
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 1019–1025
June 20-21, 2024 ©2024 Association for Computational Linguistics

Tübingen-CL at SemEval-2024 Task 1:
Ensemble Learning for Semantic Relatedness Estimation

Leixin Zhang
University of Tübingen, Germany

leixin.zh@gmail.com
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Abstract

The paper introduces our system for SemEval-
2024 Task 1, which aims to predict the related-
ness of sentence pairs. Operating under the hy-
pothesis that semantic relatedness is a broader
concept that extends beyond mere similarity of
sentences, our approach seeks to identify use-
ful features for relatedness estimation. We em-
ploy an ensemble approach integrating various
systems, including statistical textual features
and outputs of deep learning models to predict
relatedness scores. The findings suggest that
semantic relatedness can be inferred from vari-
ous sources and ensemble models outperform
many individual systems in estimating seman-
tic relatedness.

1 Introduction

Identifying semantic relatedness is a ‘related’ task
to many well-studied tasks of semantic similarity.
According to Abdalla et al. (2023), two sentences
are considered similar if they are paraphrases or
share a relation of entailment. Semantic related-
ness, however, is a broader concept than semantic
similarity. Two expressions are considered related
if they share any semantic association. For instance,
‘teacher’ and ‘student’ are related because they fre-
quently occur within the same context or domain.
Similarly, ‘tasty’ and ‘unpalatable’ are related, as
both terms are used to describe food, albeit with
opposite meanings.

SemEval-2024 Task 1 (Ousidhoum et al., 2024b)
is designed to estimate the relatedness of sentence
pairs. The task is based on a multilingual dataset
of 14 languages and offers supervised, unsuper-
vised and cross-lingual tracks. Our team partici-
pated in two tracks, and a subset of available lan-
guages: Track A (supervised learning) for English,
and Track B (unsupervised learning) for English,
Spanish, and Hindi.

We posit that semantic relatedness can be in-
ferred from a multitude of sources and therefore

propose an ensemble approach that integrates out-
comes from diverse systems to estimate semantic
relatedness. Our study explores features from tex-
tual statistical analysis, general large language mod-
els, word embedding models, and models trained
on semantic labeled datasets, question-answering
pairs, or title-passage pairs in estimating semantic
relatedness, and we conducted ensemble experi-
ments with these features.

2 Related Work

SemEval in previous years has introduced tasks
focusing on semantic textual similarity to evalu-
ate the degree of similarity between sentence pairs
(Agirre et al., 2012; Manandhar and Yuret, 2013;
Agirre et al., 2014; Cer et al., 2017). There tasks
provided datasets with human labeled similarity
scores, which have been extensively utilized for
training sentence embedding models and conduct-
ing semantic evaluations (Wieting et al., 2015; Cer
et al., 2018; Reimers and Gurevych, 2020; Feng
et al., 2022).

2.1 Sentence Embeddings

Word embedding models such as BERT (Devlin
et al., 2019), GloVe (Pennington et al., 2014),
RoBERTa (Liu et al., 2019), and Word2Vec
(Mikolov et al., 2013) are frequently employed to
assess the semantic distance between words. Sen-
tence embeddings with a fixed length are often
generated via mean/max pooling of word embed-
dings or employing CLS embedding in BERT. The
semantic distances are commonly measured using
the cosine similarity of embeddings of two expres-
sions.

Siamese or triplet network architectures are
frequently employed in sentence embedding train-
ing. For example, models such as Sentence-BERT
(Reimers and Gurevych, 2019, 2020) utilize a
dual-encoder architecture with shared weights for
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predicting sentence relationships (e.g., semantic
contradiction, entailment, or neutral labeling) or
for similarity score prediction using regression
objectives, e.g., the difference between human
annotated similarity score (sim) of two sentences
and the cosine of two sentence embeddings (v and
u), illustrated in Equation (1).

L = | cos(v, u)− sim| (1)

In triplet neural networks, an anchor sentence (u)
can be trained along with a positive sample (a
sentence with a similar meaning) and a negative
sample (a sentence with a dissimilar meaning),
with contrastive loss. InfoNCE (Noise-Contrastive
Estimation) can be utilized as the objective
function. A larger number of negative samples can
also be integrated into neural networks through
the application of InfoNCE, as demonstrated in
Equation (2). Here, v+ denotes positive samples.
The negative sample size is denoted as K, and the
total sample size (including one positive sample)
as K + 1. This approach is adopted by the Jina
embedding model (Günther et al., 2023), which is
used in our ensemble system.

