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Abstract

Predicting semantic textual relatedness (STR)
is one of the most challenging tasks in the field
of natural language processing. Semantic relat-
edness prediction has real-life practical applica-
tions while developing search engines and mod-
ern text generation systems. A shared task on
semantic textual relatedness has been organized
by SemEval 2024, where the organizer has pro-
posed a dataset on semantic textual relatedness
in the English language under Shared Task 1
(Track A3). In this work, we have developed
models to predict semantic textual relatedness
between pairs of English sentences by train-
ing and evaluating various transformer-based
model architectures, deep learning, and ma-
chine learning methods using the shared dataset.
Moreover, we have utilized existing semantic
textual relatedness datasets such as the stsb mul-
tilingual benchmark dataset, the SemEval 2014
Task 1 dataset, and the SemEval 2015 Task 2
dataset. Our findings show that in the SemEval
2024 Shared Task 1 (Track A3), the fine-tuned-
STS-BERT model performed the best, scoring
0.8103 on the test set and placing 25th out of
all participants.

1 Introduction

Nowadays, there have been notable advancements
in understanding and measuring pairwise semantic
relatedness between texts within the domain of
natural language processing. Predicting semantic
relatedness plays a significant role in improving
search engines, question-answering systems, text
summarization tools, and machine translation.

However, previous works in natural language
processing have mainly dealt with semantic simi-
larity, a smaller aspect of relatedness, mainly due
to the limited availability of relatedness datasets.
Besides, dealing with ambiguous words or phrases
that have multiple meanings can make semantic re-
latedness difficult. Understanding cultural context
in language has been complex, and existing models

have struggled to capture these variations. As lan-
guage evolves, models struggle to adapt quickly to
new linguistic patterns and expressions. To bridge
these gaps, we need improved models that under-
stand not just words but also context, cultural dif-
ferences, and how language changes over time.

Semantic relatedness models have been devel-
oped using various transformer-based, deep learn-
ing, and machine learning techniques. Traditional
machine learning methods (Buscaldi et al., 2015)
have relied on predefined rules and features and
offered moderate results. These approaches have
often struggled with complex semantic relation-
ships. Deep learning-based (Wang et al., 2018) ap-
proaches have surpassed traditional machine learn-
ing models in capturing complex relationships, par-
ticularly in tasks requiring a deep understanding of
context. However, transformer-based approaches
(Devlin et al., 2019) have outperformed others
when it comes to capturing semantic relationships,
particularly in understanding context, managing
long-range dependencies, and handling contextual
embeddings.

SemEval has arranged a shared task named Se-
mEval 2024 Task 1: Semantic Textual Related-
ness (STR) (Ousidhoum et al., 2024b), introducing
a novel dataset called Shared Task 1 (Track A3)
(Ousidhoum et al., 2024a) for determining the level
of pairwise semantic relatedness between sentences
based on the similarity score that ranges from 0.0
to 1.0.

The primary goal of this task is to build a ro-
bust and accurate model to predict the semantic
relatedness between pairs of English sentences.

To accomplish this goal, we have used a va-
riety of models, incorporating machine learning
models (Linear Regression, Random Forest, XG-
Boost), models of deep learning (LSTM, BiL-
STM), and pre-trained models based on trans-
former (RoBERTa, bert-base-uncased). We have
named our approach of using the bert-base-uncased
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model as STS-BERT.
By training and assessing every model, we have

carried out a comparison analysis on the Semeval
2024 Task 1 (Track A3) dataset (Ousidhoum et al.,
2024a), STSB multilingual dataset (May, 2021),
SemEval 2014 Task 2 dataset (Marelli et al., 2014)
and dataset provided for Task 1 in SemEval 2015
(Agirre et al., 2015) and have finally come to a
conclusion that the STS-BERT model has demon-
strated better performance compared to others
boasting an impressive Spearman correlation coef-
ficient of 0.81033 on the test dataset.

Key contributions of our research work are listed
below -

• We have developed a fine-tuned-STS-BERT
model that significantly helps in accurately
predicting semantic textual relatedness across
diverse sentence pairs.

• We have evaluated the model’s performance
through various tests conducted using the
dataset and subsequently performed an in-
depth evaluation of the outcomes.

