
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 1260–1268
June 20-21, 2024 ©2024 Association for Computational Linguistics

NumDecoders at SemEval-2024 Task 7: FlanT5 and GPT enhanced with
CoT for Numerical Reasoning

H. Andres Gonzalez Gongora♣1∗, Md Zobaer Hossain♣2, Jahedul Alam Junaed♠3

♣ University of Lorraine, Nancy, France
♠ Shahjalal University of Science and Technology, Sylhet, Bangladesh

nanoandres_24@hotmail.com1

rowan.hossain@gmail.com2

jahedul25@student.sust.edu3

Abstract

In this paper we present a Chain-of-Thought
enhanced solution for large language models,
including flanT5 and GPT 3.5 Turbo, aimed at
solving mathematical problems to fill in blanks
from news headlines. Our approach builds on a
data augmentation strategy that incorporates ad-
ditional mathematical reasoning observations
into the original dataset sourced from another
mathematical corpus. Both automatic and man-
ual annotations are applied to explicitly de-
scribe the reasoning steps required for models
to reach the target answer. We employ an en-
semble majority voting method to generate final
predictions across our best-performing mod-
els. Our analysis reveals that while larger mod-
els trained with our enhanced dataset achieve
significant gains (91% accuracy, ranking 5th
on the NumEval Task 3 leaderboard), smaller
models do not experience improvements and
may even see a decrease in overall accuracy.
We conclude that improving our automatic an-
notations via crowdsourcing methods can be
a worthwhile endeavor to train larger models
than the ones from this study to see the most
accurate results.

1 Introduction

NumEval is a task first introduced in 2024 (Chen
et al., 2024) building on previous work such as Cor-
tis et al. (2017)’s fine-grained sentiment analysis
(SemEval-2017 Task 5) and Jullien et al. (2023)’s
clinical inference (SemEval-2023 Task 7). These
prior tasks highlighted the importance of under-
standing numerical values in legal and medical
contexts for determining outcomes. The primary
objective of NumEval is to perform quantitative rea-
soning to generate numerical values corresponding
to provided contexts.

In this project, we particularly focused on sub-
task 1 of task 3 (Huang et al., 2023) where our

∗All authors have equal contributions

system must execute several mathematical calcula-
tions based on information from a provided passage
to yield a numerical result used to fill in a head-
line with a blank. For instance, to complete the
CIA Cited Concerns About Snowden ____ Years
Ago headline, the model must subtract the article’s
publishing date by the explicitly stated date in the
article (2009). Some entries involve a series of
multiple mathematical operations that the model
must perform.

Although numerical reasoning continues to
present challenges to large language models
(LLMs), advancements in larger models like
DeepSeekMath (Shao et al., 2024) demonstrate
promising capabilities in solving mathematical
computations. DeepSeekMath is finetuned using
different mathematical datasets and evaluated us-
ing Chain-of-Thought (CoT) prompting to provide
intermediate reasoning steps. Inspired by CoT sys-
tems, we have developed a system pipeline that
trains an encoder-decoder flanT5 (Chung et al.,
2022) and an open source GPT 3.5 version1 with
additional mathematical corpora. These corpora
include the Discrete Reasoning Over the Content
of Paragraph (DROP) dataset (Dua et al., 2019) and
another dataset which was manually and automati-
cally annotated to include reasoning steps to reach
the desired response. The core idea is that explicit
intermediate reasoning, akin to chain-of-thought
prompts, can enhance a model’s quantitative rea-
soning capabilities (Wei et al., 2023).

In our revised approach, not only do we use
smaller models (θ ≤ 1B)2, but we also utilize mul-
tiple pipelines to determine the conditions under
which our model achieves the highest accuracy.
Firstly, we establish a baseline by fine-tuning with
the provided dataset (Huang et al., 2023), then we
incorporate additional observations from the DROP
dataset into our training data. Thirdly, we adopt

1List of open source OpenAI GPT models
2θ refers to model parameters

1260

https://platform.openai.com/docs/model-index-for-researchers

a Chain-of-Thought (CoT) approach, fine-tuning
both a flanT5 model and a generative open-source
OpenAI model (GPT 3.5 Turbo) with more detailed
inputs and outputs, including string normalizations
and quantitative reasoning steps. Finally, we em-
ploy an ensemble majority voting method to select
the best results from these models, resulting in a
91% accuracy and 5th place on the leaderboard of
the NumEval competition 3.

2 Related Works

Through pre-training on a vast amount of text data,
LLMs can develop a broad knowledge base en-
compassing numerical concepts, arithmetic opera-
tions, and mathematical relationships. Lewkowycz
et al. (2022) propose a language model named
Minerva, which demonstrates strong performance
on various quantitative reasoning tasks, includ-
ing undergraduate-level physics or chemistry prob-
lems.

