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Abstract

Our team, silp_nlp, participated in all three
tracks of SemEval2024 Task 1: Semantic Tex-
tual Relatedness (STR). We created systems
for a total of 29 subtasks across all tracks: nine
subtasks for track A, 10 subtasks for track B,
and ten subtasks for track C. To make the most
of our knowledge across all subtasks, we used
transformer-based pre-trained models, which
are known for their strong cross-lingual trans-
ferability. For track A, we trained our model
in two stages. In the first stage, we focused
on multi-lingual learning from all tracks. In
the second stage, we fine-tuned the model for
individual tracks. For track B, we used a un-
igram and bigram representation with suport
vector regression (SVR) and eXtreme Gradient
Boosting (XGBoost) regression. For track C,
we again utilized cross-lingual transferability
without the use of targeted subtask data. Our
work highlights the fact that knowledge gained
from all subtasks can be transferred to an indi-
vidual subtask if the base language model has
strong cross-lingual characteristics. Our sys-
tem ranked first in the Indonesian subtask of
Track B (C7) and in the top three for four other
subtasks.

1 Introduction

The importance of semantic relatedness in language
has been long recognized. Applications include
sentence representation, question answering, and
text summarization (Abdalla et al., 2023). Sen-
tences can be related through either paraphrasal or
entailment relations, or through broader common-
alities such as shared topics, viewpoints, temporal
origins, and logical connections.

This shared task (Ousidhoum et al., 2024b) aims
to expand the scope of significant research in natu-
ral language processing (NLP) by incorporating 14
languages. The focus of the research is on semantic
similarity and has predominantly been conducted
in English. The languages included in the task

are Afrikaans, Algerian Arabic, Amharic, English,
Hausa, Hindi, Indonesian, Kinyarwanda, Marathi,
Moroccan Arabic, Modern Standard Arabic, Pun-
jabi, Spanish, and Telugu.

The task requires predicting the degree of se-
mantic textual relatedness (STR) between pairs of
sentences in multiple languages. The task is to
rank these sentence pairs based on their level of re-
latedness, with scores ranging from 0 (completely
unrelated) to 1 (maximally related). This task is
divided into the following three tracks.

Track A: Supervised Challenge was developing
a system trained on labelled datasets provided for
the 11 subtasks. Publicly available related datasets
could be utilized, but no additional dataset could
be used in this work.

Track B: Unsupervised The challenge was de-
veloping a system without using labelled datasets
to measure semantic relatedness or similarity with
the text units longer than two words only. We took
advantage of unigram and bigram features with
SVM regression and XGBoost.

Track C: Cross-Lingual The challenge was
to develop a system without labelled datasets in
the target language and with the use of labelled
dataset(s) in at least one other language (subtask).
All datasets of track A other than the targeted sub-
task are utilized for similarity prediction in this
work.

Our system utilizes cross-lingual learning by im-
plementing multi-stage training methods similar to
those used in (Wang et al., 2022), (He et al., 2022),
and (Singh and Tiwary, 2023) for track A. In the
first stage, we selected pre-trained cross-lingual lan-
guage models that cover the languages used in our
task and fine-tuned them on a combined dataset of
all subtasks in track A for five epochs. This created
a model checkpoint that had knowledge of multi-
ple languages relevant to our task. In the second
stage, we fine-tuned the model checkpoint gener-
ated in the first stage for each track individually.
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For track C, we created a dataset by combining all
the data from track A, except for the targeted sub-
task, and fine-tuned it with the language model in a
supervised manner. We used unigram and bigram
bag-of-words representation with SVM-based re-
gression (SVR) and XGBoost for each subtask in
track B.

Our team achieved the best model for the Tel-
ugu and Marathi subtasks of track A by using the
MuRIL large model (Khanuja et al., 2021). In the
first stage, we fine-tuned the model for all three
tracks (English, Telugu, and Marathi) and then
fine-tuned the model checkpoints for Telugu and
Marathi.

