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Abstract

Our approach to detecting machine-generated
text for the SemEval-2024 Task 8 combines a
wide range of linguistic-stylistic features with
pre-trained language models (PLM). Experi-
ments using random forests and PLMs resulted
in an augmented DistilBERT system for sub-
task A and B and an augmented Longformer for
subtask C. These systems achieved accuracies
of 0.63 and 0.77 for the mono- and multilin-
gual tracks of subtask A, 0.64 for subtask B
and a MAE of 26.07 for subtask C. Although
lower than the task organizer’s baselines, we
demonstrate that linguistic-stylistic features are
predictors for whether a text was authored by a
model (and if so, which one).

1 Introduction

The SemEval-2024 Task 8 is aimed at the detec-
tion of machine-generated texts across different
domains, languages, and generators. The challenge
of distinguishing machine-generated from human
written texts has become increasingly relevant with
the rapid improvement and coinciding widespread
usage of Large Language Models (LLMs) such as
ChatGPT. Detection of machine-generated text can
be important to uncover the purposeful spreading
of misinformation on social media, or fraudulent
articles and papers in the context of journalism and
academics (Tang et al., 2023). To this end, the
task organizers collect human data from Wikipedia,
Reddit, Wikihow, PeerRead, and ArXiv abstracts
in English, Chinese, Urdu, Russian, Indonesian,
Arabic, and Bulgarian (Wang et al., 2023b). Conse-
quently, Wang et al. (2023b) prompted 5 different
generative LLMs to write the corresponding posts
or abstracts based on the titles. The shared task con-
sists of 3 subtasks. Subtask A is the task of classi-
fying between human and machine-generated texts,
subtask B pertains pointing out which LLM (or
human) generated the text specifically, and lastly,
subtask C is about determining the boundary where

a text switches from human written to machine-
generated.

The focus for our submission to the shared task
is to investigate and compare the linguistic-stylistic
characteristics of various LLMs, given that pre-
vious literature has shown that text produced by
generative LLMs contain linguistic-stylistic anoma-
lies (Tang et al., 2023). Additionally, we explore
ways to combine features with the power of a pre-
trained language model (PLM). Although a sys-
tem inspired by linguistic-stylistic features may not
achieve the greatest scores, it may perform well
across domains and is highly interpretable. Addi-
tionally, the performance with linguistic-stylistic
features may differ per LLM and per domain, for
which they possibly yield interesting insights and
contribute to scientific knowledge regarding what
LLM-generated anomalies consist of.

Ultimately, our system yields passable results,
coming in at 110 and 41 for subtask A mono- and
multilingual respectively, and ranking at 46 for
subtask B and 20 for subtask C. Contrary to expec-
tations, the system appears to be relatively poor at
generalizing between domains, but markedly better
at dealing with multiple languages, as indicated by
the increase in accuracy as well as ranking between
the mono- and multilingual conditions in subtask
A.

2 Background

To investigate which features contribute to the de-
tection of machine-generated text, we collected 20
metrics from previous research which seem rele-
vant. These features can be broadly divided into
6 categories, which will each be presented in this
section.

2.1 Readability

Studies have shown that LLMs are capable of pro-
ducing more readable text than human profession-
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als when it comes to complex matters such as
informed consent documentation (Decker et al.,
2023). Pu and Demberg (2023) have also shown
that, when it comes to producing summaries for
layman or experts, ChatGPT tends to score very
similar in both conditions, whereas human summa-
rizers achieve lower scores for laymen, and higher
in the expert condition. For this reason, we have
selected 3 common, yet distinct readability formu-
las. The Flesch-Kincaid score for reading ease by
taking the average sentence length, and the average
number of sylables per word (Kincaid et al., 1975).
Similarly, the Coleman-Liau index takes into ac-
count the average sentence and word lengths to
compute a score (Coleman and Liau, 1975). Lastly,
the Dale-Chall Readability Score is calculated us-
ing the average sentence length and the ratio of
difficult words from a list to the total number of
words (Chall and Dale, 1996).