The GitHub repository that follows
has the implementation details available
- https://github.com/Fired-from-NLP/
SemEval-2024-task-1-track-A-eng.

2 Related Works

The associated works on semantic textual similarity
can be generally categorized into three parts, ap-
proaches focused on machine learning, deep learn-
ing, and attention-based mechanism (transformer).

Among machine learning models, the Support
Vector Regression model has been applied for cal-
culating the semantic relationship between two
short sentences (Sultan et al., 2013). In this system,
three distinct measures, namely overlap in word
n-gram, overlap in character n-gram, and semantic
overlap, have been used for predicting similarity.
In (Buscaldi et al., 2015), a Random forest-based
approach has been utilized to find the semantic
sentence similarity. The approach has relied on var-
ious similarity measures such as WordNet-based
conceptual similarity, IC-based similarity, syntac-
tic dependencies, and information retrieval-based
similarity.

Traditional deep learning methods have de-
pended on single or multiple granularity represen-
tations for detecting similarity. Apart from that, a
different architecture that has focused on multiple

positional sentence representations has been pro-
posed (Wang et al., 2018). It has used Bi-LSTM for
generating representations that enable the model
to capture better context understanding. Another
architecture has introduced a Siamese adaptation
of LSTM (Mueller and Thyagarajan, 2016). Using
a fixed-sized vector and a simple Manhattan metric,
the model transforms sentence representation that
represents semantic relationships. Another paper
has described an architecture that has been built
using deep learning paradigms (Zhao et al., 2015).
This architecture has been trained using a combi-
nation of features like features based on a string,
features based on a corpus, and features based on
syntactic similarity, as well as newer matrices de-
rived from distributed word embedding.

Transformer-based approaches have surpassed
both machine learning and deep learning models
in calculating semantic sentence relationships. Un-
labeled text can be used to pre-train deep bidirec-
tional representations using BERT (Devlin et al.,
2019). BERT can be fine-tuned to do various NLP-
related tasks like semantic analysis. A replication
of BERT called RoBERTa (Liu et al., 2019), has
focused on hyperparameters and training data size
to improve model performance.

In this shared task, we have used BERT-based
pre-trained models as they have been proven to be
superior to other models available.

3 Dataset

We have employed the dataset made available as
part of Shared Task 1 (Track A3) of the SemEval
2024: Semantic Textual Relatedness (STR) which
contains 5500 samples in the training dataset and
250 samples in the dev dataset. Besides, the stsb
multilingual benchmark dataset (May, 2021), the
SemEval 2014 Task 1 dataset (Marelli et al., 2014)
and the Semeval 2015 Task 2 dataset (Agirre et al.,
2015) have been used.

Task
Sentence Pairs

Train Validation Test
SemEval 2014 4500 500 4928
SemEval 2015 2997 750 6729
stsb-multi-mt 5749 1500 1379

Table 1: Data sizes for external datasets

Table 1 shows the distribution of samples that we
have used from external datasets. These datasets
have been merged to get a total of 32508 samples
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and then divided further into two sets: train and
validation comprising 25676 and 6732 samples re-
spectively. We have replaced the similarity score
of duplicate sentence pairs with the average value
to avoid labeling biases among different datasets.
For the test dataset, The dataset made available as
part of Shared Task 1 (Track A3), which consists
of 2600 samples, has been used. These datasets

Figure 1: Word distribution of sentence1

Figure 2: Word distribution of sentence2

contain a pair of sentences in each row, which we
have split into two separate sentences namely sen-
tence1 and sentence2. Figure 1 and Figure 2 show
that sentence1 contains an average of 6-12 words,
while sentence2 contains 3-12 words.

4 System Overview

In this section, we have outlined our methodol-
ogy to develop models for determining sentence
relatedness. First, we have used various extraction
strategies to extract characteristics and then utilized
a variety of machine learning and deep learning al-
gorithms. Moreover, we have employed different
transformer models to develop the system. Figure
3 provides a summary of our working methods.

4.1 Machine Learning-based Approaches

For determining sentence relatedness, we have ap-
plied traditional Machine learning-based methods
such as Linear Regression and Random Forest.
Moreover, To increase the performance, we have
employed an ensemble classifier called XGBoost.