For all track A languages, we fine-tuned XLM-R
for subtasks in the 1st stage, and we fine-tuned the
checkpoint generated in stage one for all mono-
lingual tracks in the 2nd stage.

For Track B, only monogram or bigram repre-
sentation is allowed for supervised training. We
obtained comparable results using both unigram
and bigram representations in combination with
SVR and XGBoost.

In Track C, we used all training data from Track
A except for the current subtask data since the use
of the same language data was not allowed in Track
C. We adopted a cross-lingual transfer approach,
where MuRIL gave the best result for the Hindi
subtask, while XLM-R predicted the best results
for the other subtasks.

The results for each subtask are presented in Ta-
ble 2, 3 and 4, along with the baseline results. In
addition to being multilingual, the key challenges
of the task were the presence of many low-resource
languages that lack proper pre-trained models for
learning and the limited availability of training ex-
amples for some subtasks of Track A (see Table 1).
To address these challenges, we utilized language
models (LMs) with cross-lingual transferability,
along with a two-stage training strategy. Our code
can be found here1.

2 Related Work

The Semantic Textual Similarity (STR) task 2015
(Agirre et al., 2015) had three subtasks. The find-
ings showed that the UMBC PairingWords system
achieved the best score by semantically differentiat-
ing distributionally similar terms (Han et al., 2015).
In the subsequent STR task (Cer et al., 2017), there

1https://github.com/singhsumit1/
Semeval-Semantic_textual-relatedness.git

are seven tasks that concentrate on multilingual
and cross-lingual pairs. Additionally, one sub-track
will delve into MT quality estimation data. The
team ECNU (Tian et al., 2017) achieved the highest
score using ensembles of well-performing feature-
engineered models with deep learning methods.
These models used random forest (RF), gradient
boosting (GB), and XGBoost (XGB) regression
methods. However, statistical and machine learn-
ing models were not the best, as transformer-based
models gained attention after (Devlin et al., 2019).
These models are pre-trained on large amounts of
data and fine-tuned for various downstream tasks.
Researchers have created the sentence transformer
(Reimers and Gurevych, 2019) architecture for find-
ing similar sentences. It is useful when given mul-
tiple sentences corresponding to a sentence, and
we need to find the most similar one. However,
fine-tuning the sentence transformer with the down-
stream task requires proper alignment between the
dataset on which the sentence transformer is pre-
trained and the dataset of the downstream task. In
this task, there are multiple subtasks associated
with multiple languages. Therefore, motivated by
the performance of cross-lingual transformer-based
models, we have used transformer-based language
models that have strong cross-lingual transferabil-
ity. It has been seen that cross-lingual transferabil-
ity has advantages in various NLP tasks (Singh and
Tiwary, 2023; Wang et al., 2022).

3 Data

This shared task provided fourteen sets of monolin-
gual data (Ousidhoum et al., 2024a). There were
nine languages for track A, each with training, val-
idation, and testing data. For tracks B and C, only
validation and testing data were provided for the
Afr, Arb, Hin, Ind, and Pan languages. The train-
ing, validation, and testing data distribution for all
languages is tabulated in Table 1. The English
language had over 5,500 training examples, while
other languages had comparatively fewer data pro-
vided.

4 Methodology

Our system has chosen robust cross-lingual transfer
models such as XLM-R (Conneau et al., 2020),
which is pre-trained on over 100 languages, and
MuRIL (Khanuja et al., 2021), which is pre-trained
on all Indic and English languages, for track A and
C. We have followed a two-stage training approach
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Figure 1: General Architecture of two-stage training.

