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Abstract

This paper describes the system of the team
NRK for Task A in the SemEval-2024 Task
1: Semantic Textual Relatedness (STR). We
focus on exploring the performance of ensem-
ble architectures based on the voting technique
and different pre-trained transformer-based lan-
guage models, including the multilingual and
monolingual BERTology models. The ex-
perimental results show that our system has
achieved competitive performance in some lan-
guages in Track A: Supervised, where our sub-
missions rank in the Top 3 and Top 4 for Al-
gerian Arabic and Amharic languages. Our
source code is released on the GitHub site1.

1 Introduction

The SemEval-2024 Task 1 (Ousidhoum et al.,
2024b) aims at detecting the degree of semantic
relatedness between pairs of sentences across 14
different languages, encompassing Afrikaans, Al-
gerian Arabic, Amharic, English, Hausa, Hindi,
Indonesian, Kinyarwanda, Marathi, Moroccan Ara-
bic, Modern Standard Arabic, Punjabi, Spanish,
and Telugu. This shared task has three main tasks,
each focusing on different aspects of predicting
semantic textual relatedness within sentence pairs.

Semantic Textual Relatedness (STR) is a task
in Natural Language Processing (NLP) that aims
to measure the degree of semantic relatedness be-
tween two text passages, typically sentences. STR
plays a crucial role in various NLP applications, as
it allows computers to understand the relationships
between different pieces of text. As mentioned
in (Abdalla et al., 2023), it is also employed in
chatbots and dialogue systems to understand the
user’s intent and in question-answering systems
to identify answer passages that are semantically
related to the question. Additionally, STR finds
applications in text summarization, where it helps

1https://github.com/KiRzEa/Semeval2024-
SemanticTextualRelatedness

identify the most important and semantically rel-
evant sentences to create a concise summary of a
longer document. STR also plays a role in text
generation tasks, such as machine translation and
dialogue systems, by guiding the model to generate
text that is semantically related to the input or con-
text. However, accurately measuring STR presents
several challenges. One key challenge lies in cap-
turing the nuances of language, such as synonyms,
paraphrases, and ambiguity. Another challenge is
dealing with different languages and cultural con-
texts, where semantic relationships might not be
directly translatable.

Our team only focuses on addressing Track A
in the shared task. Our approach is based on the
domain adaption for different transformer-based
models, and then we continue to fine-tune the
pre-trained transformer-based models on the task-
specific training data. Therefore, our system is
able to leverage domain-specific knowledge to im-
prove performance. Subsequently, we train a cross-
encoder model on the adapted transformer-based
models, harnessing its ability to capture semantic
relatedness between sentence pairs effectively. To
further enhance the robustness and performance of
our predictions, we adopt a weighted voting tech-
nique to combine the outputs of multiple models.

2 Background

2.1 Problem Description

This study investigates the task of predicting Se-
mantic Textual Relatedness (STR) between sen-
tence pairs across 14 languages. Each sentence pair
will be associated with a human-annotated related-
ness score ranging from 0 (completely unrelated)
to 1 (maximally related). There are three Tracks
for participants, however, in our work, we only fo-
cus on Track A: The first task entails a supervised
approach, wherein participants are tasked with de-
veloping systems that leverage labelled training
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Figure 1: Relatedness Score distribution over languages
on the training set.

datasets to infer the degree of semantic relatedness
between sentence pairs.

2.2 Data Description

The dataset (Ousidhoum et al., 2024a) typically
contains pairs of text along with their correspond-
ing relatedness score, which indicates how seman-
tically related the two fragments are.

Figure 1 shows the distribution of relatedness
score over languages. Among the languages in-
cluded in the dataset, English comprises the largest
subset of sentence pairs. The remaining languages
also contribute sentence pairs, albeit with varying
degrees of representation. It is notable that while
most languages exhibit relatedness score distribu-
tions spanning the entire range of 0 to 1, some
languages demonstrate more limited distributions.