2.2 Entity recognition

While previous research on using LLMs for Named
Entity Recognition has shown promising results
(Wang et al., 2023a), LLMs are still not as good
as humans annotators. Therefore, we expect there
may be a difference between human and machine-
generated texts when it comes to entities. For this
reason, we incorporate the ratio of entities to total
words, as well as the ratio of unique to total number
of entities as features.

2.3 Syntax

Syntax is concerned with the way words are put to-
gether to form proper sentences, often operational-
ized through dependency parsing where sentence
constituents are labelled and linked to determine
the syntactic structure of a sentence. Pu and Dem-
berg (2023) used ChatGPT to transform texts from
formal to informal and vice versa and found a clear
difference between ChatGPT-generated and human-
written text in the dependencies for both formal and
informal sentences. Therefore, we include several
metrics using dependency parsing. Firstly, we con-
sider the average parse tree height (the length of
the longest series of dependencies from the root
constituent of a sentence). Additionally, we in-
clude the average number of noun phrases per sen-
tence. Lastly we employ a measure of syntactic
complexity, namely the Coh-Metrix SYNNP index
(Graesser et al., 2004), which measures the mean
number of modifiers per noun-phrase to compute
complexity.

2.4 Semantics

Aside from syntactic features, previous research
has also indicated differences on a semantic level.
Firstly, machine-generated texts are less coherent
than their human written counterparts (Tang et al.,
2023). To make the concept of coherence measur-
able, we adopt the notion of lexical chains (Morris
and Hirst, 1991), which refers to a series of related
words that are linked by a common thread of mean-
ing. The relevant features based on lexical chains
are the total number, the average length and the
span of lexical chains in a document. Furthermore,
research has shown that ChatGPT produces less
negative sentiment and offensive speech compared
to human-authored texts (Tang et al., 2023), so we
also include a score for controversy as a feature.

2.5 Text length statistics

As an extension of the readability metrics (see Sec-
tion 2.1), which mostly combine different statistical
features of texts to compute a score, we also take
into account individual statistics of the document.
Specifically, the average number of syllables per
word, and the average sentence length.

2.6 Lexical Richness

LLMs work by selecting high-likelihood words to
create coherent texts, making it likely for them to
write using a lower diversity of words than humans.
Previous research has shown that this is indeed
the case (Guo et al., 2023). For this reason, we
include a number of measures of lexical richness.
Firstly, the type token ratio (TTR) and secondly,
as an alternative to the TTR, which is sensitive
to a steep drop-off in longer texts, the Measure
of Lexical Diversity in Text (MLTD). To further
study the lexical diversity put forth by LLMs, we
consider the hapax richness of the document, which
is the ratio of words in the text that occur only once.
Lastly, we examine the ratio of function words to
content words.

3 System overview

The backbone of our system is combining a feature-
driven approach with the state-of-the-art in text
classification, namely PLMs. To accomplish this,
we tested three main system architectures for this
shared task. Firstly, we augment DistilBERT with
the feature set. Similarly, to achieve token-level
classification, we perform the same for Longformer,
and lastly, we use a Random Forest classifier with
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DistilBERT embeddings in conjunction with the
feature set. For comparison the features were also
used separately and in combination with unigrams
in a random forest classifier. The following sections
will go into detail on each of these individually.

3.1 Augmented DistilBERT

For subtasks A and B, we augment
distilbert-base-cased (Sanh et al.,
2020) for the monolingual tasks and
distilbert-base-multilingual-cased for
the multilingual task with an additional layer for
classification using features. The 20 features are
run through a linear layer with ReLU activation.
The output from this linear layer, which is equal
in dimensions to DistilBERT’s configured hidden
size, is concatenated to the pooled output from
DistilBERT’s final hidden state. This results in a
new tensor of 2*hidden size. This tensor is fed
into another linear layer (2*hidden size, hidden
size) with ReLU activation and dropout. The
output from this is fed into the final classifier layer
(hidden size, amount of labels).

