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Abstract

The increase in the popularity of code mixed
languages has resulted in the need to engineer
language models for the same . Unlike pure lan-
guages, code-mixed languages lack clear gram-
matical structures, leading to ambiguous sen-
tence constructions. This ambiguity presents
significant challenges for natural language pro-
cessing tasks, including syntactic parsing, word
sense disambiguation, and language identifica-
tion. This paper focuses on emotion recog-
nition of conversations in Hinglish, a mix of
Hindi and English, as part of Task 10 of Se-
mEval 2024. The proposed approach explores
the usage of standard machine learning mod-
els like SVM, MNB and RF, and also BERT-
based models for Hindi-English code-mixed
data- namely, HingBERT, Hing mBERT and
HingRoBERTa for subtask A.

1 Introduction

Code-mixed Hindi and English, also referred to as
’Hinglish’, has gained widespread usage, especially
in the realm of social media. With the increasing
prevalence of code-mixed languages like Hinglish,
there arises a necessity to analyze and understand
this linguistic material. While language models
designed for individual languages like English or
Hindi (Ly, 2022) are quite robust and effective, they
often struggle to perform well with code-mixed
languages. This difficulty stems from the colloquial
nature of the conversations in code-mixed dialogue,
with no formal grammar rules.

Traditional machine learning models perform
well on code-mixed data only when the nature of
the classification task is simple, like in the form of
sentiment analysis (classification into positive, neu-
tral, and negative emotions). Task 10 of SemEval
2024 (Kumar et al., 2024) contains emotions from
the extended Ekman model(Ekman, 1992), which
contain emotions that are more complex to dis-
cern and distinguish between like contempt versus

anger.
This paper explores the usage of both classical

machine learning models as well as Transformer-
based BERT models, specifically designed for
Hinglish data.

2 Related Work

Thakur et al. (2020) delve into the current land-
scape of Hindi-English code-mixed natural lan-
guage processing and their work meticulously sur-
veys the progress made in sentiment analysis within
this domain while also dissecting the inherent is-
sues and challenges it encounters.

Sentiment analysis in code-mixed data is done in
a plethora of ways, spanning from machine transla-
tion to corpus processing based on sentence struc-
ture. Jadhav et al. (2022) introduced a framework
employing a pipeline for the conversion of Hinglish
to English, offering a structured approach to the
task. Similarly, Sinha and Thakur (2005) present a
method for translating Hinglish to both English and
Hindi, leveraging Hindi and English morphological
analyzers and implementing cross-morphological
analysis to achieve accurate conversion. Ensem-
ble learning for identifying emotions in contextual
texts was proposed by (Angel Deborah et al., 2020).
Additionally, (S et al., 2022) proposed a lexicon-
based solution for recognising emotions in Tamil
texts.

Das and Singh (2023) embraced a deep learning
paradigm, implementing convolutional neural net-
works (CNN), long short-term memory (LSTM),
and bi-directional long short-term memory (Bi-
LSTM) for sentiment analysis. Meanwhile, Ravi
and Ravi (2016) conclusively identified a combina-
tion of TF-IDF vectorizer, gain ratio-based feature
selection, and a Radial Basis Function Neural Net-
work (RBFN) as the optimal pipeline for sentiment
analysis of Hinglish data. Patwa et al. (2020) uti-
lized M-BERT and the Transformers framework,
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diverging from traditional methods. Singh (2021)
employed diverse techniques for sentiment analysis
of Hinglish, leveraging various embeddings such as
count vectorizer and word2vec across different ma-
chine learning algorithms including SVM, KNN,
and Decision Trees. A similar work by (Deborah
et al., 2022) focused on recognizing emotions using
Gaussian Process and decision trees.

However, the task of emotion classification poses
a much greater challenge compared to the sim-
pler task of sentiment analysis. It necessitates the
utilization of specific techniques to process and
balance data across a broader spectrum of classes.
This paper attempts to utilize both traditional and
Transformer based approaches for Hinglish emo-
tion classification.

3 Dataset

The SemEval 2024 Task 10 dataset (Kumar et al.,
2023) comprises 8056 samples, featuring fields
such as ID, speaker, utterance, and emotion. The
ID uniquely identifies each episode of the conver-
sation, while the speaker field denotes the person
speaking. The utterance field represents the dia-
logue, expressed in Hinglish, and the emotion field
indicates the corresponding emotion conveyed in
the utterance. Adding on, the validation dataset
contains 1354 samples while the test dataset con-
tains 1580 samples. Table 1 shows the distribution
of labels in the dataset.

