IUSTNLPLAB at SemEval-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes

Mohammad Osoolian, Erfan Moosavi Monazzah, Sauleh Eetemadi


Abstract
This paper outlines our approach to SemEval-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes, specifically addressing subtask 1. The study focuses on model fine-tuning using language models, including BERT, GPT-2, and RoBERTa, with the experiment results demonstrating optimal performance with GPT-2. Our system submission achieved a competitive ranking of 17th out of 33 teams in subtask 1, showcasing the effectiveness of the employed methodology in the context of persuasive technique identification within meme texts.
Anthology ID:
2024.semeval-1.158
Volume:
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Month:
June
Year:
2024
Address:
Mexico City, Mexico
Editors:
Atul Kr. Ojha, A. Seza Doğruöz, Harish Tayyar Madabushi, Giovanni Da San Martino, Sara Rosenthal, Aiala Rosá
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
1092–1096
Language:
URL:
https://aclanthology.org/2024.semeval-1.158
DOI:
10.18653/v1/2024.semeval-1.158
Bibkey:
Cite (ACL):
Mohammad Osoolian, Erfan Moosavi Monazzah, and Sauleh Eetemadi. 2024. IUSTNLPLAB at SemEval-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes. In Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 1092–1096, Mexico City, Mexico. Association for Computational Linguistics.
Cite (Informal):
IUSTNLPLAB at SemEval-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes (Osoolian et al., SemEval 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.semeval-1.158.pdf
Supplementary material:
 2024.semeval-1.158.SupplementaryMaterial.txt
Supplementary material:
 2024.semeval-1.158.SupplementaryMaterial.zip
Supplementary material:
 2024.semeval-1.158.SupplementaryMaterial.zip