3.2 Augmented Longformer

A challenge we ran into is the application of
sentence-based features to token-level classifica-
tion in subtask C. To address this problem, we
use an augmented version of Longformer (Beltagy
et al., 2020). The architecture of the Longformer is
similar to the augmented DistilBERT, except that
the output from the extra features is concatenated
to the output state of each of the tokens separately.
This essentially augments each token with contex-
tual knowledge of the linguistic characteristics of
the text that they occur in, enabling token-level
classification.

3.3 DistilBERT-embedded Random Forest

Next to the augmented DistilBERT for subtasks
A and B, we explore the use of a Random For-
est classifier using distilbert-base-cased em-
beddings, instead of simpler one-hot encodings
or TF-IDF embeddings, contatenated with our 20
linguistic-stylistic features. After tokenizing each
text, we extract the DistilBERT embeddings for
the first 512 sub-word tokens and average them
using a concatenation of mean, max, sum and L2
(Euclidean norm) pooling. After retrieving the em-
beddings, we concatenate them with the feature
vector composed of our 20 linguistic-stylistic fea-
tures. We then use the concatenated embeddings

with the features to fit a Random Forest classifier.
We experimented with different configurations

which differed in the use of the layer (or hidden
state) and pooling technique. We found the first
hidden state layer (i.e., the layer after the input
layer) using a concatenation of mean, max, sum
and L2 pooling to produce the most satisfactory re-
sults. Similar to the augmented DistilBERT, we
use distilbert-base-multilingual-cased in
the multilingual track of subtask A.

4 Experimental setup

Much of the experimental setup is similar to the
format dictated by shared task organizers (Wang
et al., 2024). In particular, the provided train and
dev sets were used as-is. However, some relevant
aspects for our specific system will be presented in
this section.

First and foremost, the features are extracted us-
ing a variety of external libraries, including SpaCy
and fasttext, and subsequently put into JSON for-
mat. Furthermore, in the multilingual track, we
recognize the language in question using Stanza
and fasttext (how and why these models were used
is explained in Appendix B.1), and apply language-
specific feature extraction methods accordingly.
Features that only work for English (e.g., Dale
Chall) are not included in the multilingual track.
These features were all assigned a value of -1. An
overview of the features and how they were cal-
culated can be found in Appendix B. To compare
the features, we measured importance using Mean
Decrease in Impurity (MDI), which computes the
average change in homogeneity in Random Forest
nodes for each feature. The systems will be evalu-
ated using the official metrics of the task: accuracy
for subtasks A an B and mean absolute error for
subtask C.

5 Results

5.1 Development results
The results of our systems for subtasks A and B can
be found in Table 1. For subtask A monolingual,
augmented DistilBERT works best with an accu-
racy of 0.75, slightly better than the baseline of 0.74
from the organizers (Wang et al., 2024). Curiously,
it performs worse than the default DistilBERT in
the multilingual task. Where the default system had
an accuracy of 0.71, the augmented version only
had an accuracy of 0.67. Possible explanations are
that not all features could be used multilingually
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Random Forest DistilBERT

uni. feat. uni.
+ feat.

emb.
+ feat. base augm.

Subtask A monolingual

Human 0.70 0.65 0.67 0.46 0.79
Machine 0.49 0.33 0.32 0.71 0.69

Accuracy 0.62 0.54 0.56 0.62 0.69 0.75

Subtask A multilingual

Human 0.62 0.45 0.57 0.33 0.63
Machine 0.35 0.48 0.51 0.60 0.71

Accuracy 0.52 0.47 0.54 0.50 0.71 0.67

Subtask B

Human 0.44 0.40 0.47 0.39 0.66
ChatGPT 0.74 0.57 0.73 0.59 0.77
Cohere 0.40 0.38 0.35 0.31 0.50
Davinci 0.58 0.11 0.40 0.24 0.29
Bloomz 0.93 0.89 0.89 0.83 0.95
Dolly 0.44 0.44 0.51 0.54 0.63

Accuracy 0.60 0.49 0.58 0.51 0.60 0.64

Table 1: F1-scores and accuracy for subtask A (mono-
lingual and multilingual) and subtask B on the develop-
ment sets for all our experiments: random forest with
unigrams, features, unigrams + features and embeddings
+ features, and a base and augmented distilBERT model.

or that the quality of the multilingual features is
worse than for the monolingual data, since not ev-
ery language has the same quality parsing models
available.