3 Related Work

STR is a fundamental concept which has been con-
sidered as an important role in language under-
standing tasks. Historically, many previous stud-
ies focused on semantic similarity, which aims to
measure the likeness or resemblance between lin-
guistic elements based on their meaning (Abdalla
et al., 2023). Unlike semantic similarity, which
often involves assessing the degree of overlap or
similarity in meaning between words or phrases,
STR involves determining the overall relatedness or
closeness in meaning between pairs of sentences or
longer textual units (Mohammad and Hirst, 2012).
(Gabrilovich et al., 2007) proposed a novel method
called Explicit Semantic Analysis (ESA) for fine-
grained semantic representation of unrestricted nat-
ural language texts. The effectiveness of ESA is

evaluated by automatically computing the degree
of semantic relatedness between fragments of natu-
ral language text. Hussain et al. (2023) proposed
a novel vector space model for computing seman-
tic similarity and relatedness between concepts by
aggregating taxonomic features from WordNet and
Wikipedia.

With the emergence of deep learning models,
Gu et al. (2023) introduced a novel Siamese Man-
hattan LSTM-SNP approach (SiMaLSTM-SNP)
which combines Word2Vec and a 10-layer Atten-
tion strategy to represent and extract sentence pairs.
The multi-head self-attention layer identifies text
associations and redistributes hidden state weights.
The last hidden state is extracted, and the related-
ness score is calculated using the Manhattan dis-
tance. Hany et al. (2023) employed a two-layered
approach. Firstly, embedding similarity techniques
were utilized, leveraging seven different transform-
ers to obtain vectors for each pair of sentences.
Secondly, a classical machine learning regressor
was trained on these seven vectors. This research
highlights the potential of combining embedding
similarity techniques with machine learning meth-
ods to enhance relatedness score assessment and
other NLP tasks.

4 System Description

4.1 Approach

The diagram in Figure 2 illustrates our ensemble
approach for Task A. The framework consists of
two main layers: a layer of cross-encoder model,
and a voting ensemble layer. Firstly, the input sen-
tence pair is passed through a single encoder to
produce a joint representation which captures the
semantic relationship between the two sentences in
the pair and produces a number ranging from 0 to
1. Following this, the predictions of chosen models
are combined using the weighted voting technique
with each weight determined by its performance in
the development phase.

Our approach commences with domain adapta-
tion on masked language modeling (MLM) task
(3) which has been shown a powerful training strat-
egy for learning sentence embeddings (Gururangan
et al., 2020). To achieve this, we leverage each sen-
tence in the sentence pairs of the training dataset
to train MLM which is called In-domain corpus
in Figure 2. This process involves masking cer-
tain tokens within the input sentences and train-
ing the model to predict the masked tokens based
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Figure 2: The overall framework of our system for the Track A: Supervised in the Semantic Textual Relatedness
shared task.

on their context. In the next stage, we employ a
cross-encoder architecture from Sentence-BERT
(Reimers and Gurevych, 2019) which is a variant
of the BERT model specifically designed for gener-
ating fixed-size sentence embeddings that capture
semantic similarity between sentences. The cross-
encoder architecture of SBERT processes sentence
pairs jointly, encoding them into dense fixed-size
vectors while considering their contextual informa-
tion and semantic relationships. After obtaining the
logits, we apply the sigmoid function to transform
the logits into scores ranging from 0 to 1.

σpxq “ 1

1 ` e´x
(1)

This transformation ensures that the output
scores are normalized and represent the degree of
semantic relatedness between sentence pairs. To
optimize the model during training, we utilize Bi-
nary CrossEntropy loss function L as follows:

L “ ´ 1

N

Nÿ

i“1

ryi logppiq`p1´yiq logp1´piqs (2)

Fine-tuning Language Model: As can be
seen in Figure 2, we utilize the power of pre-
trained contextual language models, encompassing
BERT-based models which are BERT (?),
DeBERTa-V3 (He et al., 2022), XLM-RoBERTa
(Conneau et al., 2019) and E5 (Wang et al., 2022).
To fine-tune the language models, we followed

Tokenizer

late [MASK]stayedHe

Pretrained Language Model

He stayed up late to watch TV

to[CLS] watchup [SEP]

latestayedHe to[CLS] watchup [SEP]

Pretrained Language Model

TV, Netflix, YouTube, . . .