Data afr amh arb arq ary eng esp hau hin ind kin mar pan tel
Train - 992 - 1,262 925 5,500 1,562 1,763 - - 778 1,155 - 1,146
Dev 375 95 32 92 70 250 140 212 288 144 102 293 242 130
Test 375 171 595 584 427 2,500 600 603 968 360 222 298 634 297
Total 750 1,258 627 1,938 1,422 8,250 2,299 2,578 1,256 504 1,102 1,746 876 1,573

Table 1: The datasets varied in the number of instances within their training, development, and test sets. Languages
such as afr, arb, hin, ind, and pan lacked training data and were exclusively utilized in unsupervised and cross-lingual
contexts.

for track A. The detailed methodology for each
track is explained in the following subsections.

For tracks A and C, we combined both sentences
of an example data with a special token of LM
(</sep> for XLM-R and Roberta, and [SEP] for
MuRIL) in the preprocessing stage. Model tok-
enizer tokenizes the combined sentence into tokens
and generates token IDs and attention masks. For
other subtasks, we utilized XLM-R and MuRIL
with the two-stage training approach.

4.1 Methodology for track A
4.1.1 Two-stage training
In the initial stage of our project, we conducted
multi-lingual training by utilizing the training data
of all subtasks of track A in a selected LM that
supports them. As shown in Fig. 1, our model used
the annotations of all subtasks of track A in this
stage. We performed experiments using various
hyperparameters across five epochs, selecting
the best multilingual checkpoint based on the
average validation data loss. In the second stage,
we fine-tuned the multilingual checkpoint from the
first stage and utilized it as an initial model for

fine-tuning each monolingual subtask in track A.
We trained each mono-lingual track with different
hyper-parameters in the second stage and selected
the final model based on the validation data loss of
the corresponding subtask.

4.1.2 Model Architecture
Figure 1 shows that the model tokenizer first to-
kenizes the input sentence. To improve GPU uti-
lization, the tokenizers are set to a length of 92.
Next, the language model generates word embed-
dings for each token. The embedding of the first
token (which is <s> for the XLM-R and [SEP] for
MuRIL) is passed through a linear layer, which
projects it into logits, a vector of size one that rep-
resents the predicted similarity. Finally, we apply
the Mean Square Error (MSE) loss function to cal-
culate the difference between the prediction and
the ground truth.

4.2 Methodology for track B

For track B, the sentences were converted into uni-
gram and bigram representation and Support Vec-
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Language A1 arq A2 amh A3 eng A4 hau A5 kin A6 mar A7 ary A8 esp A9 tel
XLM-R (one-stage) 0.49 0.49 0.78 0.68 0.23 0.86 0.63 0.58 0.78
MuRIL (one-stage) - - 0.77 - - 0.856 - - 0.838
XLM-R (two-stage) 0.59 0.84 0.84 0.72 0.49 0861 0.81 0.66 0.789
MuRIL (two-stage) - - - - - 0.862 - - 0.842
Baseline_Score 0.6 0.85 0.83 0.69 0.72 0.88 0.77 0.7 0.82
Rank 7 8 6 5 15 13 10 17 6

Table 2: Results of all subtasks of track A has been tabulated for both the settings one-stage and two-sage with both
the LMs XLM-R and MuRIL.

tor Regression2 (SVR) (Fu et al., 2016; Liu et al.,
2017).

4.2.1 Unigrams /Bigrams embeddings
Both sentences in the examples are combined and
transformed into a vector. To create the vector,
each sentence is indexed based on the presence
of unigrams/bigrams, and the corresponding index
value is filled with the count of unigrams/bigrams.
The resulting vector is then fed into the SVR model
along with the label values for training.

4.3 Methodology for track C

The methodology followed in track C is similar to
the first stage of track A, with the difference that
the combined dataset includes all subtasks except
for the targeted subtask. For instance, to build a
system for the English (eng) subtask, all data from
the subtasks of track A, except for the eng subtask,
is collected. The model architecture is also similar
to that of track A but with only one stage involved.