Emotion Count
Anger 819
Contempt 542
Disgust 127
Fear 514
Joy 1596
Neutral 3909
Sadness 558
Surprise 441

Table 1: Distribution of emotions and their respective
counts.

4 Data Preprocessing

In the domain of code-mixed emotion recogni-
tion, preprocessing the utterances is essential for
effective model training. The emotion column,
representing a spectrum of eight distinct emo-
tions—’disgust’, ’contempt’, ’anger’, ’neutral’,

’sadness’, ’fear’, and ’surprise’—is encoded us-
ing a label encoder for standardized representa-
tion. Code-mixed data inherently presents spelling
ambiguities, demanding robust normalization tech-
niques. For example, the word ’friend’ in Hindi
could be spelled as ’dost’, ’dhosth’, ’dhost’ etc.
Spelling correction is done using a phonetic simi-
larity assessment. For each word, a phonetic code
is computed and identifies feasible correction can-
didates from a dynamically created phonetic dictio-
nary. The Levenshtein distance metric is used to
evaluate the dissimilarity between the input word
and potential corrections. This procedure is applied
to all the utterances, on each word. The resultant
corrected words are subsequently merged to form
a spell-corrected utterance. A dictionary of all the
speakers is also created, and the speaker names
present in the utterances are removed, along with
numbers and symbols.

5 Proposed Methodology

5.1 Support Vector Machine, Multinomial
Naive Bayes and Random Forest

To classify the utterances into one of the eight emo-
tion classes, emotion labels were encoded using
LabelEncoder. The CountVectorizer transformed
text into numerical features. Initially, standard clas-
sification models like Support Vector Machines
(SVM), Multinomial Naive Bayes (MNB), and
Random Forest(RF) were utilized. These mod-
els were chosen based on their suitability for text
classification tasks and their potential effectiveness
in handling emotion classification within Hindi-
English code-mixed data. These models were
trained on the training set and evaluated on the
validation set using accuracy and the weighted F1
score metrics. Table 2 and 3 shows the precision
scores and other performance metrics of each of
the standard machine learning models.

5.2 Long Short Term Memory (LSTM)

A Bidirectional LSTM model was then leveraged
to address the challenges that could not be resolved
by the SVM, MNB, and RF models. This model
architecture is well-suited for sequential data pro-
cessing tasks due to its inherent ability to capture
long-range dependencies in text sequences. Figure
1 shows the architecture diagram of the Bidirec-
tional LSTM model.

This bidirectional processing allows the model
to effectively capture contextual information from

834



Emotion SVM MNB RF
Anger 0.00 0.12 0.19
Contempt 0.33 0.00 0.17
Disgust 0.00 0.00 1.00
Fear 0.33 0.00 0.24
Joy 0.55 0.58 0.55
Neutral 0.43 0.43 0.44
Sadness 0.00 0.27 0.28
Surprise 0.22 0.29 0.27

Table 2: Precision scores of standard machine learning
models

Metric SVM MNB RF
Testing Accuracy 0.44 0.40 0.43

Testing Weighted F1 0.31 0.30 0.33

Table 3: Performance metrics of standard machine learn-
ing models

preceding and succeeding words. The model archi-
tecture is described as follows:

Embedding Layer: This layer transforms input
words into dense vectors of fixed size. It facilitates
the representation of words in a continuous vector
space, where similar words have similar represen-
tations.

Spatial Dropout1D Layer: This layer applies
dropout to the input features with a dropout rate
of 0.2. It helps prevent overfitting by randomly
dropping input units during training.

Bidirectional LSTM Layers: The model con-
sists of two Bidirectional LSTM layers. Each layer
comprises 64 units and processes input sequences
in both forward and backward directions.

Dense Layers: Two dense layers follow the
LSTM layers. The first dense layer has 64 units and
uses the ReLU activation function. The final dense
layer has 8 units (equal to the number of emotion
classes) and uses the softmax activation function
for multi-class classification.

The training parameters are as follows:
Optimizer: The model is optimized using the

Adam optimizer, a popular choice for training neu-
ral networks due to its adaptive learning rate.

