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Abstract
This paper delineates our investigation into
the application of BioLinkBERT for enhancing
clinical trials, presented at SemEval-2024 Task
2. Centering on the medical biomedical NLI
task, our approach utilized the BioLinkBERT-
large model, refined with a pioneering mixed
loss function that amalgamates contrastive
learning and cross-entropy loss. This method-
ology demonstrably surpassed the established
benchmark, securing an impressive F1 score of
0.72 and positioning our work prominently in
the field. Additionally, we conducted a com-
parative analysis of various deep learning ar-
chitectures, including BERT, ALBERT, and
XLM-RoBERTa, within the context of medical
text mining. The findings not only showcase
our method’s superior performance but also
chart a course for future research in biomedical
data processing. Our experiment source code
is available on GitHub at: https://github.
com/daojiaxu/semeval2024_task2.

1 Introduction

Clinical Trial Reports (CTRs) play a crucial role
in documenting the methods and results of clinical
trials(Jullien et al., 2023a; Vladika and Matthes,
2023). It contains a detailed overview of partic-
ipant circumstances, intervention experiment de-
scriptions, experimental results, and adverse events
that happened in the participants. Natural Lan-
guage Inference is a valuable technique for ana-
lyzing experimental data in CTR and interpreting
the results. Natural Language Inference is able to
analyze logical linkages, consistency, and contra-
dictions in a document. It can assist detect logi-
cal relationships in text automatically, identify po-
tential conflict areas fast, and improve decision-
making accuracy and efficiency. Researchers can
better gather and analyze clinical trial data by using
Natural Language Inference techniques, which pro-
motes medical quality improvement(Jullien et al.,
2023b).

Figure 1: Dataset Example

The Figure 1 shows the example dataset used
in this work. The dataset includes two forms of
CTR: single and comparison. A single type CTR
can retrieve relevant evidence using a Primary Id.
To retrieve two relevant pieces of evidence using
comparison type CTR, Primary Id and Secondary
Id must be used simultaneously.

As an illustration, in the first instance, CTR
represents "Heart-related adverse events were
recorded in both the primary trial and the secondary
trial." Searching for the matching components of
the two pieces of evidence reveals that there are
heart-related adverse effects, such as supraventric-
ular tachycardia and atrial fibrosis. As a conse-
quence, the first example is labeled as "Entail-
ment"(Alsuhaibani, 2023). In a comparable way, in
the second example, CTR believes that "Patients
with clinical stage II (T2 N1) invasive breast cancer
are not eligible for the primary trial." However, the
participation conditions in the gathered evidence
clearly show that individuals with clinical stage I
or II (T1 or T2, N0 or N1) invasive mammary car-
cinoma match the criteria. As a result, the second
case is labeled "Contradiction"(Liu et al., 2021;
Zhou et al., 2023).

In the quest to push the frontiers of biomedi-
cal natural language understanding, SemEval-2024
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Task 2 has emerged as a critical arena for testing
the efficacy of AI models in parsing complex medi-
cal texts(Jullien et al., 2024). Engaging with this
challenge, our work utilizes BioLinkBERT to set
new benchmarks in the safety and accuracy of clin-
ical trial inference(Ida et al., 2023; Karkera et al.,
2023; Kanakarajan et al., 2022). This endeavor
not only underscores the significance of developing
robust NLI systems but also highlights our commit-
ment to contributing meaningful innovations to the
biomedical domain(Wang et al., 2023; Mahendra
et al., 2023; Pahwa and Pahwa, 2023). Through
this paper, we aim to share our methodologies, find-
ings, and the implications they hold for the broader
field of medical research, hoping to inspire further
advancements and collaborative efforts in this vital
area of study.

We created a number of attempts using the above
dataset, and the following additions were con-
tributed to our work:

1) We have designed a new loss function by com-
bining the ideas of cross entropy and con-
trastive learning. This loss function can flexi-
bly adjust parameters according to actual situ-
ations and has strong adaptability.

2) We have performed fine-tuning on the
BioLinkBERT-large model and finally ranked
15th, achieving an F1 score of 0.72, a score
of 0.59 in Faithfulness, and a score of 0.64 in
Consistency.

2 System Description

2.1 Data Preprocessing

For this experiment, the training dataset was seg-
mented into four distinct categories: Statement,
Section, First Evidence, and Second Evidence. To
facilitate precise identification of these text seg-
ments by the BioLinkBERT-large model, we em-
ployed the token "[SEP]" as a delineator for seg-
ment segmentation. This approach ensured that the
model could accurately recognize and process the
varied input text paragraphs, thereby enhancing its
ability to understand and interpret the context and
relationships within the data. This method of data
preparation was crucial in optimizing the model’s
performance by providing clear structural demar-
cations within the training set.