From the different implementations of the ran-
dom forest model, the best accuracy on the mono-
lingual task was achieved by both the unigram
model and the model using DistilBERT embed-
dings and features with an accuracy of 0.62. There
is a sizeable difference between the f1-scores of
the ’human’ and ’machine’ labels. For the models
using either unigrams, features or both, the ’human’
label has an f1-score between 0.67 and 0.70, where
the ’machine’ label only scores between 0.32 and
0.49. Interestingly, adding the DistilBERT embed-
dings resulted in reversed scores. For this model
the ’human’ label only obtained an f1-score of 0.46
and the ’machine’ label 0.71.

For the multilingual track the best random forest
model was the one using unigrams and features
which had an accuracy of 0.54. The model using
only features performed worst with an accuracy
of only 0.47. The reversal of the f1-scores of ’hu-
man’ and ’machine’ labels that occurred one the
monolingual data is also present here but only when
comparing the unigram model with the model us-
ing embeddings and features. The model using
only features and unigrams and features both have
similar scores for both labels.

Augmented DistilBERT also worked best for
subtask B with an accuracy of 0.64. Of the random
forest models, there was no model using features
that outperformed the model using only unigrams.
Of the different sources, davinci was the most diffi-
cult to predict with an f1-score of only 0.29 from
augmented DistilBERT. The fact that the provided
development set almost exclusively contains ex-
amples of Bloomz is clearly visible based on the
comparatively high f1 scores for that class ranging
between 0.83 and 0.95.

Since our features are document-based and sub-
task C is a token-level classification task, we only
have have the results from our baseline Longformer
and the augmented Longformer. The augmented
system had a mean absolute error (MAE) of 5.29
on the development set. Much better than our non-
augmented baseline system which had a MAE of
16.62, but still worse than the organiser’s baseline
of 3.53 (Wang et al., 2024).

5.1.1 Feature importance
Figure 1 shows the feature importances for sub-
tasks A and B. Similar trends can be seen for both
tasks, although there are some differences as well.
Type-token ratio (and its extension, MTLD) and the
amount and length of lexical chains are important
for all tasks. The average number of syllables per
word is very important for the monolingual track
of subtask A, but not so much for subtask B. Un-
fortunately this feature could not be used for the
multilingual track so a comparison is not possible.
For further analysis, a correlation heatmap can be
found in Appendix D.

5.2 Test results

The predictions of augmented DistilBERT were
sent in for this task for both the monolingual and
the multilingual track. For the monolingual track
this resulted in an accuracy of 0.63, placing us at
position 110 on the leaderboard. For the multi-
lingual track of subtask A, the system performed
better with an accuracy of 0.77, leading to position
41. Unfortunately both scores are lower than the
organisers’ baseline of 0.88 and 0.81 respectively.

For subtask B the same system was used as for
subtask A: augmented DistilBERT. The accuracy
on the test set was the same as on the development
set, namely 0.64. This is lower than the organisers’
baseline of 0.75 unfortunately. For this task it is
interesting to look at a confusion matrix which is
shown in Figure 2. It shows that there were a few
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Figure 1: Feature importance (mean decrease in impurity from a random forest model using only our features) for
subtasks A and B on the train set. The features are grouped by category.

generators that were problematic for the system.
Cohere was almost never classified correctly and
was mostly classified as ChatGPT. Dolly was often
misclassified as davinci. Human written text was
often classified as generated by either davinci or
dolly, but almost never as the other three generators.
For this subtask we obtained position 46 on the
leaderboard.

