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Abstract

One major issue in natural language genera-
tion (NLG) models is detecting hallucinations
(semantically inaccurate outputs). This study
investigates a hallucination detection system
designed for three distinct NLG tasks: defi-
nition modeling, paraphrase generation, and
machine translation. The system uses feedfor-
ward neural networks for classification and Sen-
tenceTransformer models for similarity scores
and sentence embeddings. Even though the
SemEval-2024 benchmark is showing good
results, there is still room for improvement.
Promising paths towards improving perfor-
mance include considering multi-task learning
methods, including strategies for handling out-
of-domain data and minimizing bias, and inves-
tigating sophisticated architectures.

1 Introduction

AI hallucination refers to a phenomenon where a
Large Language Model (LLM) - usually Generative
AI or a computer vision tool produces nonsensical
and inaccurate outputs (Maleki et al., 2024). Thus,
this leads to fluent but inaccurate generations. The
term ’hallucination’ is usually associated with hu-
man or animal brains but from the standpoint of
machines, hallucinations refer to these inaccurately
produced outputs.

Hallucinations in generative models may arise
due to multiple factors such as overfitting during
model training, complexity of the model, and bias
in training data. According to multiple surveys
(Huang et al., 2023), Hallucinations in natural lan-
guage models may arise primarily due to two rea-
sons - Hallucinations due to data and hallucinations
during modeling.

Hallucinations in AI models may prove to be
a threat in multiple scenarios such as healthcare
where a model may not be able to predict the exis-
tence of the exact condition that needs to be treated.

Hallucinations in fluent over generations may also
lead to the spread of misinformation.

The most pressing problem in the modern-day
natural language generation landscape is that the
existing metrics (Bandi et al., 2023) can mostly
detect fluency in generation rather than accuracy.

To deal with this issue, several studies have ex-
plored different techniques, such as Knowledge
Graph Integration, Bias Detection, and Mitiga-
tion (Rawte et al., 2023). Building upon this
prior research, our work proposes training tailor-
made deep learning models and using Transformer
(Vaswani et al., 2017) based architectures to iden-
tify cases of hallucinations.

To deal with this scenario, a task (Mickus et al.,
2024) was proposed to build a system to detect
instances of hallucinations in generated text.

2 Task

The primary task was to build a hallucination de-
tection system capable of detecting outputs that
are grammatically sound but are semantically in-
accurate concerning the provided source input -
both with or without access to the model used to
generate the outputs. This is essentially a binary
classification task and we were provided with two
tracks - model agnostic and model aware. Model
agnostic refers to the track where one would have
no access to the model used to generate the out-
puts and model aware refers to the track where the
model was provided in the dataset.

3 Related Work

Recent advances in natural language processing
(NLP) have resulted in the development of Trans-
former based models such as BERT and its special-
ized variations that have introduced efficiency and
accuracy in several NLP tasks.
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Figure 1: SBERT architecture to compute similarity
scores

3.1 BERT

Bidirectional Encoder Representations from Trans-
formers or BERT (Devlin et al., 2018), is an in-
novative machine learning technique for natural
language processing (NLP). Researchers at Google
AI Language created the adaptable BERT model
in 2018, and it can perform more than 11 common
NLP jobs, such as named entity recognition and
sentiment analysis. Computers have never been
very good at interpreting language. This require-
ment is attempted to be filled by NLP, a blend of
languages, statistics, and machine learning. NLP
activities required the usage of specialized mod-
els prior to BERT. With its cohesive approach and
remarkable performance across a range of tasks,
BERT transformed NLP.

3.2 SBERT

SBERT 1 or Sentence-Bert is a modified version of
the BERT model which uses siamese 2 and triplet
networks and is able to understand meaningful se-
mantic embeddings in sentences. A common issue
with BERT is, that the cross encoder setup of BERT
takes up a lot of time and resources. To find the pair
with the maximum similarity among n = 10,000
phrases, for example with BERT,

n(n− 1)

2
= 49,995,000

inference calculations are needed. This takes
roughly sixty-five hours on a contemporary V100
GPU.

