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Abstract

This paper describes the participation of the
Genaios team in the monolingual track of Sub-
task A at SemEval-2024 Task 8. Our best sys-
tem, LLMIXTIC, is a Transformer Encoder
that mixes token-level probabilistic features
extracted from four LLaMA-2 models. We ob-
tained the best results in the official ranking
(96.88% accuracy), showing a false positive
ratio of 4.38% and a false negative ratio of
1.97% on the test set. We further study LLMIX-
TIC through ablation, probabilistic, and atten-
tion analyses, finding that (i) performance im-
proves as more LLMs and probabilistic features
are included, (ii) LLMIXTIC puts most atten-
tion on the features of the last tokens, (iii) it
fails on samples where human text probabilities
become consistently higher than for generated
text, and (iv) LLMIXTIC’s false negatives ex-
hibit a bias towards text with newlines.

1 Introduction

The analysis of Machine-Generated Text (MGT)
has gained popularity in recent times. This is im-
portant for detecting and attributing text to Large
Language Models (LLMs) such as LLaMA (Tou-
vron et al., 2023) and GPT (Ouyang et al., 2022),
and combating fake-news, intellectual property vi-
olations (Henderson et al., 2023), data leakages
(Nasr et al., 2023), among other malicious usages
(Kasneci et al., 2023). Recent efforts include zero-
shot (Bao et al., 2024) and supervised systems
(Wang et al., 2023). However, large-scale scenar-
ios that combine domains, data sources, or mod-
els are still challenging (Sarvazyan et al., 2023b;
Eloundou et al., 2023). As a result, different frame-
works to generate high-quality MGT datasets1 (Sar-
vazyan et al., 2024) and evaluation campaigns
have been released (Shamardina et al., 2022; Sar-
vazyan et al., 2023a). In this paper, we describe

1One of these is TextMachina, freely available at https:
//github.com/Genaios/TextMachina
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Figure 1: Overview of the proposed system. Modules
marked with❄ are frozen. Those with🔥 are trainable.

our solution as the Genaios team at SemEval-2024
Task 8: Multigenerator, Multidomain, and Multilin-
gual Black-Box Machine-Generated Text Detection
(Wang et al., 2024a).

Our starting point is the observation that LLMs
assign higher probabilities to MGT than to hu-
man text. We propose LLMIXTIC, illustrated in
Figure 1, which leverages this via a Transformer
encoder (Vaswani et al., 2017) that mixes token-
level probabilistic features extracted from four
LLaMA-2 models, both instructed and base flavors:
LLaMA-2-7b, LLaMA-2-7b-chat, LLaMA-2-13b,
and LLaMA-2-13b-chat. For each token, our fea-
tures are (i) the log probability of the observed to-
ken, (ii) the log probability of the predicted token,
and (iii) the entropy of the distribution.

These probabilistic features capture MGT style
in a precise manner, favouring detection. As a
result, we obtained the best results in the offi-
cial ranking (96.88% accuracy) for the monolin-
gual track of Subtask A: Binary Human-Written
vs. Machine-Generated Text Classification. Our
analysis shows that performance improves as more
LLMs and probabilistic features are used. In ad-
dition, LLMIXTIC pays more attention to the last
tokens of the sequence, where higher probabilities
for human texts lead to misclassifications. Finally,
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Dolly 3 2.3 3 3 2.7 3
GPT4 - - - - - 3
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🤖 Bloomz 0.5 0.5 0.5 0.5 0.5 -

Table 1: Statistics of the Subtask A Monolingual dataset
by split, label, model, and domain. Sizes in thousands.

texts with newlines are predominant among false
negatives.

2 Background

The monolingual track of Subtask A: Binary
Human-Written vs. Machine-Generated Text Clas-
sification focuses on detecting whether an English
text is entirely written by a�human or generated
by an🤖LLM. The data is an extension of the M4
dataset (Wang et al., 2024b) and combines texts
from different domains and LLMs. We show the
statistics of the dataset in Table 1. The official eval-
uation metric of the Subtask A is accuracy, which
we also employ in our experiments.

3 System Overview

It is known that high-quality human text does not
follow high-probability distributions over the next
tokens (Holtzman et al., 2020). In contrast, LLMs
are decoded to sample from regions of high prob-
ability, thus assigning higher probability to low-
diversity constructions and lower to human texts. In
practice, this causes MGT to be measurably differ-
ent from human texts, e.g., showing less idiomatic
expressions, scarce and repetitive discourse mark-
ers, or strictly complying with canonical orderings
of constituents (Simón et al., 2023).

