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Abstract

Text-generative models evolve rapidly nowa-
days. Although, they are very useful tools for
a lot of people, they have also raised concerns
for different reasons. This paper presents our
work for SemEval2024 Task-8 on 2 out of the 3
subtasks. This shared task aims at finding auto-
matic models for making AI vs. human written
text classification easier. Our team, after try-
ing different preprocessing, several Machine
Learning algorithms, and some LLMs, ended
up with mBERT, XLM-RoBERTa, and BERT
for the tasks we submitted. We present both
positive and negative methods, so that future
researchers are informed about what works and
what doesn’t.

1 Introduction

LLMs are becoming more and more part of our
everyday lives due to their easy accessibility and
their remarkably fluent responses in different fields
like news, healthcare and education. This exten-
sive usage can lead to unintended consequences.
Specifically, LLMs could replace humans, provide
sometimes false, incomplete or even misleading
information, risk the critical thinking of students
and progressively of the whole society. So, it is of
high importance to find a way to identify if a text
was written by a human or by a machine. Since all
these complex models are trained on large datasets
and have achieved generating texts that are so hu-
man like, it is difficult for a person to identify who
generated a text. Here comes the importance of
the automatic models, capable of differentiating be-
tween human written texts and machine generated
texts, by exploiting patterns invisible to a human.

In this paper we describe the DUTh participa-
tion in SemEval 2024 Task 8: Multigenerator, Mul-
tidomain, and Multilingual Black-Box Machine-
Generated Text Detection. The task features three
directions: Binary Human-Written vs. Machine-
Generated Text Classification, Multi-Way Machine-

Generated Text Classification and Human-Machine
Mixed Text Detection. The first two refer to the
scenario where a system must classify input texts
which are fully written by a human or a machine.
One detail regarding the second scenario is that
we are also provided with the specific language
model which generated the input text. In the third
scenario we are presented with a text which is half
human and half machine written and we have to
determine the boundary, where the change occurs.
In all subtasks the text data are coming from dif-
ferent sources and different generators, and we are
not allowed to use any external data except for the
ones given from the organizers.

The sub-tasks can be briefly described as follows:
SubtaskA monolingual: given only English texts,
we need to determine whether a text is human-
written or machine-generated.

SubtaskA multilingual: given texts from 8 differ-
ent languages (English, Arabic, Chinese, Indone-
sian, Urdu, German, Bulgarian, Russian), we need
to determine whether a text is human-written or
machine-generated.

SubtaskB: given only English texts, we need
to determine whether a text is human-written or
machine-generated and which is the specific gener-
ator.

SubtaskC: given only English mixed texts, where
the first part is human-written and the second part
is machine-generated, we need to determine the
boundary.

Our team participates by submitting on Sub-
taskA (both monolingual and multilingual) and
SubtaskB. During the competition we examine sev-
eral methods, especially on SubtaskA monolingual,
like different preprocessing techniques on the text
data, several Machine Learning Algorithms, some
ensembling methods and LLMs. We ended up sub-
mitting LLMs to all subtasks.

The models we choose are mBERT for subtaskA
monolingual, XLM-RoBERTa for subtaskA multi-
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lingual and BERT for subtaskB, as they achieve bet-
ter performance on average. All these pre-trained
models have been proven to be powerful for differ-
ent NLP tasks.

Our proposed system for every subtask is a clas-
sifier based on a fine-tuned Large Language Model.
During the training process, our model is provided
with a text as input and a label regarding whether
this input is human or machine generated. Addi-
tionally, this paper provides a comparative study
of different LLMs fine tuned in this task. In this
context, we also provide results regarding the use
of classic machine learning algorithms trained to
tackle this task.

2 Background

2.1 Dataset
All datasets given from organizers are on jsonl for-
mat. For both subtaskA and subtaskB the English
human-written texts are coming from the following
five sources, “wikihow“, “wikipedia“, “peerread“,
“reddit“ and “arxiv“. The generators for machine-
generated texts are “chatGPT“, “cohere“, “davinci“,
“bloomz“ and “dolly“.

For multilingual data, the sources and genera-
tors are the same. The languages it consists of are
English, Arabic, Bulgarian, Chinese, Indonesian,
Urdu, German and Russian.

More information about the datasets and tasks
can be found from the organizers.(Wang et al.,
2024a) (Wang et al., 2024b) (Wang et al., 2024c)

2.2 Evaluation Metrics
The evaluation metrics for this task are accuracy,
micro-f1 and macro-f1. Though, the organizers
ranked both on validation and test set the partici-
pants basically based on the accuracy scores.

3 System Overview

Transformers have achieved state-of-the-art(Wolf
et al., 2020) performances on several natural lan-
guage processing tasks such as text classification.
This is why all final models submitted are LLMs.
Here we present the submitted model on each sub-
task.