Figure 3: Masked language modelling task illustration
for BERT-based models.

the approach of (Devlin et al., 2019), which is
presented in detail below.

Voting Scheme: Our motivation for apply-
ing an ensemble approach is to take advantage of
the performances of various models. Given pre-
dictions tŷθ1 , ŷθ2 , .., ŷθnu of the n base regressors.
We applied the weighted voting technique to merge
the predictions of the base models. In our case,
the individual regressors are treated based on their
performance in the evaluation phase. We compute
the weighted sum of the output of n regressors as
the final prediction.

4.2 Pre-trained Contextual Language Models
We briefly explain the pre-trained language models
used in this paper.

• mBERT: we use the multilingual version of
BERT (Devlin et al., 2019) which is trained
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Table 1: Results of our best submission compared with two top systems on 9 languages for Track A.

Track A1: Algerian Arabic Track A2: Amharic Track A3: English
Team Score Team Score Team Score
Top 1 0.6823 Top 1 0.8886 Top 1 0.8596
Top 2 0.6788 Top 2 0.8878 Top 3 0.8532
Ours (Top 3) 0.6736 Ours (Top 4) 0.8641 Ours (Top 14) 0.8352

Track A4: Hausa Track A5: Kinyarwanda Track A6: Marathi
Team Score Team Score Team Score
Top 1 0.7642 Top 1 0.8169 Top 1 0.9108
Top 2 0.7472 Top 2 0.8134 Top 2 0.8968
Ours (Top 8) 0.6719 Ours (Top 6) 0.7568 Ours (Top 6) 0.8792

Track A7:Moroccan Arabic Track A8: Spanish Track A9: Telugu
Team Score Team Score Team Score
Top 1 0.8625 Top 1 0.7403 Top 1 0.8733
Top 2 0.8596 Top 2 0.7310 Top 2 0.8643
Ours (Top 6) 0.8269 Ours (Top 12) 0.6898 Ours (Top 8) 0.8341

on the top 104 languages with the largest
Wikipedia using a masked language modelling
(MLM) objective with case sensitivity.

• XLM-R: XLM-R (Conneau et al., 2020) is
another multilingual language model. It is pre-
trained on 2.5TB of filtered CommonCrawl
data containing 100 languages.

• mDeBERTa-V3: a DeBERTa (He et al.,
2020) version improved the efficiency of
original DeBERTa using ELECTRA-Style
pre-training with Gradient Disentangled Em-
bedding Sharing (He et al., 2022). In our
case, we choose the multilingual version of
DeBERTa-V3 which was pre-trained only on
the ConmmonCrawl dataset and other ver-
sions, which are fine-tuned on the XNLI
dataset and multilingual-NLI-26lang-2mil7
dataset (Laurer et al., 2024), respectively.

• E5: E5 (Wang et al., 2022) is trained in a con-
trastive manner with weak supervision signals
from our curated large-scale text pair dataset.
We chose monolingual (which is trained only
in English) and multilingual versions for our
task.

5 Experimental Setup

Data and Pre-processing: We utilized the official
training set for training models. The development
set was used to determine the weights for each
model chosen to apply the voting technique based
on their performance.

Configuration Settings: We implemented our
models using the Trainer API from the Hugging
Face library (Wolf et al., 2020) for the MLM task
and employed the Cross Encoder architecture from
SBERT (Reimers and Gurevych, 2019) for the
Cross Encoder task.

• MLM Task: The maximum input length is set
to 512 tokens, and the number of epochs is set
to 10 with a batch size of 16 for all languages.
During the training phase of the MLM, we set
the MLM probability to 0.15, which means
a token will be replaced with the [MASK]
token in the input sequence with a probability
of 0.15.

• Cross Encoder Task: The maximum input
length is set to 512 tokens, and the number of
epochs is set to 10 with a batch size of 16 for
all languages.

We used the AdamW optimizer with a linear sched-
ule warm-up technique for both the MLM task and
the Cross Encoder task.
Submission Systems: We submitted the perfor-
mance of the ensemble weighted voting model
for all languages for both the development phase
and evaluation phase and as mentioned above, the
weights of each model based on its performance in
the development phase and determined manually.