Figure 3: An outline of our approach

Here, we have tokenized the dataset using NLTKTo-
kenizer, and then have we used Word2Vec to extract
features. We also have used FastText for feature
extraction as it not only captures semantic meaning
like Word2Vec but also encodes subword informa-
tion, allowing it to handle out-of-vocabulary words
and morphologically rich languages more effec-
tively. We have set the number of decision trees or
boosting rounds to n_estimators for the ensemble
approach at 100.

4.2 Deep Learning-based Approaches

Deep learning-based models have been utilized for
determining sentence relatedness. We have imple-
mented both models based on LSTM and Bi-LSTM.
Two LSTM layers with various numbers of LSTM
cells have been applied to the LSTM model. Each
of the two directional layers has 50 or 100 LSTM
cells in it. We have employed two Bi-LSTM lay-
ers, each with 100 and 50 Bi-LSTM cells, in the
Bi-LSTM model.

4.3 Transformer-based Approaches

Methods based on transformers are now widely
employed in many different contexts. We have
employed STS-BERT (Devlin et al., 2019) and
RoBERTa to tackle this task. As the sentences
can be diverse, having a single representation and
better understanding of the sentences is very im-
portant. For this reason, we have used the feature
vector of the pooling layer as shown in Figure 4.

In our approach, we have first split the pair of
sentences in the dataset into two. We have used
two bert-based-uncased (Devlin et al., 2019) for
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Figure 4: STS-BERT: Transformer-based model archi-
tecture for predicting semantic textual relatedness

two sentences. We have obtained the feature vector
from the pooling layer of these two Bert models.
After obtaining the pooled embeddings, we feed
them to the cosine similarity for performing the
relatedness task and compare them with the ground
truth relatedness score. Then, we compute the loss
using MSE (Mean Squared Error) based on the pre-
dicted relatedness and the actual relatedness. After
the loss is calculated to improve the performance
and minimize the loss, we have updated the model
parameters using gradient descent.

5 Experimental Setup

This section gives a summary of our experimen-
tal setup while training and evaluating our model
architectures for semantic textual relatedness.

5.1 Environment Setting
The simulation was executed on a personal com-
puter featuring an Intel Core i7-9700 CPU clocked
at 3.00 GHz and an NVIDIA GeForce GTX 2060
GPU. Additionally, to ensure ample processing ca-
pability, a Kaggle Notebook equipped with a P100
GPU was utilized.

5.2 Data Preparation
Besides the dataset provided in this competition,
we have used three external datasets. We have
used the stsb multilingual benchmark dataset (May,
2021), the SemEval-2014 Task 1 dataset (Marelli
et al., 2014), and the SemEval-2015 Task 2 dataset
(Agirre et al., 2015). We have combined all three

datasets. The similarity score of external datasets
ranges from 0.0 to 5.0. However, the provided
dataset for this competition holds the relatedness
between sentences ranging from 0.0 to 1.0. We
multiplied the relatedness score of the dataset of-
fered in the competition by 5.0 to match the sim-
ilarity score in the combined dataset. We have
replaced the similarity score of duplicate sentence
pairs with the average value. Then, we have split
the combined dataset into the training dataset and
the validation dataset. The final size of the training
dataset is 25676, whereas the overall size of the
validation dataset is 6732. We have used the test
dataset provided in the competition. The test set
contains 2600 samples.

5.3 Parameter Settings

Table 2 shows the parameter settings used in LSTM.
BiLSTM, and RoBERTa models.

Model lr optim bs epoch
LSTM 1e−6 Adam 32 10
BiLSTM 1e−6 Adam 32 10
RoBERTa 1e−6 Adam 32 12

Table 2: Parameter configurations for various models

In Table 2, learning rate, optimizer, batch size,
and number of epochs are represented by the
variables lr, optim, bs, and epoch, in that order.

Table 3 summarizes the parameter settings used
in our proposed STS-BERT model.

Parameter Value
Learning Rate 1× 10−6

Optimizer AdamW
Batch Size 8
Number of Epochs 12
Loss Function Mean Squared Error (MSE)
Pooling Mean Pooling

Table 3: Model parameter settings.

5.4 Evaluation Metrics

The instruction of Shared Task 1 of SemEval 2024
has been to use the Spearman correlation to eval-
uate the performance of our model using the test
dataset. The mathematical representation of the
Spearman correlation is provided in equation 1. Be-
sides, we have used Cosine similarity in our model
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to predict similarity between sentences. Equa-
tion 1 presents the mathematical representation for
Cosime similarity.