5 Experimental setup

5.1 Track A and Track C

We achieved our best score using the MuRIL setup
for the Telugu and Marathi subtasks, while the
XLM-R setup worked best for the other track. Dur-
ing the training process, we experimented with
different learning rates (5e-6, 2e-5, 5e-5, 8e-5, and
1e-4) and batch sizes (16, 32, and 64) in both stages.
We selected the best model based on validation loss
after five epochs of training.

For track A and track C, we used the setups
outlined in Fig. 1. We implemented our task using
the xxxTokenClassification class defined in (Wolf
et al., 2020) for regression, where xxx refers to the
selected model. We set the number of labels to
one. The other hyperparameters for achieving the
best results with both language models are listed in
Table 5.

2Support Vector Regression

5.2 Track B

For subtasks which are training data available
in track, we have generated monogram and bi-
gram embedding and performed supervised learn-
ing with support vector regression (SVR) and gra-
dient Boosting regression (XGBoost) with the Scik-
itlearn3 library.

Evaluation metrics Results are Pearson corre-
lation coefficient, which shows the similarity be-
tween two sentences.

6 Results and Analysis

The table below shows the Pearson score with offi-
cial rank for Track A, Track B and Track C, along
with the baseline score. Please refer to Table 2,
3 and 4 for more details. Our system performed
exceptionally well in the Indonesian (ind) subtask
of track B (B7), achieving 1st rank with a Pearson
score of 0.53%. We secured 3rd rank in the three
subtasks: B15, B10 and C10.

Track A: Two-stage MuRIL setup achieved the
best scores for Telugu and Marathi subtasks, while
two-stage XLM-R setup achieved the best score for
all other subtasks.

Comparison between one-stage and two-stage
methods with XLM-R LM. A comparison has
been illustrated in Fig. 2. Based on the average
performance of all subtasks in track A, it can be
inferred that the two-stage strategy outperforms the
one-stage strategy. The average score for all sub-
tasks using the two-stage strategy was 0.73, while
the average score for all subtasks using the one-
stage strategy was 0.61.

Comparison between MuRIL and XLM-R for
the Telugu and Marathi Table 2 shows that for
Telugu and Marathi, MuRIL performed better than
XLM-R. Two-stage MuRIL produces a 0.05 higher
score for Telugu subtask than two-stage XLM-
R. For Marathi, the Two-stage MuRIL produces
slightly more than the Two-stage XLM-R.

3scikit-learn.org/stable
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Language B1 afr B2 arq B3 amh B4 eng B5 hau B6 hin B7 ind B8 kin B9 arb B10 ary
Unigram SVR - 0.4 0.31 0.39 0.41 - - 0.47 - 0.68
Bigram SVR - 0.4 0.64 0.32 0.39 - - 0.35 - 0.55
Unigram XGBoost - 0.3 0.4 0.28 0.35 - - 0.38 - 0.72
Bigram XGBoost - 0.31 0.4 0.33 0.33 - - 0.37 - 0.72
Dice Loss 0.73 0.44 0.69 0.74 0.42 0.57 0.53 0.36 0.31 0.6
Baseline_Score 0.74 0.43 0.72 0.68 0.16 0.93 0.68 0.74 0.56 0.27
Rank 5 4 5 10 3 6 1 6 6 3

Table 3: All the results for subtasks of Track B have been displayed. For subtasks B1, B7, B8, and B9, labelled
data was not provided, so only the Pearson scores predicted by the Dice loss are shown. For the other subtasks, the
Pearson scores are displayed for unigram SVR, bigram SVR, unigram XGBoost, bigram XGBoost, and dice loss.