We developed our system by following these
previous findings, and considering that most of the
current LLMs share two key components which
condition the probability distributions they learn:
(i) the underlying backbone, namely Transformer
decoder, with few architectural changes and (ii)
large portions of their training data both for pre-
training and instruction tuning. Our system relies
on the hypothesis that token-level probabilistic fea-

tures extracted from an specific set of LLMs can be
used to differentiate human texts and MGT from a
potentially different set of LLMs, which has been
shown to be very effective in existing MGT detec-
tors (Przybyła et al., 2023; Wang et al., 2023).

As depicted in Figure 1, our final sys-
tem is a Transformer Encoder that mixes
token-level probabilistic features extracted
from four LLaMA-2 models (Touvron et al.,
2023), including base and instructed versions:
Llama-2-7b, Llama-2-7b-chat, Llama-2-13b,
and Llama-2-13b-chat. Following (Przybyła
et al., 2023), we build feature sequences where
each token is represented as the concatenation of
three probabilistic features extracted from each
LLM. Specifically, we employ the following
features.

Log probability of the predicted token. Mea-
sures the highest probability assigned by θ to the
next token as:

αi = max
y∈V

log pθ(y|x<i) (1)

Entropy of the distribution. Measures the un-
certainty of θ for choosing the next token:

βi = −
∑

y∈V
pθ(y|x<i) log pθ(y|x<i) (2)

Log probability of the observed token. Mea-
sures how likely is the observed token xi according
to the model θ and the prefix x<i as:

γi = log pθ(xi|x<i) (3)

Given a text x = [x1, ..., xn] and a set of LLMs
L = {θ1, ..., θm}, we represent x as a feature se-
quence h = [h1, . . . , hn] with each hi denoting the
probabilistic features from all the LLMs for the i-th
token, hi = [α1

i ;β
1
i ; γ

1
i , . . . , α

m
i ;βm

i ; γmi ]. For in-
stance, our final system uses four LLMs and three
features from each one, h ∈ Rn×12. Note that the
features are extracted per-token, which constrains
us to use LLMs with a shared tokenizer.

The feature vectors in h are projected to 128
dimensions through a feed-forward layer, and then
mixed with a Transformer encoder of 1 layer and
4 attention heads. The output of the Transformer
layer is averaged and a softmax layer is used to
compute a probability distribution over the human
and generated classes. This classifier on top of the
probabilistic features, LLMIXTIC’s only trainable
component, is comprised of solely 85k parameters,
being 0.0002% of the total.
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4 Experimentation

We focus on the monolingual track of Subtask A,
carrying out comparisons among models and ab-
lations of the best system. For these we employ
the original training and validation splits provided
by the organizers. In the post-evaluation stage, we
analyze the errors of LLMIXTIC in the test set by
inspecting the probabilistic features extracted from
LLaMa-2, the learned attention heads, and text pat-
terns in the misclassified samples.

4.1 Model Comparison
We compare LLMIXTIC with classical and neural
models, while also evaluating different LLMs to
extract the probabilistic features. All the models in
these comparisons are trained and evaluated on the
original training and validation splits provided by
the shared task organizers.

Classical baselines. We consider a Logistic Re-
gression classifier, using either TF-IDF features
with word n-grams ranging from 1 to 3-grams
(LR+TFIDF), or readability features (LR+READ). For
these, we employ scikit-learn (Pedregosa et al.,
2011) and readability,2 training the model with
balanced class weights and default parameters.

Neural baselines. We also compare LLMIX-
TIC with two fully fine-tuned Transformer en-
coders, roberta-base (Liu et al., 2019) and
e5-base (Wang et al., 2022). These models are
trained for four epochs, using the cross-entropy
loss, a batch size of 32 samples, and a learning rate
of 5e-6.