We also evaluated the performance of our other
main system for subtasks A and B, the random
forest with embeddings and features, on the test
set. This resulted in accuracies of 0.59 and 0.65
for subtask A (mono- and multilingual) and 0.39
for subtask B, also featured in Table 2. A possible
explanation for the lower accuracies is that only
the first 512 sub-word (BPE) tokens were taken
into account. A lot of information gets lost during
pooling and combing different strategies could not
prevent a severe loss of information.

For subtask C the augmented Longformer
achieved a MAE of 26.07, ranking us at position 20.
Unfortunately this system also did not outperform
the organiser’s baseline of 21.54.

Subtask Baseline Augm. DistilBERT Emb. RF

A mono 0.88 0.63 0.59
A multi 0.81 0.77 0.65
B 0.75 0.64 0.39

Table 2: Accuracy of the baseline, augmented Distil-
BERT and the embedded random forest on the test set
for subtasks A and B.

6 Conclusion

Unfortunately none of our systems performed bet-
ter than the baseline but our experiments did give
some insight in how features can be used. Our final
systems producing the most satisfactory results for

Figure 2: Confusion matrix from augmented Distil-
BERT for subtask B on the test set.

the test set were: the augmented DistilBERT sys-
tem for subtasks A and B, resulting in accuracies
of 0.63 and 0.77 respectively, and the augmented
Longformer for subtask C, obtaining a MAE of
26.07.

Contrary to the literature, it does not appear that
the feature-based methods are better at generaliz-
ing. During our experiments we saw that when the
unseen test data is from the same distribution (held
from the training data), the feature-based approach
performs far better in terms of accuracy (A mono:
0.88; A multi: 0.79; B: 0.71; for a full overview,
see Appendix E). This is a clear indication that
our proposed stylistic-linguistic features contain
sufficient predictive power to distinguish human-
from machine-written text. In particular, we find
Type-token ratio, MTLD, the amount and length of
lexical chains, and the average number of syllables
per word to be noteworthy features for the given
task. Future research into (different) features, es-
pecially for multilingual tasks could therefore be
fruitful.
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B Feature Extraction

In this section we describe how our features were
calculated, what language models were used and
how these models were selected. Version numbers
of the specific libraries that were used can be found
in appendix C.

B.1 Model selection
For the monolingual subtasks, we use the English
spacy_udpipe model. This model is used to obtain
POS-tags, noun chunks, syllable counts and parse
trees. en_core_news_sm, also a spacy model, is
used for named entity recognition.

For the multilingual task, the documents are
first tagged with a language label by stanza’s lan-
guage identification model. This language label
was then used to (try to) download the correct
spacy_udpipe model and when this was not avail-
able, the correct stanza model. We did not use
stanza models for all languages because they are
quite large and slow.

For the NER tagger, the script first tries
to download either language_core_web_sm or
language_core_news_sm. When neither of these
models is available, a universal model is used,
namely xx_ent_wiki_sm.

For the fasttext embeddings the language of each
document was first detected with ftlangdetect’s
detect. Because the spacy, stanza and fasttext
models together take up quite some space, the data
was processed per language. For this we chose the
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stanza-identified language. For each language as
it was identified by stanza, we chose the most oc-
curring fasttext-detected language to download the
correct fasttext model. It was not possible to use the
stanza detected language for this as the language
codes were not always identical and the languages
supported by both are not the same.

B.2 Readability features

Flesch Kincaid
Note: this feature only works for English.
Calculated using textstat’s
flesch_reading_ease(). The score is nor-
malized by dividing the score by 100 (the
maximum score) and subtracting this from 1 to
invert the scale.

Coleman Liau
Note: this feature only works for English.
Calculated using textstat’s
coleman_liau_index(). The score is nor-
malized by dividing it by 30 (the maximum
score).

Dale Chall
Note: this feature only works for English.
Calculated using textstat’s
dale_chall_readability_score(). The
score is normalized by dividing it by 20 (the
maximum score).

B.3 Entity Recognition features

Entity Ratio
The number of entities divided by the number of
words in a document.

Unique entity ratio
The number of unique entities divided by the total
number of entities in a document.

B.4 Syntactic features

Average parse tree height
Average length of the longest series of dependen-
cies from the root constituent of all sentences in
the text.