L = −E

[
log

f(v+, u)
∑K+1

i=1 f(vi, u)

]
(2)

2.2 Ensemble Learning
In previous studies, ensemble learning presents sev-
eral advantages. The ensemble approach can re-
duce the errors from individual models by amalga-
mating results from multiple sources or can make
the system more robust. In our study, using multi-
ple pre-trained models can also save a substantial
amount of computation while making use of in-
formation from the large data during pre-training.
Previous research has demonstrated that ensemble
learning can achieve remarkable success (Huang
et al., 2023; Osika et al., 2018).

In our study, we aim to integrate multiple deep
learning models to assess semantic relatedness.
When models are trained on diverse datasets with
different architectures, they may produce varied
predictions on semantic relatedness, and combin-
ing them may improve overall performance.

We use sentence embeddings mainly from the
following models. Sentence-BERT (Reimers and

Gurevych, 2019) is trained on datasets involving
SNLI (a collection of 570,000 sentence pairs) and
MultiNLI (comprising 430,000 sentence pairs).
The Jina Embedding model (Günther et al., 2023)
utilizes 385 million sentence pairs and 927,000
triplets (comprising positive and negative samples
of semantic similarity) after a filtering process. The
T5 model is trained on approximately 7 TB of text
data derived from Common Crawl, serving various
text-to-text purposes (Raffel et al., 2020; Ni et al.,
2021).

3 Methodology

In this study, we hypothesize that semantic relat-
edness covers a broader spectrum than semantic
similarity in theory. Consequently, the integration
of various systems and features should achieve su-
perior results compared to individual systems.

3.1 Supervised Learning
For the supervised track1, we first evaluated sub-
systems in an unsupervised manner and selected
those with a higher Spearman’s correlation with
human annotations for ensemble learning. The se-
lected results were then further fine-tuned using the
training data (5,500 English sentence pairs labeled
with relatedness scores provided by the shared task,
Ousidhoum et al., 2024a) to achieve closer align-
ment with human annotations.

In the following subsections, we present the fea-
tures and systems utilized for ensemble learning.
The features can be classified into three categories:
textual statistical features (Section 3.1.1), word em-
bedding models (Section 3.1.2), and sentence em-
bedding models (Section 3.1.3).

3.1.1 Textual Statistical Features
Our analysis began with surface-level textual sta-
tistical features, including word overlap and the
Levenshtein distance measurement at the charac-
ter level. These scores were then normalized into
ratios to estimate their correlation with human-
annotated relatedness. Specifically, we considered
the following features:

• Character Distance Ratio: normalization of
Levenshtein distance. Levenshtein distance
(represented as Dist in Equation (3)) or edit
distance is a string metric for measuring the

1In the supervised track, we only participated English sub-
task, in which relatively more training data was provided. For
this reason, our analysis of supervised learning is specific to
English.
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Statistic Features Spearman r

Char Distance Ratio 0.513
Word Overlap Ratio 0.593
Content Words Overlap Ratio 0.604

Table 1: Correlation between human-annotated related-
ness scores with ratios of textual statistical features.

difference or distance between two sequences
at the character level. The character ratio we
use in this study is defined as:

len(Sent1) + len(Sent2)−Dist

len(Sent1) + len(Sent2)
(3)

• Word Overlap Ratio: the count of overlapped
words over the total word count in sentence
pairs, expressed as:

Ratio =
|Words(A) ∩Words(B)|
|Words(A) ∪Words(B)| (4)

• Content Word Overlap Ratio: the overlap ratio
with content word considered only. Content
words and functional words are distinguished
by analyzing their part-of-speech (POS) using
SpaCy python package.

We found that the overlap ratio computed solely on
content words shows a better correlation with the
human judgment of relatedness (Table 1). Further-
more, we tested the correlation of the word overlap
ratio with the other two scores: Spearman’s r with
content word overlap ratio is 0.77, and Spearman’s
r with character distance ratio is 0.78. This sug-
gests that the combination of two or more results
may improve the relatedness estimation.

3.1.2 Word Embedding Models
In this subsection, we evaluate the performance
of word embedding models’ potential to estimate
semantic relatedness. Sentence embeddings are
represented as the mean of the word embeddings of
all words in the sentence. We explored static word
embeddings (GloVe and first layer BERT embed-
dings) and contextual word embeddings (the last
layer of BERT embeddings) in relatedness estima-
tion. The performance of the following variations
is presented in Table 2:

• PCA transformation of embeddings. By using
the PCA technique, we do not intend to reduce
the dimension of the sentence embeddings,

but transform sentence embeddings onto a
new coordinate system such that the principal
components capture the largest variation in
the data. In practice, the maximum dimension
that fits the dataset is adopted: min (embed-
ding_length, sample_size).

