hypothesis without affecting its truth
value.

4. Semantic-altering changes, where a sentence
contradictory to the original hypothesis is for-
mulated.

Semantic-preserving changes 1), 2), and 3) are ap-
plied to all hypotheses, while semantic-altering
change 4) is only applied to hypotheses that were
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Original hypothesis Heart-related adverse events were recorded in both the primary trial and
the secondary trial. [entailment]

Synonym-based alteration Cardiovascular adverse events were documented in both the primary study
and the secondary study. [entailment]

Syntactic alteration Both the primary trial and the secondary trial recorded adverse events
related to the heart. [entailment]

Random fact addition Lymphadenopathy is the enlargement of lymph nodes due to infection,
inflammation, or cancer. Heart-related adverse events were recorded in
both the primary trial and the secondary trial. [entailment]

Semantic-altering change Heart-related adverse events were not recorded in either the primary trial
or the secondary trial. [contradiction]

Table 1: Examples for each kind of alterations

initially labeled as entailment, changing the label
to contradiction. The reason for this decision is
that reverting a hypothesis that follows from some
text produces a hypothesis that contradicts this text,
but not vice versa. You may find examples for each
kind of alterations in Table 1.

We access GPT-3.5-Turbo via OpenAI API to
generate new hypotheses for each CTR-hypothesis
pair, using a distinct hand-crafted prompt for each
kind of alteration. You may find the text of each
prompt in Appendix B. Four new hypotheses are
generated for each "entailment" CTR-hypothesis
pair, with both semantic-preserving and semantic-
altering changes applied, and three new hypothe-
ses are generated for each "contradiction" CTR-
hypothesis pair, with only semantic-preserving
changes applied. In all cases, CTR text itself re-
mains unaltered, and only hypothesis is affected.

As a result, we obtain 3400 new entries for 850
original train CTR-hypothesis pairs labelled as en-
tailment and 2550 new entries for 850 original
train CTR-hypothesis pairs labelled as contradic-
tion. The process of generating 5950 data points,
thus increasing our dataset by 4.5 times, cost $0.86
and took 1.5 hours to complete.

4 Results

4.1 Individual Augmentation Analysis

We fine-tune Flan-T5 XL model on augmented data
using the same set of hyperparameters as in Sec-
tion 3.1. First, we fine-tune the model separately
on each type of augmented data (combined with
the original data) to estimate how augmentation of
each kind affects the performance. The results are
presented in Table 2.

Interestingly, only one kind of augmentation,
the synonym-based one, had a positive effect on

the model’s performance on the original dataset,
while the others led to a decrease in F1. All kinds
of augmentations resulted in a model with higher
consistency, i.e. a model better at producing the
same output for hypotheses with the same mean-
ing. The alteration that consisted in adding random
true facts to hypotheses led to the highest increase
in consistency. However, only semantic-altering
change resulted in a more faithful model, i.e. a
model better at changing its prediction when en-
countering a similar but semantically different hy-
pothesis. All semantic-preserving changes led to
a decrease in the model’s faithfulness. Overall,
our data augmentation techniques have proven to
be efficient in improving the model’s robustness.
However, they have simultaneously resulted in a
worse performance on the original data.

4.2 Final Model Selection

The next step was to try out different combina-
tions of augmented data to reach the optimal per-
formance in terms of the largest increase in both
faithfulness and consistency and the smallest de-
crease in terms of F1. As the goal of the competi-
tion was to create a faithful and consistent system,
we prioritized these metrics over F1 when choos-
ing the model for the final submission. Thus, we
chose the model trained on the entire set of aug-
mented data that demonstrates higher faithfulness
and consistency but lower F1. For the final sub-
mission, we additionally enriched the dataset with
200 more entries from development data and 700
new augmented entries created using techniques
described in Section 3.2. The results obtained af-
ter fine-tuning the model on the entire augmented
dataset are presented in Table 3.
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F1 Faithfulness Consistency
Original train data only 0.779 0.780 0.667
Original train data + synonym-based alter-
ations