1http://arxiv.org/abs/1908.10084
2https://www.cs.cmu.edu/ rsalakhu/papers/oneshot1.pdf

4 Datasets

Since the task was divided into two tracks - model-
aware and model-agnostic, we were provided with
sets of two datasets. The model-aware dataset had
a separate column for the generative model used to
produce the outputs. The training dataset consisted
of three natural language generation (NLG) tasks -
Definition Modelling, Paraphrase Generation, and
Machine Translation.

1. Definition Modelling (DM) - Clear and con-
cise definition of concepts or terms generated
by generative models.

2. Paraphrase Generation (PG) - Alternative
wordings are generated that convey the same
meaning as the input text.

3. Machine Translation (MT) - Translation of
the text from one language to another while
preserving fluency and meaning.

Each entry in the dataset comprises three text
columns - hyp, src and tgt.

1. hypothesis (hyp) - Contains the generated
text.

2. source (src) - The source text or the original
text provided as input to the generative model
for producing the hypothesis.

3. target (tgt) - Contains the correct generation
output.

The trial dataset contains three columns dedicated
to the labels. The ’labels’ column contains the three
most likely labels out of which the majority label
is displayed in the ’label’ column - which is either
’Hallucination’ or ’Not Hallucination’. Finally, the
’p(Hallucination)’ column comprises of probability
values ranging from 0 to 1.

4.1 Trends in the dataset
The datasets provided include trial, validation
(model-agnostic and model-aware), and test
(model-agnostic and model-aware) sets, all rep-
resented by their respective figures (Figure 2, Fig-
ure 3, Figure 4, Figure 5, and Figure 6).

The datasets contain almost an even distribution
of DM and PG tasks. However, the number of rows
with the task ’MT’ is considerably less.

Certain entries in the dataset had no probabil-
ity values and to avoid difficulties in the training
process, we have dropped the rows.
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Figure 2: Trial Dataset

Figure 3: Validation Dataset (Model Agnostic)

Figure 4: Validation Dataset (Model Aware)

Figure 5: Test Dataset (Model Agnostic)

Figure 6: Test Dataset (Model Aware)

We determined that there was no viable utility
for integrating the separate training dataset lacking
annotations into our system. Furthermore, we were
aware of the possible overfitting risk brought about
by more unannotated data points. Consequently,
we made the informed decision to refrain from its
utilization.

5 Pre Processing

5.1 Data Cleaning

The text sections in the dataset have been processed
by removing irrelevant elements in order to im-
prove the efficiency of word embedding produced
by the models used. The sentences under hyp, src,
and tgt columns mainly contain prepositions and
certain irrelevant expressions.

1. First the sentences are lowered by using
Python’s .lower() function.

2. In order to remove irrelevant expressions and
prepositions, we have used Python’s Regular
Expression (re) library.

3. Finally, the sentences are stripped and split
into individual words.

5.2 Labels

In order to make the training process more effi-
cient, we converted the probability values in the
’p(Hallucination)’ column into binary labels - if the
probability value was more than or equal to 0.5, we
converted it to 1 and otherwise it was labeled 0.

5.3 Tokenisation

We used ’all-mpnet-base-v2’, a SentenceTrans-
former model to encode our sentences. The encod-
ing process is comprised of three steps - tokeniza-
tion, word embedding, and sentence embedding.

954



1. Tokenization - The sentence is split into indi-
vidual tokens. This is done by the methods of
stemming or lemmatization (Khyani and B S,
2021).

2. Word Embedding - Each token is then as-
signed a numerical vector. These are called
word embeddings and they represent the se-
mantic meaning of the word using information
from a large text corpus.

3. Sentence Embedding - Finally the tokens are
converted into a single vector representation
for the entire sequence.

Different models use different approaches to
perform embedding.

(a) Mean pooling - The average of all word
embeddings is taken for the entire sen-
tence. This method is useful in capturing
the overall sentiment but may lead to a
loss of semantic information.