Language C1 afr C2 arq C3 amh C4 eng C5 hau C6 hin C7 ind C9 arb C10 ary C12 esp
Cross-lingual

(XLM-R) 0.7468 0.3867 0.8048 0.7372 0.6428 0.7476 0.4716 0.4267 0.6732 0.5691

Cross-lingual
(MuRIL) - - - - - 0.8008 - - - -

Baseline_Score 0.79 0.46 0.84 0.8 0.64 0.76 0.47 0.61 0.4 0.62
Rank 7 6 5 6 4 5 5 6 3 9

Table 4: Table shows the results of all subtasks of track C. MuRIL LM support Hindi (C6) subtask of the track C
therefore only Pearson score of C6 given for the MuRIL LM.

track B Pearson score of track B tabulated in
Table 3. It is clear from Table 3 that SVR per-
formed better than XGBoost. The performance of
SVR with unigram and bigram is not straightfor-
ward. Results showed that for B4, B5, B8, and
B10, bigram embeddings perform better than un-
igram embeddings. However for the B3 unigram
performed better.

track C Pearson score of the track C also showed
in Table 4. Table 4 shows that for Hindi (C6),
MuRIL performed better than XLM-R. All the
other subtasks of this track are only predicted by
the XLM-R in cross-lingual settings.

7 Conclusion

In this paper, we utilized multi-lingual track knowl-
edge for the STR shared task to enhance the perfor-
mance of monolingual models. Our team achieved
first rank in the B7 subtask and third rank in the B5,
B10, and C10 subtasks. We demonstrate that two-
stage fine-tuning can help the monolingual models
learn from the training data of all languages, lead-
ing to better performance. The results of track C
illustrate the effectiveness of cross-lingual learning
in a zero-shot scenario.

References
Mohamed Abdalla, Krishnapriya Vishnubhotla, and Saif

Mohammad. 2023. What makes sentences semanti-
cally related? a textual relatedness dataset and em-
pirical study. In Proceedings of the 17th Conference

of the European Chapter of the Association for Com-
putational Linguistics, pages 782–796, Dubrovnik,
Croatia. Association for Computational Linguistics.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-
tual similarity, English, Spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 252–263, Denver, Colorado. Association for
Computational Linguistics.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Cheng Fu, Bo An, Xianpei Han, and Le Sun. 2016. IS-
CAS_NLP at SemEval-2016 task 1: Sentence similar-
ity based on support vector regression using multiple
features. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 645–649, San Diego, California. Association
for Computational Linguistics.

1201

https://doi.org/10.18653/v1/2023.eacl-main.55
https://doi.org/10.18653/v1/2023.eacl-main.55
https://doi.org/10.18653/v1/2023.eacl-main.55
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/S16-1098
https://doi.org/10.18653/v1/S16-1098
https://doi.org/10.18653/v1/S16-1098
https://doi.org/10.18653/v1/S16-1098


Lushan Han, Justin Martineau, Doreen Cheng, and
Christopher Thomas. 2015. Samsung: Align-and-
differentiate approach to semantic textual similarity.
In Proceedings of the 9th International Workshop
on Semantic Evaluation (SemEval 2015), pages 172–
177, Denver, Colorado. Association for Computa-
tional Linguistics.

Jianglong He, Akshay Uppal, Mamatha N, Shiv Vig-
nesh, Deepak Kumar, and Aditya Kumar Sarda. 2022.
Infrrd.ai at SemEval-2022 task 11: A system for
named entity recognition using data augmentation,
transformer-based sequence labeling model, and En-
sembleCRF. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022),
pages 1501–1510, Seattle, United States. Association
for Computational Linguistics.

Simran Khanuja, Diksha Bansal, Sarvesh Mehtani,
Savya Khosla, Atreyee Dey, Balaji Gopalan,
Dilip Kumar Margam, Pooja Aggarwal, Rajiv Teja
Nagipogu, Shachi Dave, Shruti Gupta, Subhash
Chandra Bose Gali, Vish Subramanian, and Partha
Talukdar. 2021. Muril: Multilingual representations
for indian languages.

Wenjie Liu, Chengjie Sun, Lei Lin, and Bingquan Liu.
2017. ITNLP-AiKF at SemEval-2017 task 1: Rich
features based SVR for semantic textual similarity
computing. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 159–163, Vancouver, Canada. Association for
Computational Linguistics.