• Content word embeddings: the average of
word embeddings of content words only.

• Noun embeddings: the average of word em-
beddings for nouns only.

• Tree-Based word embeddings: the mean of
embeddings of words that are at the top three
levels of dependency trees,2 namely the root
(main predicate), direct dependents of the root,
and dependents with the dependency distance
of 2 from the root.

Our preliminary analysis offers the following
insights for further ensemble learning:

1. Excluding functional words (using content
words only) can enhance the effectiveness of
GloVe embedding.

2. Focusing on words closer to the sentence’s
‘root’ in terms of dependency distance did not
yield better results.

3. Contextualized BERT embeddings do not nec-
essarily outperform uncontextualized embed-
dings in semantic relatedness estimation.

4. PCA-transformed embeddings show im-
proved correlation with human annotation of
relatedness.3

3.1.3 Models for Sentence Representations
For supervised learning, we also incorporate sen-
tence representations from pre-trained language
models into our ensemble system. This includes
models known for their strong performance in sen-
tence similarity tasks, involving Sentence-BERT
(mpnet-base, Reimers and Gurevych, 2019) and
Jina Embedding (jina-v1, Günther et al., 2023),
as well as the general large language model, T5

2We use SpaCy to parse sentences and select the root and
dependents

3Despite the better performance of PCA-transformed em-
beddings in Spearman’s correlation when word embedding
models are tested individually, it was not beneficial in later
supervised training. Ultimately, GloVeContent word embedding
was utilized in supervised and unsupervised ensemble learning
for English.
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Model Spearman r

GloVe 0.460
GloVePCA 0.533
GloVeContent-words 0.554
GloVeTree-Based 0.249
GloVeNoun 0.430

BERTLastLayer 0.399
BERTLastLayer/PCA 0.446
BERTFirstLayer 0.570
BERTFirstLayer/PCA 0.593

Table 2: Spearman’s correlation between human-
annotated relatedness scores with the cosine similarity
of average embeddings of all words, content words, all
nouns or tree-based word selections within a sentence.
PCA-transformed average embeddings of all words in a
sentence are also presented.

encoder (Raffel and Chen, 2023; Ni et al., 2021).
Among all models tested in this study for English
(refer to Table 3), T5 demonstrates the highest per-
formance, achieving a Spearman’s correlation of
approximately 0.82 with human annotation.

3.1.4 Ensemble Learning

We explored two approaches for ensemble learn-
ing. The first approach operated directly on sen-
tence representations from multiple models. This
included concatenating sentence embeddings from
various models and applying transformation (e.g.,
PCA transformation) in the embedding space to
achieve a better correlation with human judgment.
Our analysis indicates that while concatenation
and transformation operations can slightly improve
Spearman’s correlation, they are not as effective as
incorporating more statistical features into super-
vised fine-tuning.

In the final system, we directly used the cosine
similarity values from sentence embedding and
word average embeddings as features (from mod-
els mpnet-base, jina embedding, T5-base and
mean of content word embeddings from GloVe),
along with textual statistic features (content word
overlap ratio and character distance ratio) to esti-
mate the relatedness of sentence pairs. These fea-
tures are fed into Support Vector Machine (SVM)
regression models (with RBF kernel) to predict
human annotated relatedness.

3.2 Unsupervised Ensemble

In the unsupervised track, without utilizing labeled
datasets for sentence similarity or relatedness and
without employing models pre-trained on labeled
datasets, we aim to evaluate whether models trained
on other types of datasets intended for different
purposes could generate representations suitable
for estimating semantic relatedness.

In addition, we investigated whether integrating
additional features, such as the cosine distance of
average word embeddings and word overlap ratios,
could enhance performance. We calculated the
arithmetic mean of the cosine distances and ratios
from textual statistics as the relatedness prediction
of sentence pairs. Various feature combinations are
tested with the provided validation dataset.

For the unsupervised task of English, we
utilized two models to generate sentence repre-
sentations: a model designed for semantic search
(multi-qa-MiniLM-L6-cos-v1, Reimers and
Gurevych, 2019), trained on 215 million question-
answer pairs; and e5 (e5-base-unsupervised,
Wang et al., 2022),4 trained on question-answer
pairs, post-comment pairs, and title-passage pairs.
These models were further refined with an unsu-
pervised transformation (PCA). Additionally, we
incorporated two other features: PCA-transformed
GloVe embeddings (average of content word
embeddings within a sentence) and content word
overlap ratios into the unsupervised ensemble
system.

