@inproceedings{osoolian-etal-2024-iustnlplab,
title = "{IUSTNLPLAB} at {S}em{E}val-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes",
author = "Osoolian, Mohammad and
Moosavi Monazzah, Erfan and
Eetemadi, Sauleh",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Tayyar Madabushi, Harish and
Da San Martino, Giovanni and
Rosenthal, Sara and
Ros{\'a}, Aiala},
booktitle = "Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.semeval-1.158",
doi = "10.18653/v1/2024.semeval-1.158",
pages = "1092--1096",
abstract = "This paper outlines our approach to SemEval-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes, specifically addressing subtask 1. The study focuses on model fine-tuning using language models, including BERT, GPT-2, and RoBERTa, with the experiment results demonstrating optimal performance with GPT-2. Our system submission achieved a competitive ranking of 17th out of 33 teams in subtask 1, showcasing the effectiveness of the employed methodology in the context of persuasive technique identification within meme texts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="osoolian-etal-2024-iustnlplab">
<titleInfo>
<title>IUSTNLPLAB at SemEval-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="family">Osoolian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erfan</namePart>
<namePart type="family">Moosavi Monazzah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sauleh</namePart>
<namePart type="family">Eetemadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper outlines our approach to SemEval-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes, specifically addressing subtask 1. The study focuses on model fine-tuning using language models, including BERT, GPT-2, and RoBERTa, with the experiment results demonstrating optimal performance with GPT-2. Our system submission achieved a competitive ranking of 17th out of 33 teams in subtask 1, showcasing the effectiveness of the employed methodology in the context of persuasive technique identification within meme texts.</abstract>
<identifier type="citekey">osoolian-etal-2024-iustnlplab</identifier>
<identifier type="doi">10.18653/v1/2024.semeval-1.158</identifier>
<location>
<url>https://aclanthology.org/2024.semeval-1.158</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>1092</start>
<end>1096</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IUSTNLPLAB at SemEval-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes
%A Osoolian, Mohammad
%A Moosavi Monazzah, Erfan
%A Eetemadi, Sauleh
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Tayyar Madabushi, Harish
%Y Da San Martino, Giovanni
%Y Rosenthal, Sara
%Y Rosá, Aiala
%S Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F osoolian-etal-2024-iustnlplab
%X This paper outlines our approach to SemEval-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes, specifically addressing subtask 1. The study focuses on model fine-tuning using language models, including BERT, GPT-2, and RoBERTa, with the experiment results demonstrating optimal performance with GPT-2. Our system submission achieved a competitive ranking of 17th out of 33 teams in subtask 1, showcasing the effectiveness of the employed methodology in the context of persuasive technique identification within meme texts.
%R 10.18653/v1/2024.semeval-1.158
%U https://aclanthology.org/2024.semeval-1.158
%U https://doi.org/10.18653/v1/2024.semeval-1.158
%P 1092-1096
Markdown (Informal)
[IUSTNLPLAB at SemEval-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes](https://aclanthology.org/2024.semeval-1.158) (Osoolian et al., SemEval 2024)
ACL