0.780 0.715 0.681

Original train data + syntax-based alter-
ations

0.764 0.748 0.698

Original train data + random facts addition 0.748 0.736 0.725
Original train data + reverted meaning al-
terations

0.735 0.854 0.686

Table 2: Flan-T5 XL performance when trained on different kinds of augmented data, calculated on test dataset

F1 Faithfulness Consistency
Original train data only 0.779 0.780 0.667
Original train data + all augmented train
data

0.745 0.851 0.748

Original train and dev data + all aug-
mented train and dev data

0.760 0.841 0.752

Table 3: Flan-T5 XL performance when trained on all kinds of augmented data, calculated on test dataset

4.3 Other approaches

Numerical inference is a known challenge for large
language models. We assumed that the model’s
performance might vary across different CTR sec-
tions, with a decrease in performance for sections
that contain most numbers. To check this assump-
tion, we calculated the final model’s F1 for each
section separately. Calculations were performed on
the development dataset as we had no access to test
dataset labels during the development and evalua-
tion stages. The results are presented in Table 4.

F1
Adverse Events 0.711
Eligibility 0.821
Intervention 0.861
Results 0.759
All sections 0.783

Table 4: Final model’s performance on each CTR sec-
tion, calculated on development dataset

Adverse events, the section that, according to
our observations, most often contained numbers in
premise as well as hypothesis and required numer-
ical inference to determine the relation between
them, had the lowest F1 of all.

We attempted to develop a separate model, Flan-
T5 XL with the same hyperparameter set as in Sec-
tion 3.1, to tackle CTR-hypothesis pairs of this kind.
The model was first pre-fine-tuned on EQUATE

dataset (Ravichander et al., 2019) for 3 epochs in
an attempt to enhance its numerical inference ca-
pabilities. Then it was further fine-tuned on the
original and augmented CTR-hypothesis pairs of
Adverse Events category for 3 epochs as well. We
then used the original model to produce predictions
for Eligibility, Intervention, and Results sections
and the new model to produce predictions for Ad-
verse Events section. However, on test data, this
approach resulted in a decrease in performance
with an F1 of 0.756 (-0.004), faithfulness of 0.781
(-0.06) and consistency of 0.722 (-0.031). We sup-
pose that the decrease in performance is explained
by the fact that the second model, trained on ~1/4
of all data (only one section out of four), simply did
not encounter enough data to develop robustness
comparable to that of the final model trained on the
entire dataset.

5 Conclusion

In this paper, we explore the impact of data aug-
mentation on model performance and robustness.
Specifically, we focus on leveraging advanced lan-
guage models like GPT-3.5-Turbo to expand the
training set for fine-tuning smaller models such
as Flan-T5 XL. Our experiments involve various
prompts to generate new CTR-hypothesis pairs.
Enriching the training set with new examples that
underwent semantic-preserving changes, such as
synonym replacement, change in word or clause
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order, and random true fact addition, improves the
model’s consistency. Adding augmented examples
that underwent semantic-altering changes, such as
meaning reversion, improves the model’s faithful-
ness as well as consistency. However, all kinds
of augmentation except for synonym replacement
lead to a decrease in model performance in terms
of F1 on the original unaltered dataset. The model
selected for the final submission is Flan-T5 XL
fine-tuned on augmented development and training
set. It features higher robustness but lower base
performance than Flan-T5 XL fine-tuned on origi-
nal data only, with faithfulness of 0.841 (+0.061),
consistency of 0.752 (+0.085), and F1 of 0.76 (-
0.019).
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A Prompts used in querying Flan-T5

Figure 2: Zero-shot prompt used in querying Flan-T5.

Figure 3: Two-shot prompt used in querying Flan-T5.

B Prompts used to obtain augmented
data from GPT-3.5-Turbo

Figure 4: Prompt used to generate a synonym-based
paraphrased version of hypothesis.

Figure 5: Prompt used to generate a syntax-based para-
phrased version of hypothesis.

Figure 6: Prompt used to generate a random biomedical
fact to then append to hypothesis.

Figure 7: Prompt used to generate sentence with mean-
ing contradicting that of hypothesis.

8
744