ρ = 1− 6
∑

d2i
n(n2 − 1)

(1)

In this context, ρ denotes the Spearman correlation
coefficient. di represents the difference between
the ranks of corresponding observations in the two
variables, while n indicates the total number of
observations.

cos_sim(A,B) =

∑n
i=1Ai ·Bi√∑n

i=1A
2
i ·

√∑n
i=1B

2
i

(2)

Where, cos_sim(A,B) is the cosine similarity be-
tween vectors A and B. Ai and Bi denote the
components of vectors of A and B respectively. n
indicates the dimensionality of the vectors.

6 Experimental Results

In this section, we have showcased the experimen-
tal findings obtained during the training and eval-
uation stages of the proposed model for semantic
textual relatedness prediction.

Table 4 presents a comparative analysis of differ-
ent types of models, evaluating their performance
using the Spearman correlation coefficient on the
test dataset.

Category Model Embedding Score

ML

Linear word2vec 0.0507
Regression fasttext 0.0507

Random word2vec 0.1298
Forest fasttext 0.1198

XGBoost
word2vec 0.3178
fasttext 0.2072

DL
LSTM

word2vec 0.445
fasttext 0.420

BiLSTM
word2vec 0.4990
fasttext 0.429

BERT
RoBERTa - 0.749

STS-BERT - 0.810

Table 4: Results of different models on the test dataset

Among the machine learning models, we have
found that the XGBoost model with word2vec em-
bedding has achieved the highest score of 0.3178.
In the deep learning category, we have seen better
performance as both LSTM and BiLSTM models

have higher scores than the machine learning mod-
els. The BiLSTM model achieved a score of 0.499,
slightly outperforming the LSTM model, which
obtained a score of 0.445.

In some cases, Fasttext word embedding has
obtained the best results compared to word2vec
(Meden, 2022). Therefore, we have also tested the
performance of the model using Fasttext embed-
ding. However, the transformer-based models have
clearly outperformed other models based on ma-
chine learning and deep learning. For instance, the
RoBERTa model achieved a score of 0.749, while
our proposed STS-BERT model demonstrated ex-
ceptional performance with an impressive score of
0.810.

7 Error Analysis

In the development phase external datasets, Se-
mEval 2014 Task 1 (Marelli et al., 2014), SemEval
2015 Task 2 (Agirre et al., 2015) and multilingual
benchmark dataset (May, 2021) along with the
competition dataset have been utilized. Hence the
training set becomes more diverse and our model
fails to learn about the relatedness between the
sentences. The similarity scores of the external
datasets ranged between 0.0 to 5.0. To make all
the scores similar we have multiplied the scores
of the competition dataset by 5.0 and normalized
the whole training set by dividing all the scores
by 5.0. Due to multiple conversions of the range
of scores, precision loss has occurred. Sentence
transformation has been another key reason for the
poor performance of the model. When the second
sentence is the transformation of the first sentence,
our model can not detect it. For example, if the first
sentence is in simple form and the second sentence
is in the complex form of the first sentence, the
model shows poor performance in that case. As
a result, the overall performance of our proposed
system has degraded.

8 Conclusion

In this research, we have conducted a compara-
tive performance analysis, assessing a range of
machine learning, deep learning, and transformer-
based models to predict the semantic textual re-
latedness between pairs of English sentences. We
have utilized the Task 1 (Track A3) dataset pro-
vided in the shared task, along with additional ex-
ternal datasets, for training various models. Our re-
sults indicate that the STS-BERT model has outper-
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formed all other models, achieving an impressive
score of 0.810. However, after analyzing errors,
we have discovered that the slight score decrease is
due to the integration of large external STS datasets
with varying output ranges. To address this in fu-
ture work, we plan to implement alternative strate-
gies. Moreover, we will work on Task 1 (Track B
and C) to have more comprehensive findings.

9 Ethical Considerations

To advance semantic text relatedness, we commit
to emphasizing privacy through informed consent,
reducing biases, as well as transparent modeling.
Our ethical position prioritizes responsibility, ac-
cessibility, and privacy to build a positive and open
technology environment.
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