We have all the hyperparameters for tuning the
models submitted in the appendix section 6.

3.1 Tokenization applied
In all three models we use the tokenizer they al-
ready have. We define a max length of 512 tokens,

which means that each encoder will take the first
512 tokens of the text as an input. We use trunca-
tion and padding, so that if a text has more than
512 tokens it gets cut off on the 512th token and
if it has less than 512 tokens it gets padded un-
til it reaches 512. We want all texts to have the
same length. All the encoders of the transformers
can give a representation of their input tokens, in
a high dimensional space (512D here), based on
the meaning of each token. For example, the same
word can have different representation if its mean-
ing changes. There is no other preprocessing made
on the texts except for the tokenization applied by
each model.

3.2 SubtaskA models

For the monolingual part of this subtask, we
select multilingualBERT (bert-base-multilingual-
cased)(Devlin et al., 2018). After comparing lots
of classifiers, the two most performing are BERT
and multilingualBERT. Previous research finds that
there is no apparent benefit in training dedicated
monolingual models for single language tasks, and
actually by using a multilingual model instead
may yield slightly improved performance de Var-
gas Feijó and Moreira (2007). Our case is no dif-
ferent. We can see that multilingualBERT slightly
outperforms BERT on Table 8. MultilingualBERT
is a pretrained model on 104 languages and has
179M parameters. For the multilingual part, we se-
lect XLM-RoBERTa (xlm-roberta-base)(Conneau
et al., 2019) as it demonstrates the best performance
between all models we examine. We do not apply
any preprocessing on the input text, so XLM-R gets
used as a cased model. XLM-R is pre-trained on
2.5TB of filtered CommonCrawl data containing
100 languages and has 279M parameters.

3.3 SubtaskB model

Between ML algorithms and LLMs we select
BERT (bert-base-cased) for this task as we have
seen that transformers, most of the times, have bet-
ter results. It is pre-trained on a large corpus of
English data and it has 109M parameters.

4 Experimental Setup

4.1 Preprocessing

We apply some preprocessing only on English data,
when we use Machine Learning classifiers. There
is no preprocessing on English data when we use
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LLMs (either for embeddings or classification) or
in the multilingual subtask.

The preprocessing is done with the following
order. At first, we lowercase the text data and then
we can either replace unicodes or remove them, but
since we see that the latter has better results, we
remove them. After that, we replace the emails
with the word <email> and the URLs with the
word <url>. We, also, remove the digits and all
punctuations. Considering both tokenization and
lemmatization, we see that tokenization performs
better. Moreover, we achieve better results by the
removal of stop words. Finally, we create some
new features from the text data. These features
are the number of times some phrases, words or
combinations of punctuations (“cannot“, “do not“,
“.,“ and more) appear in each text, the number of
characters on the original texts and the number of
words after tokenization.

4.2 Embeddings

For SubtaskA monolingual, we try to get the em-
beddings using Word2Vec(Mikolov et al., 2013),
Tf-Idf(Ramos et al., 2003) and BERT encoder. On
Word2Vec we try the following vector sizes 20, 40,
60, 80, 100, 150, 200 and 300. On Tf-Idf we try
the following X more frequent words 500 and 1000
with Ngrams of (3,5). Finally, on BERT encoder
we get embeddings from the last of the 12 layers.

After comparing all the above, we see that the
best results are coming from Word2Vec with vector
size 20.

On SubtaskA multilingual, we get embeddings
with the multilingualBERT encoder from its last
layer.

We use Word2Vec with vector size 20 as on
SubtaskA monolingual, to get embeddings on Sub-
taskB text data too, in order to see the performance
of some ML algorithms on this task.

4.3 Machine Learning Algorithms VS LLMs

The metric we use is accuracy. We have seen that
micro-f1 and macro-f1 values fluctuate according
to the accuracy value. We, also, standardize the
embeddings before we feed them into the ML algo-
rithms. The accuracy values are calculated based
on the preprocessing mentioned above except for
the part of stop words. When stop words are re-
moved it is specified on the table. Also, when we
do not standardize the input data we mention it on
the table.

In this section, all models are trained and eval-
uated using the training set and validation set the
organizers give us. All values are calculated on the
validation set. ML algorithms without * or addi-
tional information presented on the tables, have the
default parameters of scikit-learn and XGBClassi-
fier libraries (versions 1.3.0 and 1.7.3 respectively).

4.3.1 SubtaskA monolingual
We start to get embeddings using Word2Vec dif-
ferent vector sizes and compare them based on
Logistic Regression. The results are on the Table
1.

We can see that Word2Vec embeddings with
vector size 20 is the best based on LR. Now, we
take the best embeddings, with vector size 20, and
try different ML algorithms to see what results we
can take on the validation set. The results are on
the Table 2.