For the unsupervised tasks in Spanish and Hindi,
we used a similar method for predicting related-
ness, combining features involving the cosine dis-
tance of multi-qa-MiniLM model representations,
word embedding model and word overlap ratios.
For word embeddings, we employed multilingual
BERT (bert-base-multilingual-uncased), uti-
lizing both the first-layer (uncontextualized) and
last-layer (contextualized) embeddings for related-
ness estimation.

4 Results and Analysis

The shared task evaluates the participating systems
based on Spearman’s correlation (r) between the
human-annotated scores, which ranges from 0 to
1. In Table 3, we compare the correlation scores
for our systems and other popular models on the
official test set.

4The e5 monolingual model is exclusively used for English,
not for the other two languages: Spanish and Hindi
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Models English Spanish Hindi

Lexical Overlap 0.741 0.661 0.587
mBERT_Ave 0.640 0.655 0.566
mpnet-base5 0.809 0.590 0.746
T5 (base) 0.825 - -
LaBSE6 0.818 0.651 0.709
multi-qa-Mini 0.793 0.638 0.466
EnsembleSup 0.850 - -
EnsembleUnsup 0.837 0.705 0.649

Table 3: Spearman correlation between human-
annotated relatedness scores and system predicted
scores on the test dataset.

Results presented in Table 3 suggest that the
ensemble approach generally outperforms single
models. Specifically, the ensemble system trained
with true labels, for the supervised English task,
achieved the best result among all listed systems,
with an improvement in Spearman’s correlation of
0.025 compared to the T5 base model.

The ensemble approach for English and Spanish
unsupervised tasks also achieved relatively high
scores, despite the absence of similarity or related-
ness scores in learning. It suggests that seman-
tic relatedness can be estimated without neces-
sarily relying on human-annotated scores of se-
mantic similarity or semantic relatedness. Other
sources like question-answering pairs or statistical
features of texts also play a role in relatedness esti-
mation. Thus, the ensemble of statistical text fea-
tures, word embedding models, and models trained
on question-answer pairs can achieve good results.

Although the results for Hindi did not match
the superior outcomes of other supervised mod-
els, such as mpnet-base and LaBSE, which were
trained with semantic labels or similarity scores,
the ensemble system’s performance still surpasses
that of the multilingual BERT embedding model
and the multi-qa model, both of which were uti-
lized for ensemble learning as base models.

4.1 Biased Performance

We also observe that the unsupervised results for
Hindi are not comparable with those from Span-
ish and English though with the same ensemble

5Table 3 shows all-mpnet-base-v2 result for En-
glish and paraphrase-multilingual-mpnet-base-v2
model results for Spanish and Hindi, model details:
https://www.sbert.net/docs/pretrained_models.html

6Feng et al., 2022

approach. This discrepancy stems from the subop-
timal performance of the sub-models used in the
unsupervised ensemble. For example, the multi-qa-
MiniLM model utilized for Hindi only achieves a
correlation of 0.466, and the multilingual BERT for
Hindi is also less effective compared to the other
two languages.

Apart from Hindi, we also applied the same en-
semble method to other non-Indo-European lan-
guages in the unsupervised track, yet the results
scarcely surpassed 0.60 for the validation dataset,
so results of other languages were ultimately not
submitted.

The results indicate that some multilingual mod-
els are biased towards English and Indo-European
languages, and perform less effectively for other
languages. This bias may be attributed to imbal-
anced data during the models’ pre-training phase.

5 Conclusion

Our system employs an ensemble approach to esti-
mate semantic relatedness, integrating results from
multiple systems: textual statistical features, word
embedding models, and sentence representation
models. Our findings suggest that semantic relat-
edness can be deduced from a variety of sources.
Although some features (e.g., lexical overlap ratio)
may not perform as strongly as models specifically
designed to obtain sentence representations, the
results demonstrate that these features, when used
in a combined manner, can outperform many indi-
vidual systems and collaboratively achieve a better
correlation with human judgment on semantic re-
latedness.

6 Limitation and Future Work

Constrained by the size of the training data and the
availability of pre-trained language models, it is
regrettable that we did not offer insights into other
Asian and African languages. In future research,
studies on low-resource languages will be valuable,
including tasks such as data collection, annotation,
and pre-training models tailored to these languages.
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