LLMIXTIC’s LLMs. We evaluate LLMIX-
TIC with probabilistic features from two
LLM families, namely GPT-2 (Radford
et al., 2019; Sanh et al., 2019) and LLaMA-2
(Touvron et al., 2023). For the GPT-2 fam-
ily,3 we include gpt2, gpt2-medium, and
distillgpt2. The LLaMA-2 family is com-
prised of LLaMA-2-7b, LLaMA-2-7b-chat,
LLaMA-2-13b, and LLaMA-2-13b-chat. These
are trained for ten epochs, with a maximum text
length of 512 tokens, a batch size of 32 samples, a
learning rate of 1e-3, and the cross-entropy loss.

All neural models are trained with Hugging-
Face’s Trainer (Wolf et al., 2020) in FP16 mode,
employing early stopping, with a patience of 3

2https://github.com/andreasvc/readability/
3Chosen for its success in previous shared tasks (Przybyła

et al., 2023) and to test for more efficient feature extractors.

Model Accuracy (%)

LR+READ 42.32
LR+TFIDF 61.26
roberta-base 80.58
e5-base 74.48
LLMIXTIC (w/ GPT-2) 67.42
LLMIXTIC (w/ LLaMA-2) 85.98

Table 2: Model comparison results on the dev set.

evaluation steps, on the validation set. The LLMs
used for feature extraction are always frozen, with
LLaMA-2 models also being quantized to 8 bits. We
implement LLMIXTIC in PyTorch (Paszke et al.,
2019), and run all the experiments using a single
NVIDIA RTX A6000.

Results are presented in Table 2. Here we ob-
serve how LLMIXTIC using LLaMA-2 features out-
performs every baseline by large margins, improv-
ing upon the best baseline’s score by 5 points in
accuracy, while having only 0.07% relative train-
ing parameters. Notably, all the neural models
outperform classical baselines, which suggests that
grammatical features, especially those based on
readability measures, are not enough to properly
discriminate between human-written and generated
text. Also, the usage of probabilistic features from
GPT-2 models does not yield good results in com-
parison to neural baselines and LLMIXTIC with
LLaMA-2 LLMs. This suggests that the scale of the
LLM used to extract features could have a large im-
pact on the results. Considering that the LLaMA-2
family is more similar than GPT-2 models to the
LLMs that generated the text of the dataset, we also
hypothesize that using feature extraction LLMs that
more closely resemble the LLMs in the dataset can
yield better results.

4.2 LLM and Feature Ablations
We study the impact the number of LLMs and
probabilistic features have on LLMIXTIC’s perfor-
mance by means of two ablation studies: at LLM
and at feature level. These experiments are per-
formed with the same experimental setup: first
training with a single LLM or feature, and continu-
ally adding the other LLMs or features.

Ablation results are presented in table 3. In LLM
ablation we observe improvements as more LLMs
are included. Notably, the inclusion of chat mod-
els provides the largest improvements of up to ten
points. Building upon our hypothesis about similar-
ities in architecture, training strategies, and datasets
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Ablation Configuration Accuracy (%)

LLMs

LLaMA-v2-7b 74.90
+ LLaMA-v2-13b 75.86
+ LLaMA-v2-7b-chat 78.48
+ LLaMA-v2-13b-chat 85.98

Features
Predicted 79.40
+ Entropy 83.26
+ Observed 85.98

Table 3: Ablation study over LLMs and features.

of instruction-tuned LLMs, it is expected that most
of them, especially the chat models we used, have
learned close distributions. Therefore, we con-
sider that this improvement can be explained by
the nature of the dataset, where all the generators
were instruction tuned. We also note that LLMIX-
TIC with only non-instructed LLMs achieves sim-
ilar results to one of the neural baselines, outper-
forming LLMIXTIC with GPT-2 by a large margin.

Similar to the LLM ablation, feature ablation re-
sults improve as more features are included, achiev-
ing an increment of more than six points when all
the features are used. We observe that LLMIX-
TIC obtains similar performance to the best neural
baseline just using the log probability of the pre-
dicted token and outperforms it after adding the
entropy of the distribution. Besides, only with one
feature, the performance is ten points higher than
LLMIXTIC with GPT-2 using all the features.

5 Results

Our official submission is LLMIXTIC with
LLaMA-2, trained on the training and validation sets,
using the previously described experimental setting.
Table 4 presents the results obtained by our system,
where it reaches an accuracy of 96.88%, surpassing
the other participants’ approaches and ranking first.
Due to time constraints, we focused our participa-
tion on the monolingual track. However, having
seen the performance of LLMIXTIC on the test
set of the monolingual track, we trained LLMIX-
TIC under the same setting for the multilingual
track in a post-deadline stage (denoted in tables
with *). Here, we obtained an accuracy of 89.97%,
which would have placed us at 14th position.