We can see that the best result here is default Ad-
aBoost (Freund and Schapire, 1997) with optimized
RandomForest (Breiman, 2001) and removed stop
words. We have also tried optimizations to other
algorithms and some voting ensembling methods
with some of the best results from above, but ev-
erything was worse than the best one.

Now, we try different methods on getting embed-
dings to see if anything can beat Word2Vec with
vector size 20 based on Logistic Regression and
Random Forest. The results are on Table 3.

Now, we compare the best result from the ML
algorithms with miniLM and BERT. Both miniLM
and BERT are trained for 5 epochs on the training
set and evaluated on the validation set. We evaluate
them on every 100 batches, and we take the mean
of all evaluations. The results are on the Table 4.

4.3.2 SubtaskA multilingual
We take embeddings using the last layer of multi-
lingualBERT encoder and try some ML algorithms.
The results are on the Table 5.

We can see from the algorithms compared that
the best here is XG Boost(Chen and Guestrin, 2016)
with no standardization applied.

Now, we compare the best ML algorithm with
multilingualBERT and XLMRoBERTa as classi-
fiers. The results are on Table 6 and again for the
LLMs’ values, because we evaluate them on every
epoch from the 5, we take the mean of them.

We can see here that XLM-RoBERTa is slightly
better from default XgBoost. So, this is the best
model for this task.
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vector size
Algorithm 20 40 60 80 150 200 300
Logistic Regression 0.559 0.553 0.5164 0.5046 0.4848 0.4854 0.4902

Table 1: Logistic Regression accuracy per vector size (Word2Vec).

Model Acccuracy
Logistic Regression 0.559
XG Boost 0.7362
Decision Tree (Breiman, 2017) 0.6946
SGDC * 0.5532
Random Forest 0.7538
Random Forest optimized 0.7552
AdaBoost optimized 0.756
AdaBoost ** 0.7584
Bagging optimized (Breiman, 1996) 0.7538

Table 2: Machine Learning algorithms accuracy on
monolingual validation set. *modified huber loss. **
Adaboost with optimized random Forest with removed
stop words.

4.3.3 SubtaskB
On this subtask we take embeddings using the last
layer of BERT and try some ML algorithms. The
results of how ML algorithms perform on this mul-
ticlass task are presented on Table 7.

5 Modification on datasets

5.1 Rationale

We make some comparisons between datasets, and
we decide to create new training and validation
sets for subtaskA and subtaskB. We notice that
subtaskA multilingual training set contains all the
English data of the rest datasets and some extra,
which means that it has the most English data. So,
we decide to create a new monolingual dataset with
all English data. We, also, notice that in the mul-
tilingual training set there are only the English,
Chinese, Indonesian, Urdu and Bulgarian data and
on multilingual validation set there are the three
other languages. Thus, we create a new dataset
with all multilingual data containing all languages.
Now, from these two new datasets we create the
new training and validation sets of subtaskA and
subtaskB.

5.1.1 SubtaskA monolingual
Using the dataset with all the English data, we
keep 131589 for training and 5000 for validation,
where the 2500 texts are human-written, and the

2500 texts are machine-generated. With these new
datasets we train and evaluate BERT. Because we
want to train multilingualBERT, also, to see its per-
formance on English data, we take the multilingual
training set given from organizers and exclude the
same as before 5000 English data for validation. By
this way, this training set has the same remaining
131589 English data for training and the same 5000
English data for evaluation, with the difference now
that this training set has 4 more languages (Chinese,
Indonesian, Urdu, Bulgarian) and not only English
data.

Both models are trained for 5 epochs and they
are evaluated on all 5 epochs. The results are on
Table 8 and both values are the mean of all their 5
evaluations.

5.1.2 SubtaskA multilingual
Using the dataset with all multilingual data, we
create a new training set and a new validation set
that contain texts from all languages. Specifically,
the training set contains 133589 English, 10000
Chinese, 5000 Indonesian, 5000 Urdu, 10000 Bul-
garian, 900 Arabic, 1800 Russian and 900 German
data. The validation set contains 3000 English,
1934 Chinese, 995 Indonesian, 899 Urdu, 2000
Bulgarian, 100 Arabic, 200 Russian and 100 Ger-
man with 50 percent human-written texts and 50
percent machine-generated texts. There is no spe-
cific technique behind the chosen percentages of
each language.

We train the XLM-RoBERTa on this new train-
ing set for 5 epochs and make evaluations on each
one of the 5 epochs. The result is 95.5 percent and
it is the mean of all 5 evaluations.