More precisely, we create each input sample as
shown in Figure 2.

Figure 3: Composite Loss Function

Figure 2: The Architecture of Tokenizer

2.2 Model Construction

BioLinkBERT-large Model. In the domain of
biological medicine, the BioLinkBERT model
has been shown to be superior to the BERT
model due to its ability to learn information
across documents (Yasunaga et al., 2022). Bi-
oLinkBERT outperformed other models (BERT,
BioMegatron, PubMedBERT, BioClinicalBERT,
BioMedLM, BioGPT) in extracting the associa-
tion between microorganisms and diseases from
biomedical literature, with F1 precision and recall
more than 0.8 (Karkera et al., 2023). The opti-
mal accuracy was obtained in the histopathology
image captioning challenge by integrating the Bi-
oLinkBERT target model with the image feature ex-
tractor ConvNexT Large (Elbedwehy et al., 2023).
When compared to PubMedBERT and ChatGPT,
the BioLinkBERT has demonstrated superior per-
formance in all aspects in benchmark trials focused
on biomedical text production and mining(Chen
et al., 2023). The model we use is based on the
BioLinkBERT large model that has been fine tuned
from the MNLI and SNLI datasets.

Design of Loss Function. In the training phase,
our loss function is bifurcated into two pivotal com-
ponents. The initial segment utilizes the cross en-
tropy loss function (CrossEntropyLoss())(Zhang
and Sabuncu, 2018), which first computes the pre-
dicted probability values via a softmax function.
Subsequently, it leverages the cross entropy loss
to quantify the deviation between these predicted
probabilities and the actual labels, a process en-
capsulated by the symbol CE. The latter segment
incorporates the supervised contrastive learning
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Figure 4: The Structure of System

loss function (SupConLoss())(Khosla et al., 2020).
Here, vectors generated post-processing by the pre-
trained model are juxtaposed against the true labels
to ascertain the contrastive learning loss, denoted
as SCL.

Simultaneously, we have instituted a threshold
parameter α to modulate the significance of each
loss component. By amalgamating CE and SCL
in accordance with this threshold, we obtain the
composite loss. This loss is then subjected to back-
propagation to minimize its magnitude, thereby
aligning the predicted values more closely with the
actual values. This methodology underscores our
strategic approach to loss optimization, blending
traditional and contrastive learning mechanisms to
enhance model accuracy and performance.
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Loss = (1− α) ∗ LCE + α ∗ LSCL (3)

The Supervised Contrastive Learning (SCL) loss,
as delineated in Equation (2), plays a pivotal role
in the model’s learning process by promoting the

aggregation of examples from the same class while
concurrently driving apart examples from distinct
classes. Within a given batch, examples are metic-
ulously grouped based on their corresponding la-
bels, ensuring that the learning process is finely
attuned to the nuances of class similarity and diver-
sity. This is achieved through the implementation
of the indicator function 1yi=yj , which is designed
to ensure that the loss calculation exclusively con-
siders pairs of examples (i, j) that, while sharing
the same label, are distinct entities (i ̸= j). This
deliberate focus on fostering intra-class cohesion
and inter-class distinction is fundamental to aug-
menting the model’s discriminative capabilities. A
critical aspect of this approach is the use of Nyi ,
which denotes the count of examples within the
batch that share the same label as example i. This
count is instrumental in normalizing the contribu-
tion of positive pairs to the loss, thereby ensuring
that the SCL loss effectively enhances the model’s
proficiency in distinguishing between classes. This
proficiency is further reinforced by the SCL loss’s
capacity to adjust based on the relative distances of
examples within the embedding space, taking into
account both positive pairs (belonging to the same
class) and negative pairs (belonging to different
classes), with Nyi playing a crucial role in normal-
izing these effects based on the representation of
each class within the batch.

This design strategy excels in leveraging anno-
tated data to its fullest potential, significantly en-
hancing the model’s generalization capabilities and
the discriminative power of its feature represen-
tations. The cross-entropy loss function plays a
pivotal role in assessing model performance by
quantifying the discrepancy between predicted out-
puts and actual labels. Concurrently, the supervised
contrastive learning loss function is instrumental
in refining the discriminative capacity of feature
representations, thereby bolstering classification
accuracy. This dual-faceted approach not only en-
sures a comprehensive evaluation of model quality
but also fosters a more nuanced understanding and
representation of data features, which is crucial for
achieving high precision in predictive tasks.

Model Layer Description. The levels in our
model are as follows:

1) Sentence Input Layer: The model feeds the
tokenizer with the text that was described in
2.1 as the training set.