6 Analysis

We further analyze the behavior of LLMIXTIC in
the test set by examining the probabilistic fea-
tures extracted from LLaMa-2, the learned attention
heads, and patterns in misclassified samples.

Track Rank Name Accuracy (%)

Monolingual
1 Genaios 96.88
2 USTC-BUPT 96.09

20 baseline 88.46
(119 more)

Multilingual
1 USTC-BUPT 95.98

14* Genaios 89.97
25 baseline 80.88

(44 more)

Table 4: Final results on the official ranking. Bold
denotes our team’s placement.

LLMIXTIC fails when human text probabilities
become larger than for generated texts. In con-
trast, LLMIXTIC works better when the generated
text probabilities are consistently larger than those
from human texts. To illustrate this behavior, Fig-
ure 2 shows each LLM’s feature averaged both for
correct and erroneous predicted samples. Errors oc-
cur with unusually high values of α and γ features
in the human class, and unusually low values for
the generated class. The effect of feature β is also
notable, with the margin between human and gen-
erated curves being smaller in misclassifications.
Additionally, for each class, chat and base models
reveal different curves for all three features.

LLMIXTIC pays more attention to the last posi-
tions. Figure 3 shows the average of the attention
heads across all the samples to illustrate it. This
behavior could be the main cause of errors when
human text probabilities become consistently larger
than those for generated texts in the last positions,
as shown in Figure 2. A diagonal pattern with high
probability is also noticeable until approximately
position 150, after which it disappears.

Human text is more often confused with gen-
erated text than vice versa. There are twice as
many false positives as there are false negatives
(714 vs. 355). This translates into a false positive
rate of 4.38% and a false negative rate of 1.97%.

Newlines are predominant in false negatives.
We manually analyze the errors with higher con-
fidence, finding that most of LLMIXTIC’s false
negatives include \n to separate sentences or para-
graphs, while false positives do not, to the same
extent. Specifically, \n is present in 75.49% of false
negatives, whereas it is only present in 34.59% of
false positives. This difference could suggest (i)
a potential bias in the training data, with human
texts containing more \n than the generated texts,
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Figure 3: Sample-averaged and head-averaged atten-
tion scores from LLMIXTIC’s Transformer encoder.
LLMIXTIC pays more attention to the last positions.

or (ii) our system is learning a spurious correlation
between \n and the human class.

7 Conclusion

We described the participation of the Genaios
team in the monolingual track of Subtask A at

SemEval-2024 Task 8. We proposed LLMIX-
TIC, a Transformer Encoder that mixes token-
level probabilistic features extracted from four
base and instructed LLaMA-2 models, namely
LLaMA-2-7b, LLaMA-2-7b-chat, LLaMA-2-13b,
and LLaMA-2-13b-chat. Our system obtained the
best results in the official ranking, with small false
positive and false negative ratios.

Our ablation analyses showed that LLMIXTIC’s
performance improves as more LLMs and prob-
abilistic features are used. We compared these
features across correctly predicted and misclassi-
fied samples, finding that LLMIXTIC works better
when MGT probabilities are consistently higher
than for human text. In addition, attentions are
mostly focused on the last tokens, which could be
one of the causes of the errors made by LLMIXTIC.
Finally, the newline character seems predominant
in false negatives but not in false positives, which
suggests biases either in the data or in our model.

Aiming to foster R&D in this area, future works
will focus on TextMachina,1 a framework to gener-
ate MGT datasets for tasks such the ones addressed
in this SemEval shared task: detection, attribution,
boundary, and mixcase detection.

105



References
Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi

Yang, and Yue Zhang. 2024. Fast-detectGPT: Effi-
cient zero-shot detection of machine-generated text
via conditional probability curvature. In The Twelfth
International Conference on Learning Representa-
tions.

Tyna Eloundou, Sam Manning, Pamela Mishkin, and
Daniel Rock. 2023. Gpts are gpts: An early look at
the labor market impact potential of large language
models. arXiv preprint arXiv:2303.10130.

Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori
Hashimoto, Mark A Lemley, and Percy Liang. 2023.
Foundation models and fair use. arXiv preprint
arXiv:2303.15715.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann,
Maria Bannert, Daryna Dementieva, Frank Fischer,
et al. 2023. Chatgpt for good? on opportunities and
challenges of large language models for education.
Learning and Individual Differences, page 102274.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Milad Nasr, Nicholas Carlini, Jonathan Hayase,
Matthew Jagielski, A Feder Cooper, Daphne Ippolito,
Christopher A Choquette-Choo, Eric Wallace, Flo-
rian Tramèr, and Katherine Lee. 2023. Scalable ex-
traction of training data from (production) language
models. arXiv preprint arXiv:2311.17035.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Piotr Przybyła, Nicolau Duran-Silva, and Santiago
Egea-Gómez. 2023. I’ve seen things you machines
wouldn’t believe: Measuring content predictability
to identify automatically-generated text. In Pro-
ceedings of the Iberian Languages Evaluation Fo-
rum (IberLEF 2023). CEUR Workshop Proceedings,
CEUR-WS, Jaén, Spain.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In NeurIPS
EMC2 Workshop.

Areg Mikael Sarvazyan, José Ángel González, and Marc
Franco-Salvador. 2024. TextMachina: Seamless Gen-
eration of Machine-Generated Text Datasets. arXiv
preprint arXiv:2401.03946.

Areg Mikael Sarvazyan, José Ángel González, Marc
Franco-Salvador, Francisco Rangel, Berta Chulvi,
and Paolo Rosso. 2023a. Overview of autextification
at iberlef 2023: Detection and attribution of machine-
generated text in multiple domains. Sociedad Es-
pañola de Procesamiento del Languaje Natural (SE-
PLN), 71:275–288.

Areg Mikael Sarvazyan, José Ángel González, Marc
Franco-Salvador, and Paolo Rosso. 2023b. Super-
vised machine-generated text detectors: Family and
scale matters. In Information Access Evaluation
meets Multilinguality, Multimodality, and Visualiza-
tion. Springer International Publishing.

Tatiana Shamardina, Vladislav Mikhailov, Daniil Cher-
nianskii, Alena Fenogenova, Marat Saidov, Anas-
tasiya Valeeva, Tatiana Shavrina, Ivan Smurov, Elena
Tutubalina, and Ekaterina Artemova. 2022. Findings
of the the ruatd shared task 2022 on artificial text de-
tection in russian. arXiv preprint arXiv:2206.01583.

Lara Alonso Simón, José Antonio Gonzalo Gimeno,
Ana María Fernández-Pampillón Cesteros, Mari-
anela Fernández Trinidad, and María Victoria Es-
candell Vidal. 2023. Using linguistic knowledge
for automated text identification. In Proceedings
of the Iberian Languages Evaluation Forum (Iber-
LEF 2023). CEUR Workshop Proceedings, CEUR-
WS, Jaén, Spain.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

106

https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf


Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Pengyu Wang, Linyang Li, Ke Ren, Botian Jiang, Dong
Zhang, and Xipeng Qiu. 2023. SeqXGPT: Sentence-
level AI-generated text detection. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1144–1156, Singa-
pore. Association for Computational Linguistics.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Osama Mo-
hammed Afzal, Tarek Mahmoud, Giovanni Puccetti,
Thomas Arnold, Chenxi Whitehouse, Alham Fikri
Aji, Nizar Habash, Iryna Gurevych, and Preslav
Nakov. 2024a. Semeval-2024 task 8: Multidomain,
multimodel and multilingual machine-generated text
detection. In Proceedings of the 18th International
Workshop on Semantic Evaluation (SemEval-2024),
pages 2041–2063, Mexico City, Mexico. Association
for Computational Linguistics.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi White-
house, Osama Mohammed Afzal, Tarek Mahmoud,
Toru Sasaki, Thomas Arnold, Alham Fikri Aji,
Nizar Habash, Iryna Gurevych, and Preslav Nakov.
2024b. M4: Multi-generator, multi-domain, and
multi-lingual black-box machine-generated text de-
tection. In Proceedings of the 18th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, Malta.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

107

https://aclanthology.org/2023.emnlp-main.73
https://aclanthology.org/2023.emnlp-main.73
https://aclanthology.org/2024.semeval2024-1.275
https://aclanthology.org/2024.semeval2024-1.275
https://aclanthology.org/2024.semeval2024-1.275
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