Average number of noun phrases
Average number of noun chunks in a document.

SYNNP
Average number of tokens in a noun chunk in a
document.

B.5 Semantic features
Lexical Chains
To create lexical chains only nouns were used.
A chain is created by putting words together
whose fasttext embedding have a cosine similar-
ity (sklearn’s cosine_similarity) of more than
0.5. This feature is not used on its own, but to
calculate the next three features.

Number of lexical chains
The sum of all lexical chains in a document. The
score is normalized by dividing it by the number of
words in a document.

Average lexical chain length
The average number of words in a lexical chain in
the document. The score is normalized by dividing
it by the number of words in a document.

Average lexical chain span length
The span is the number of words in the document
between the first and last word of a lexical chain.
Of this we take the average. The score is normal-
ized by dividing it by the number of words in a
document.

Controversy score
Note: this feature only works for English.
Calculated using polarity_scores() from
nltk’s SentimentIntensityAnalyzer().

B.6 Statistical features
Average number of syllables
Note: this feature only works for English.
Average number of syllables in a token.

Average sentence length
Average number of tokens per sentence (split by a
period) in a document.

B.7 Lexical richness features
TTR
Calculated using LexicalRichness().ttr from
lexicalrichness.

MTLD
Calculated using LexicalRichness().mtld()
from lexicalrichness.

Hapax Richness
Calculated by getting hapaxes() from nltk’s
FreqDist() and dividing it by the number of to-
kens in the document.
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Content word ratio
The following POS-tags were used to select con-
tent words: "NOUN", "PROPN", "VERB", "ADJ",
"ADV" and "NUM" from the universal POS tags
and "CD", "JJ", JJR", "JJS", "POS", "PRP$", "RB",
"RBR", "RBS", "WP$" and "WRB" from the Penn
Treebank POS tags. The ratio is calculated by di-
viding the number of content words by the total
number of words.

Function word ratio
Function words are all words that are not content
words. The ratio is calculated by dividing the num-
ber of function words by the total number of words.

Pronoun ratio
Pronous are selected using the universal POS-tag
"PRON" and the Penn Treebank POS-tags "PRP",
"PRP$", "WP" and "WP$". The ratio is calculated
by dividing the number of pronouns by the total
number of words.

C Dependencies

The dependencies with version numbers that were
used for both the feature extraction and the different
system implementations.

• fasttext1

• fasttext-langdetect==1.0.5

• lexicalrichness==0.5.1

• nltk==3.8.1

• numpy==1.26.3

• pandas==2.1.4

• scikit-learn==1.3.2

• spacy-udpipe==1.0.0

• spacy_syllables==3.0.2

• spacy_stanza==1.0.4

• stanza==1.6.1

• textstat==0.7.3

• datasets==2.16.1

• transformers==4.36.2

• accelerate==0.25.0

• evaluate==0.4.1
1Recent Python and C++ versions require fasttext git:

fasttext @ git+https://github.com/facebookresearch/fastText@6c2204ba66776b700095ff73e3e599a908ffd9c3

Subtask A monolingual

Human 0.89
Machine 0.87

Accuracy 0.88

Subtask A multilingual

Human 0.78
Machine 0.80

Accuracy 0.79

Subtask B

Human 0.76
ChatGPT 0.68
Cohere 0.68
Davinci 0.63
Bloomz 0.94
Dolly 0.54

Accuracy 0.71

Table 3: F1-scores and accuracy for subtask A (monolin-
gual and multilingual) and subtask B from the random
forest model using only features tested on a held out set
of 20% of the training data.

D Feature multicolinearity

Figure 3 shows the multicolinearity of the features
based on the training data set for the monolingual
track of subtask A.

E Feature-based RF results on training
data

Table 3 shows the results for subtasks A (mono-
lingual and multilingual) and B when a random
selection of 20% of the training set is held out and
used as a test set for the random forest model using
only features.
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Figure 3: Heatmap showing the multicolinearity of the features based on the training data set of subtask A
monolingual.
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