(b) Weighted mean pooling - Weights are
assigned to the words using attention
mechanisms to represent their impor-
tance in the sentence. This helps in pri-
oritizing certain words and preserving
semantic information.

(c) Transformers - Transformer models
consider the entire sentence and process
the relationship between different words.
Thus, contextualized embeddings cap-
ture the context more accurately.

6 Methodology

6.1 Experimental Setup

Since the generated texts have been divided into
three tasks, we have divided the process into three
branches.

For Definition modeling, we used ’all-mpnet-
base-v2’ 3 and for Paraphrase generation, we have
used ’paraphrase-MiniLM-L6-v2’ 4, both Sentence-
Transformer models to encode the sentences and
calculate two sets of cosine similarity values. One
represents the similarity score between the hypoth-
esis (hyp) and source (src) text and the other repre-
sents the similarity score between the source (src)
and target (tgt) text. These similarity scores are

3https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

4https://huggingface.co/sentence-
transformers/paraphrase-MiniLM-L6-v2

converted into a numpy array using numpy’s col-
umn stack for input into two sequential models
respectively.

For Machine translation, we used ’all-MiniLM-
L6-v2’ 5, also a SentenceTransformers model to en-
code the sentences and produce embeddings. The
Spearman correlation between the two sentences in
the hypothesis and target columns is calculated. We
chose these columns specifically as ’hyp’ contains
the English translation produced by the generative
model and ’tgt’ contains the correct translation. We
used the SciPy library of Python for this metric. Fi-
nally, the correlation coefficients are pushed into a
numpy array. In this case, we have used a different
sequential model for training.

The input array is split into an 80:20 ratio for
training and validation respectively and the test
dataset was entirely used for producing the outputs.
We have used a common pipeline for processing
the entire dataset and then branched the input array
according to the task label - if the task is ’DM’
it was fed into the model prepared for definition
modeling.

6.2 Model

We used three models for producing the outputs for
the three tasks respectively.

6.2.1 Definition Modelling
Using the Tensorflow Keras framework, we created
a deep-learning neural network. It has two densely
concealed layers, each with 64 and 32 neurons. For
the hidden layers, we employed ReLU activation
functions, which give the model non-linearity (Ku-
lathunga et al., 2021). This helps the model learn
non-linear correlations and fortifies the neural net-
work. To lessen overfitting, we have incorporated a
dropout layer after each dense layer. Lastly, since
this is a binary classification problem, we have uti-
lized the sigmoid activation function for the output
layer.

6.2.2 Paraphrase Generation
We designed a neural network architecture for the
paraphrase generation type inputs comprising of
an input layer accepting data with two features,
followed by three hidden layers. The first layer
consists of 128 neurons with ReLU activation, cou-
pled with a dropout layer to mitigate overfitting.
Subsequently, a 64-neuron layer employs ReLU

5https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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Task Specific Model Accuracy
Definition Modelling 0.67
Paraphrase Generation 0.74
Machine Translation 0.83

Table 1: Evaluation of Individual Models

activation, batch normalization, and dropout reg-
ularization. Similarly, the third hidden layer inte-
grates 32 neurons, ReLU activation, batch normal-
ization, and dropout regularization. The outputs
from the second and third layers are concatenated
before feeding into a single-neuron output layer
with sigmoid activation, typical for binary classi-
fication. This architecture is optimized using the
Adam optimizer with a learning rate of 1e-4 and
binary cross-entropy loss, while early stopping is
applied during training to prevent overfitting. The
model’s configuration demonstrates a structured
approach to feature extraction and classification,
tailored for paraphrase generation types input data.

6.2.3 Machine Translation
The model for machine translation harnesses the
formidable capabilities of the all-MiniLM-L6-v2
Sentence Transformer, designed to adeptly encode
semantic nuances within input sentences into dense
embeddings. These embeddings undergo metic-
ulous examination through Spearman correlation
(halo), discerning their intrinsic similarities. Post-
normalization, they serve as inputs to a meticu-
lously designed neural network architecture, capi-
talizing on ReLU activation functions for intricate
feature extraction. Culminating in a sigmoid ac-
tivation layer, the network adeptly estimates the
probability of sentence hallucinations, embodying
a rigorously scientific approach to classification.