Nedjma Ousidhoum, Shamsuddeen Hassan Muhammad,
Mohamed Abdalla, Idris Abdulmumin, Ibrahim Said
Ahmad, Sanchit Ahuja, Alham Fikri Aji, Vladimir
Araujo, Abinew Ali Ayele, Pavan Baswani, Meriem
Beloucif, Chris Biemann, Sofia Bourhim, Chris-
tine De Kock, Genet Shanko Dekebo, Oumaima
Hourrane, Gopichand Kanumolu, Lokesh Madasu,
Samuel Rutunda, Manish Shrivastava, Thamar
Solorio, Nirmal Surange, Hailegnaw Getaneh
Tilaye, Krishnapriya Vishnubhotla, Genta Winata,
Seid Muhie Yimam, and Saif M. Mohammad. 2024a.
Semrel2024: A collection of semantic textual relat-
edness datasets for 14 languages.

Nedjma Ousidhoum, Shamsuddeen Hassan Muhammad,
Mohamed Abdalla, Idris Abdulmumin, Ibrahim Said
Ahmad, Sanchit Ahuja, Alham Fikri Aji, Vladimir
Araujo, Meriem Beloucif, Christine De Kock,
Oumaima Hourrane, Manish Shrivastava, Thamar
Solorio, Nirmal Surange, Krishnapriya Vishnubhotla,
Seid Muhie Yimam, and Saif M. Mohammad. 2024b.
SemEval-2024 task 1: Semantic textual relatedness
for african and asian languages. In Proceedings of
the 18th International Workshop on Semantic Evalua-
tion (SemEval-2024). Association for Computational
Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Sumit Singh and Uma Tiwary. 2023. Silp_nlp at
SemEval-2023 task 2: Cross-lingual knowledge trans-
fer for mono-lingual learning. In Proceedings of the
17th International Workshop on Semantic Evaluation
(SemEval-2023), pages 1183–1189, Toronto, Canada.
Association for Computational Linguistics.

Junfeng Tian, Zhiheng Zhou, Man Lan, and Yuanbin
Wu. 2017. ECNU at SemEval-2017 task 1: Lever-
age kernel-based traditional NLP features and neural
networks to build a universal model for multilingual
and cross-lingual semantic textual similarity. In Pro-
ceedings of the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017), pages 191–197,
Vancouver, Canada. Association for Computational
Linguistics.

Xinyu Wang, Yongliang Shen, Jiong Cai, Tao Wang, Xi-
aobin Wang, Pengjun Xie, Fei Huang, Weiming Lu,
Yueting Zhuang, Kewei Tu, Wei Lu, and Yong Jiang.
2022. DAMO-NLP at SemEval-2022 task 11: A
knowledge-based system for multilingual named en-
tity recognition. In Proceedings of the 16th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2022), pages 1457–1468, Seattle, United States. As-
sociation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

8 Appendix

8.1 Details of Hyper-parameters
Table 5 shows the details of Hyper-parameters of
best models for MuRIL and XLM-R setups with
two-stage setup for Track A.

8.2 Comparison of Results of Track A
A comparison of subtasks of track A with one-
stage XLM-R and two-stage XLM-R are shown in
Fig. 2. For all the subtasks two-stage architecture
performed better than one-stage architecture.
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Hyper parameters MuRIL setup XLM-R setup
Baseline language model for first stage google/MuRIL-large-

cased
XLM-Roberta-large

Loss function MSE MSE
Hidden size for language model 1024 1024

Learning rate for language models 5e-05 5e-05
First-stage training epochs 5 5

Second-stage training epochs 5 5
Batch size 64 64

Dropout rate 0.1 0.1
Optimizer AdamW AdamW

Table 5: Hyper-parameters for MuRIL and XLM-R setups with two-stage setup for Track A.

Figure 2: A comparison of subtasks of track A with one-stage XLM-R and two-stage XLM-R.
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