2) Pre-trained Model Layer: To process the to-
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Model Loss F1 Precision Recall Faithfulness Consistency

bert-base-uncased
ce 0.6556 0.956 0.4989 0.0335 0.396

ce+scl 0.6474 0.944 0.4926 0.0486 0.3931

albert-base
ce 0.6127 0.788 0.5012 0.1805 0.44

ce+scl 0.6447 0.784 0.5474 0.2361 0.4951

biolinkbert-large
ce 0.7042 0.824 0.6149 0.4629 0.5971

ce+scl 0.7166 0.764 0.6749 0.5914 0.638

Table 1: Comparative results of experiments in the test set

Figure 5: F1 Changes at Different Epochs on The Test
Set

Figure 6: F1 Changes at Different Alpha on The Test
Set

kenized text and produce the resultant vector
representation of the text, the model makes
use of the pre-trained model Biolinkbert-large.

3) Dropout layer: We implemented inactivation
rate of 0.2 on the result vector to promote ro-
bustness and prevent overfitting of the model.

4) Linear Layer: To further process and trans-
form vectors, the model employs two linear
layers in the output module.

5) Softmax Function: Lastly, the model trans-
forms the linear layer’s output into a probabil-
ity distribution by using the softmax function.

The loss function shown in Figure 3 was em-

ployed for backpropagation during the model train-
ing phase.The model’s accuracy and real perfor-
mance can be enhanced by adjusting the loss func-
tion parameter Alpha based on the current situation.

2.3 Hyper-parameters Fine-tuning

Epoch Selection. To ascertain the optimal F1
score, our experiment methodically adjusted the
training duration, varying the epoch count from 1 to
20 in increments of one. At each epoch, we metic-
ulously documented the corresponding F1 scores.
As depicted by the blue line in Figure 5, a detailed
analysis reveals that the F1 score peaks at epoch 12.
This finding underscores the significance of epoch
selection in maximizing model performance, illus-
trating that a carefully calibrated training period
can significantly influence the effectiveness of the
model’s predictive accuracy.

Alpha Setting. Building upon this groundwork,
we embarked on a series of experiments aimed at
identifying the optimal value of alpha within the
loss function, meticulously adjusting alpha from
0.1 to 1 in increments of 0.1. This systematic vari-
ation is represented by the green line in the accom-
panying graph. Through careful analysis, the ideal
F1 score was observed when alpha was set to 0.1.
This discovery not only highlights the critical role
of alpha in tuning the loss function for enhanced
model performance but also establishes a direct
correlation between the fine-tuning of alpha and
the achievement of peak predictive precision.

3 Experimental Results

In our methodology, we conducted two con-
trol trials by varying the loss function parame-
ter Alpha, and selected three models(BERT-base-
uncased(Devlin et al., 2018), ALBERT-base(Lan
et al., 2019), and Biolinkbert-large)as outlined in
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Table 1, aligning with the structure of our exper-
iment. Subsequent to a rigorous examination of
the experimental outcomes, it became evident that
the experimental cohort employing the composite
CE+SCL loss function surpassed the cohort uti-
lizing the standalone CE loss function. This en-
hancement was observed across multiple metrics,
including F1 score, recall, faithfulness, and con-
sistency, specifically within the ALBERT-base and
Biolinkbert-large models.

Upon comprehensive evaluation, the Biolinkbert-
large model consistently demonstrates outstand-
ing stability and superior performance. While the
BERT-based-uncased model, employing the Cross-
Entropy (CE) loss function, achieved the highest
Precision score, it also registered relatively lower
scores in terms of Faithfulness and Consistency. To
encapsulate, the Biolinkbert-large model has ex-
hibited exceptional proficiency in addressing this
particular challenge.

4 Conclusion

This study has presented a comprehensive analysis
of the effectiveness of BioLinkBERT in enhancing
clinical trials. Our research has meticulously fine-
tuned the BioLinkBERT-large model with a novel
mixed loss function. The experimental results, par-
ticularly the achievement of an F1 score of 0.72,
underscore the potential of leveraging advanced
pre-trained language models in medical research.
Our findings suggest that the integration of con-
trastive learning and cross-entropy loss functions
significantly improves the model’s performance,
indicating a promising direction for future research
in biomedical text mining.

Moreover, the success of this project opens new
avenues for exploring the application of language
models like BioLinkBERT in other domains of
healthcare and medical research. Future work
could focus on expanding the dataset, experiment-
ing with different architectures, and exploring the
impact of domain-specific adaptations on model
performance. This could potentially lead to break-
throughs in how we process, understand, and derive
insights from clinical trial reports, ultimately con-
tributing to the advancement of medical science
and patient care.
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