Loss Function: Sparse categorical cross-
entropy is used as the loss function, suitable
for multi-class classification tasks with integer-
encoded target labels.

Early Stopping: Training includes early stop-
ping with a patience of 3 epochs. It monitors the
loss metric and restores the best weights when no

Figure 1: Architecture diagram of the Bidirectional
LSTM model

Emotion LSTM Precision Values
Anger 0.06
Contempt 0.08
Disgust 0.017
Fear 0.48
Joy 0.38
Neutral 0.12
Sadness 0.12
Surprise 0.21

Table 4: Precision scores of LSTM model

improvement is observed after the specified number
of epochs.

Batch Size: Training is performed with a batch
size of 32.

Epochs: The model is trained for a maximum
of 10 epochs.

The Bidirectional LSTM model achieves a test
accuracy of 0.35 with a weighted F1 score of 0.43
on the testing set. Table 4 shows the precision
scores of LSTM model.

5.3 Hindi-English Code Mixed BERT Models

The usage of BERT (Bidirectional Encoder Repre-
sentations from Transformers) models tailored for
Hindi-English code-mixed data can significantly
enhance the accuracy and effectiveness of emotion
classification tasks. These models are pre-trained
on large corpora of code-mixed text and can be
fine-tuned for specific classification tasks. In this
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section, three models from the L3Cube Pune team
(Nayak and Joshi, 2022), are utilized- namely Hing-
BERT, Hing-mBERT, and HingRoBERTa.

5.3.1 HingBERT
HingBERT, akin to its BERT counterpart, com-
prises a stack of transformer blocks, typically 12 in
number, with self-attention mechanisms and feed-
forward neural networks. The model’s architecture
includes special tokens such as [CLS] and [SEP] to
denote sentence boundaries and separation.

5.3.2 Hing mBERT
Hing mBERT inherits the architecture of BERT
but is trained across a multitude of languages, in-
cluding Hindi and English. Its architecture remains
consistent with BERT’s stack of transformer blocks,
each equipped with self-attention mechanisms for
capturing contextual information.

5.3.3 Hing RoBERTa
Hing RoBERTa, an extension of the RoBERTa
architecture, delves into the intricacies of Hindi-
English code-mixed text by integrating advanced
architectural modifications. Built upon the founda-
tion of RoBERTa’s transformer-based architecture,
Hing RoBERTa leverages deeper stacks of trans-
former layers, intricate attention mechanisms, and
optimized weight initialization strategies to han-
dle the nuances of bilingual conversations. With
augmented batch sizes and increased learning rates,
Hing RoBERTa optimizes gradient descent algo-
rithms to navigate the vast parameter space effec-
tively(Liu et al., 2019). Figure 2 shows the archi-
tecture diagram of the Transformer-based models.

5.3.4 Implementation
The implemented framework revolves around fine-
tuning the HingBERT, Hing mBERT, and Hing
RoBERTa Transformer-based models.

Architecture: The architecture is character-
ized by the transformer’s ability to capture long-
range dependencies and intricate contextual nu-
ances within text sequences. Each model comprises
a series of transformer blocks, with HingBERT
and Hing mBERT featuring 12 transformer layers,
while HingRoBERTa encompasses a more exten-
sive architecture with 12 or more layers, as per its
pre-defined configuration. Within each transformer
block, self-attention mechanisms enable the model
to dynamically weigh the importance of individual
tokens based on their contextual relevance, facilitat-

Figure 2: Architecture diagram of Transformer-based
models

ing effective feature extraction and representation
learning.

Multi-Head Attention Mechanism: The atten-
tion mechanism, a pivotal component of the trans-
former architecture, is augmented with multi-head
attention, allowing the model to attend to different
parts of the input sequence simultaneously.

Feed-Forward Neural Networks (FFNN): Fol-
lowing the self-attention mechanism, token rep-
resentations are fed through feed-forward neural
networks (FFNN) within each transformer block.
FFNNs consist of multiple layers of linear trans-
formations, interspersed with non-linear activa-
tion functions, such as the Rectified Linear Unit
(ReLU), facilitating nonlinear transformations and
feature extraction at each layer.

Gradient Clipping: Gradient clipping is em-
ployed during the backpropagation phase to allevi-
ate the issue of exploding gradients, ensuring stable
training dynamics and promoting convergence.