5.1.3 SubtaskB
Using the dataset with all English data, the training
and validation set for SubtaskB given from orga-
nizers, we concatenate the training and validation
sets to compare them with the dataset of all En-
glish data. We can see that there are 62562 English
data that are not used on this subtask. In these
62562 data there are different percentages of each
class from the 6 (human, chatGPT, cohere, davinci,
bloomz and dolly). We keep the same sample of
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Algorithm W2V with 20 VS Tf-Idf 500 * Tf-Idf 1000 * Bert last layer
Logistic Regression 0.559 0.6288 0.6348 0.6618
Random Forest 0.7552 0.6226 0.7132 0.654

Table 3: Logistic Regression and Random Forest accuracy per different embedding methods. *With Ngram

Model Accuracy
AdaBoost * 0.7584
MiniLM 0.7695
BERT 0.783

Table 4: Comparison of best machine learning algo-
rithm with evaluated LLMs on monolingual task. *Ad-
aboost with optimized Random Forest with removed
stop words.

1844 texts from each class. The value is 1844, be-
cause in the 62562 texts, one of the classes has only
this amount.

So, we create a new training set where we just
add on the training set given from organizers these
1844 samples from each class. The validation set is
the same. On this new training set we train BERT
for 5 epochs, as we have seen on the other tasks that
LLMs more often than not beat Machine Learning
Algorithms. We evaluate BERT on every 10000
batches using the validation set organizers give us.
The result is 96.81 percent and it is the mean of all
evaluations.

5.2 Final Models
Finally, we combine on every subtask the new train-
ing set and validation set we created. We train the
best models for 5 epochs on these datasets.

We can say that LLMs, most of the times, per-
form better on these tasks than Machine Learning
algorithms. Nevertheless, there are some ML al-
gorithms, combined with the right preprocessing
and embeddings’ method, that can give good re-
sults close to those LLMs give. As we can see,
default AdaBoost with optimized Random Forest
and with removed stop words achieves a quite good
performance on subtaskA monolingual. The pre-
processing made and the features we created on
subtaskA monolingual seem to improve the perfor-
mance of algorithms. Also, Default XgBoost with
no standardization achieves a close enough to the
best model performance on subtaskA multilingual.
We believe that LLMs perform better because they
are pre-trained models on a large corpus of English
or multilingual data. Thus, they can better under-
stand the meaning of a word and a whole text, and

maybe this makes it easier for them to differentiate
human-written from machine-generated texts.

Finally, the models submitted on the competition
scored 73.243 on subtaskA monolingual, 76.45
on subtaskA multilingual and 56.683 on subtaskB.
This means about 20 percent below for subtaskA
and 30 percent below for subtaskB from the scores
we had on the new validation sets we created from
the dataset organizers give us. We think that this
drop is due to the fact that the texts on the test sets
are coming from different domain, generator and
language. Basically, on subtaskA monolingual all
texts are coming from a new domain “outfox“ and
there is also a new generator “gpt-4“. On subtaskA
multilingual, again the texts are coming from the
same new domain and the languages it consists of
are German, Arabic and Italian. The two first were
also on the training but in a small amount and the
3rd one was not in the training set. On subtaskB,
the only difference is the domain, which is the same
as on every subtask, “outfox“.

6 Conclusion

Based on the results we have on our new validation
set and the results on the test set, we assume that
this drop occurs since our model cannot generalize
well. We believe that if the test sets had texts com-
ing from the same domains and generators as the
training texts, and had the same languages, then
our models would have achieved better results.

Future work could focus on either training larger
language models or trying to improve generaliza-
tion of ours, possibly with some preprocessing like
data augmentation. We look forward to further
research on these tasks, hoping for better results.
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A Appendix

Model Accuracy
Logistic Regression* 0.606
XGBoost* 0.663
Random Forest* 0.598
AdaBoost** 0.500
XGBoost 0.654

Table 5: Comparison of Machine Learning algorithms
accuracy on multilingual task. * Without standardiza-
tion. ** AdaBoost with XGBoost and without standard-
ization.

Model Accuracy
XGBoost* 0.663
Multilingual BERT 0.577
XLM-RoBERTa 0.668

Table 6: Comparison of best machine learning with
evaluated LLMs on the multilingual. * Without stan-
dardization

Model Accuracy
Logistic Regression 0.4636
XGBoost 0.4720
Gradient Boosting 0.4523

Table 7: Comparison of Logistic Regression, XGBoost
and Gradient Boosting (Friedman, 2001) on sub-task B.

Model Accuracy
BERT 0.9430
MultilingualBERT 0.9540

Table 8: Comparison of BERT and MultilingualBERT
on the monolingual new validation set
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Hyperparameter Range/Value
Epochs 5
Batch size 16
Weight decay 0.02
Learning rate 2e-5

Table 9: Hyperparameter values for the multilingual
BERT and XLM-RoBERTa.

Hyperparameter Range/Value
Epochs 5
Batch size 16
Weight decay 0.03
Learning rate 2e-5

Table 10: Hyperparameter values for BERT.
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