6.2.4 Evaluation of Task Specific Models
This section presents an evaluation of three task-
specific models trained for Definition Modelling
(DM), Paraphrase Generation (PG), and Machine
Translation (MT) tasks, respectively. Each model is
assessed based on its training accuracy, providing
insights into its performance on the training data.

6.3 Loss

We use binary cross-entropy (BCE) (Ruby and Yen-
dapalli, 2020) as our loss function as it measures
the difference between the predicted probability
and the true binary label (0 or 1). BCE is not
affected by class imbalance, which occurs when

Figure 7: Generalised Architecture of the Model

one class has noticeably fewer samples than the
other, in contrast to Mean Squared Error (MSE).
This guarantees that the model concentrates on ef-
ficiently learning both classes.

6.4 Optimizer

We use the Adam (Kingma and Ba, 2017)
optimizer for our neural networks as Adam is
effective at traversing the loss landscape because
it combines momentum and adjustable learning
rates. It strikes a balance between exploration
and exploitation, enabling the model to iteratively
identify areas of high performance and improve its
solutions.

A generalized representation of the model is vi-
sualized in Figure 7.

7 Evaluation

The predicted probability values generated by the
model were translated into binary labels using a
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Track Accuracy Rho
Model-Agnostic 0.654 0.294608108

Model-Aware 0.7113333333 0.4264291384

Table 2: Evaluation results

threshold approach. Data points with a predicted
probability of 0.5 or higher were assigned the
label "Hallucination," while those below 0.5
were labeled "Not Hallucination." These labels
were then saved in a JSON file conforming to the
specified format.

The SemEval-2024 task had two measures to
evaluate the performance:

1. the accuracy that the system reached on the
binary classification.

2. the Spearman correlation of the systems’ out-
put probabilities with the proportion of the
annotators marking the item as overgenerat-
ing.

It is given by:

ρs = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)

where di is the difference in ranks for item i
and n is the total number of items.

Also, the submissions were divided into model ag-
nostic and model aware tracks. Our model placed
31st out of all entries in the model-aware track and
41st out of all entries in the model-agnostic track.

8 Conclusion and Future Work

This paper explored detecting hallucinations in nat-
ural language generation (NLG) outputs using spe-
cialized models for definition modeling, paraphrase
generation, and machine translation tasks - both
while having access to the models used to generate
the sentences and without. We used transformer-
based models for calculating the similarity scores
as they outperform other models such as Univer-
sal Sentence Encoder (USE) (Cer et al., 2018) and
Doc2Vec (Lau and Baldwin, 2016).

While there have been previous studies on hallu-
cination detection, our approach offers several key
novelties that have contributed to its effectiveness.

• Task-specific Models: Instead of the one-size-
fits-all approach, we built specific models for
each task to better capture their unique charac-
teristics. This customization aids in efficiently
extracting features crucial for identifying hal-
lucinations.

• Transformer-based Similarity Scores: To
compute sentence similarity scores, we made
use of SentenceTransformer, a Transformer
based model. These models do better at cap-
turing contextual information and fine-grained
semantic relationships inside phrases than
other models.

Several avenues exist for further development of
our hallucination detection system. To enhance the
performance of our model, we advise investigat-
ing data augmentation techniques, as transformer-
based models have a large thirst for data. To in-
crease the model’s robustness and durability, we
also suggest using adversarial training and explor-
ing more advanced deep learning architectures.

This project has been possible due to the con-
tributions of Sohan Choudhury, who developed
the architecture for the definition modelling task,
Priyam Saha, who created the paraphrase genera-
tion model, and Subharthi Ray, who built the ma-
chine translation model. We are also deeply grate-
ful for the insightful guidance and mentorship pro-
vided by Shankha Shubhra Das and Dr. Dipankar
Das throughout this journey.
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