Embedding Layers: Token embeddings are
employed to represent individual tokens within the
input sequences, with dimensions determined by
the pre-trained embedding matrices. Positional
encodings are added to the token embeddings to
convey positional information, allowing the model
to differentiate between tokens based on their
relative positions within the sequence.
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Emotion Hing
BERT

Hing
mBERT

Hing
RoBERTa

Anger 0.28 0.27 0.33
Contempt 0.19 0.16 0.26
Disgust 0.25 0.20 0.20
Fear 0.24 0.23 0.34
Joy 0.45 0.49 0.54
Neutral 0.52 0.52 0.52
Sadness 0.35 0.28 0.36
Surprise 0.31 0.34 0.30

Table 5: Precision scores of BERT based models

Hing
BERT

Hing
mBERT

Hing
RoBERTa

Accuracy 0.45 0.44 0.47
Weighted F1 0.42 0.43 0.45

Table 6: Performance metrics of BERT based models

Activation Functions and Layer Normal-
ization: Activation functions such as the GELU
(Gaussian Error Linear Unit) are applied within
the feed-forward neural networks to introduce
non-linearity and enable the modeling of complex
relationships within the data.

Tables 5 and 6 show the precision value across
emotions and the accuracy and weighted F1-scores
for the three Transformer-based models.

6 Results and Analysis

6.1 SVM, MNB and RF

The Support Vector Machine (SVM) classifier
demonstrates varying performance across differ-
ent emotions. Notably, it achieves relatively high
precision for Contempt and Fear classes, scoring
0.33 for each. However, its precision is very low
for Anger, Disgust, and Sadness, achieving 0.00
precision for these emotions. SVM’s performance
seems to struggle particularly with emotions char-
acterized by intensity and subtlety. Multinomial
Naive Bayes (MNB) exhibits competitive perfor-
mance, particularly evident in its precision for Joy
and Surprise emotions, achieving 0.58 and 0.29 re-
spectively, which are among the highest precision
values across all models.

Random Forest (RF) emerges as a robust per-
former across various emotions, demonstrating bal-
anced precision values across the emotion spec-
trum. RF achieves perfect precision (1.00) for
Disgust, indicating its capability to discern this

emotion accurately within code-mixed text. Addi-
tionally, RF performs consistently well for Neutral
and Sadness emotions.

While SVM and MNB show specific strengths
for certain emotions, such as Fear and Joy respec-
tively, RF emerges as a more balanced performer
across the emotion spectrum, particularly excelling
in capturing nuances associated with Disgust.

6.2 LSTM

The LSTM model’s precision values exhibit no-
table variations across different emotions. While
it achieves relatively high precision in classifying
Fear (0.48) and Joy (0.38), its performance signifi-
cantly diminishes in categorizing Disgust (0.017)
and Anger (0.06). Despite its recurrent nature and
ability to retain sequential information, the LSTM
model appears to struggle with the contextual intri-
cacies present in the emotion classification task. It
achieves a weighted F1-score of 0.43.

6.3 Hindi-English Code-Mixed BERT Models

The BERT-based models showcase more consis-
tent and generally higher precision values across
various emotions. Specifically, Hing RoBERTa
emerges as the top performer among the BERT-
based models, achieving the highest precision
scores in several emotional categories, including
Contempt (0.26), Fear (0.34), Joy (0.54), and Sad-
ness (0.36). Hing BERT and Hing mBERT also
demonstrate competitive precision values, albeit
slightly lower than Hing RoBERTa. HingRoBERTa
achieves the highest weighted F1-score of 0.45. Ta-
ble 5 and 6 shows the precision scores and other
performance metrics of BERT-based models.

Our team, TechSSN1, placed 7th out of 39 par-
ticipating teams in the shared subtask A.

7 Conclusion

The future scope of this work entails improving
and enhancing the proposed models to handle a
wider variety of data. The unstructured nature of
Hinglish poses a challenge to the model’s perfor-
mance. By understanding the nuances, fine-tuning
can be implemented to enhance the model’s effi-
cacy. Additionally, the work can be extended to
encompass the classification of other types of emo-
tions apart from the traditional Ekman model and
refined to undertake tasks such as sarcasm or humor
detection.
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