6 Results and Discussion

In this section, we present the official results of our
final submission model for Track A in the SemEval
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Table 2: Results of all the base models and our ensemble models on the development dataset.

Track A1: Algerian Arabic Track A2: Amharic Track A3: English
Model Score Model Score Model Score
XLMR-large 0.570 XLMR-large 0.878 XLMR-large 0.818
mBERT 0.566 mBERT 0.257 mBERT 0.798
mE5-base 0.559 mE5-base 0.828 mE5-base 0.805
mE5-large 0.523 mE5-large 0.889 mE5-large 0.824
mDeBERTa-v3-base 0.561 mDeBERTa-v3-base 0.859 mDeBERTa-v3-base 0.821
mDeBERTa-v3-xnli 0.664 mDeBERTa-v3-xnli 0.878 mDeBERTa-v3-xnli 0.823
- - - - E5-v2-large 0.828
Ensemble 0.659 Ensemble 0.891 Ensemble 0.840

Track A4: Hausa Track A5: Kinyarwanda Track A6: Marathi
Model Score Model Score Model Score
XLMR-large 0.785 XLMR-large 0.641 XLMR-large 0.858
mBERT 0.741 mBERT 0.651 mBERT 0.822
mE5-base 0.747 mE5-base 0.664 mE5-base 0.825
mE5-large 0.752 mE5-large 0.652 mE5-large 0.860
mDeBERTa-v3-base 0.718 mDeBERTa-v3-base 0.646 mDeBERTa-v3-base 0.829
mDeBERTa-v3-xnli 0.759 mDeBERTa-v3-xnli 0.662 mDeBERTa-v3-xnli 0.839
Ensemble 0.791 Ensemble 0.665 Ensemble 0.862

Track A7: Moroccan Arabic Track A8: Spanish Track A9: Telugu
Model Score Model Score Model Score
XLMR-large 0.833 XLMR-large 0.665 XLMR-large 0.803
mBERT 0.831 mBERT 0.673 mBERT 0.790
mE5-base 0.840 mE5-base 0.666 mE5-base 0.797
mE5-large 0.851 mE5-large 0.691 mE5-large 0.809
mDeBERTa-v3-base 0.816 mDeBERTa-v3-base 0.729 mDeBERTa-v3-base 0.805
mDeBERTa-v3-xnli 0.818 mDeBERTa-v3-xnli 0.701 mDeBERTa-v3-xnli 0.810
Ensemble 0.860 Ensemble 0.728 Ensemble 0.827

2024 Task 1, comparing them with the results of
the two top-performing teams for each sub-track.

Table 1 showcases the performance of our en-
semble model alongside that of the top two teams
across nine tracks. Our system demonstrates com-
petitive performance across four sub-tracks: Track
A1 (Algerian Arabic), Track A2 (Amharic), Track
A3 (English), and Track A7 (Moroccan Arabic).
Additionally, we provide the results of both base
models and ensemble systems on the development
set. As indicated in Table 2, the ensemble gives bet-
ter performance in most of the sub-tracks. Notably,
we observe a decline in the performance of the
ensemble on certain tracks (e.g., Track A1, Track
A8) attributed to the presence of a base model that
significantly outperforms the others and when this
superior model is combined with the rest, it leads to
a degradation in the overall performance of the en-
semble that underscores the complexity of ensem-
ble. In Track A2, the mBERT model was excluded
from the ensemble due to its poor performance,
the ensemble was thus formed using only the re-
maining models. Consequently, we opted for the
ensemble model as the final submission system

over the best model identified on the development
set.

7 Conclusion

This paper introduces a straightforward yet ef-
fective ensemble architecture for Track A in the
SemEval-2024 Task 1: Semantic Textual Relat-
edness. Our system leverages fine-tuning of pre-
trained transformer-based language models as base
regressors, coupled with a weighted voting tech-
nique to amalgamate predictions from diverse base
models. Experimental results demonstrate its com-
petitive performance across select languages in
Track A without any additional resources. For fu-
ture works, we propose enhancing our system by
integrating African transformer-based models and
exploring data augmentation techniques to improve
the overall performance.
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