Numerical reasoning has been extensively stud-
ied across diverse contexts, including word embed-
ding (Wallace et al., 2019; Naik et al., 2019; Sun-
dararaman et al., 2020) and math word problems
(Wang et al., 2018; Cobbe et al., 2021). Within the
domain of Question Answering, several approaches
have been proposed. Xu et al. (2022) present a
framework called Diagnosing Numerical Capabili-
ties (DNC), which involves two stages: recognition
of numbers in the context and question to treat them
as candidate operands, followed by the correct se-
lection of operands and operations based on under-
standing questions and context. Kim et al. (2022)
proposes an attention-masked reasoning model that
learns to leverage the number-related context to al-
leviate the over-reliance on parametric knowledge
and enhance the numerical reasoning capabilities
of the QA model. Other studies, such as those
by Geva et al. (2020) and Feng et al. (2021), ex-
plore the infusion of external knowledge to aug-
ment the numerical reasoning skills of the models.
Yang et al. (2021) focus on Numerical Reasoning
over Text (NRoT) using T5 models, employing
five training pipelines and multitasking training to
progressively enhance model performance through
tasks such as general reading comprehension and
fine-tuning on the DROP dataset (Dua et al., 2019).
Additionally, in reasoning tasks, Chain-of-Thought
prompting has shown promise in improving the
performance of large language models (Ling et al.,

3GitHub repository for our system

2024). While Chain-of-Thought (CoT) allows mod-
els to generate more comprehensive reasoning pro-
cesses, it also introduces challenges such as halluci-
nations and accumulated errors. To mitigate these
issues, the authors propose enabling explicit and de-
ductive rigorous reasoning within language models.
They emphasize the importance of self-verification
for trustworthiness, which leads to significantly
improved answer correctness in reasoning tasks.
Drawing inspiration from these CoT-based meth-
ods, we incorporate them into our approach due to
their superior performance in numerical reasoning
tasks.

3 System Description

In our system, we defined three main pipelines that
were compared against a baseline encoder-decoder
model. Specifically, we used an instruction finetune
model version (flan) of the Text-To-Text Transfer
Transformer (T5) (Chung et al., 2022). This flanT5
model underwent fine-tuning in its small, base, and
large versions, employing a learning rate of 5e-5
for 5 epochs and a batch size of 2.

3.1 DROP Dataset

To enhance performance beyond the baseline, we
merged the Discrete Reasoning Over the Content of
Paragraph (DROP) dataset (Dua et al., 2019) with
the original numerical headline generation dataset
(Huang et al., 2023). The DROP dataset consists
of paragraphs with answer spans to given ques-
tions, often referencing multiple positions in the
provided passage. With a total of 77400 observa-
tions in the training data split, we filtered out 46973
observations related to numerical reasoning tasks.
Due to computational constraints, we merged only
20000 of these filtered observations with the orig-
inal headline generation dataset. The selection of
these 20,000 entries was based on a random seed of
43. Additionally, it’s important to note that while
the input text in the DROP dataset is structured as
questions, unlike the fill-in-the-blank format used
Huang et al. (2023)’s dataset, we transformed the
questions into masked headlines by locating the
answer in the original dataset and masking it from
the passage’s headline.

3.2 GPT 3.5 turbo

For this task, we utilized the GPT 3.5 Turbo model
to extract numerical reasoning and explanations
from the NumHG dataset (Huang et al., 2023).

1261

https://github.com/Zappandy/FlanT5_GPT_enhanced_COT

Prompt selection plays a critical role in obtain-
ing optimal output from the GPT model. White
et al. (2023) outline various prompt engineering
techniques in a pattern-based catalog that have
been successfully applied to improve the outputs
of large language models (LLMs) in conversations.
Drawing from the insights provided by White et al.
(2023), we adopt three distinct patterns into our
prompt design: the Persona Pattern, the Context
Manager Pattern, and the Recipe Pattern. Each
pattern was carefully selected to address specific
challenges and enhance the interpretability of the
generated responses.

Persona Pattern: It assists the GPT model in de-
termining the types of output to generate and which
details to prioritize. By incorporating persona-
based prompts, we guide the model to discern the
essential information to emphasize in its responses.

Context Manager Pattern: The goal of this
pattern is to focus on specific topics and exclude
unrelated ones from consideration. Through care-
ful manipulation of contextual cues, we enhance
the model’s ability to generate contextually relevant
and coherent numerical explanations.

Recipe Pattern: It introduces constraints to ulti-
mately output a sequence of steps based on partially
provided "ingredients" required to achieve a spec-
ified goal. Serving as a structured framework for
our prompt design, the Recipe Pattern guides the
model in constructing step-by-step sequences.

Role Content Matched Pattern
System You are a helpful assistant, skilled in providing

numerical reasoning.
Persona Pattern

User context: [news] + [masked headline] –
User The answer to the fill-in-the-blank question

is [ans]. Please provide a complete sequence
of numerical reasoning steps in a paragraph
format that is used to derive this answer. Be-
gin your response by discussing the relevant
sentences, and then outline the numerical rea-
soning steps. Conclude your response with:
’So the answer is [ans].’

Context Manager & Recipe Patterns

Table 1: Conversation prompt with matched patterns.
Here, placeholder values are from the dataset.

3.3 Chain of Thought (CoT)

To further steer the capabilities of both the decoder
GPT 3.5 Turbo and our trained flanT5, we incor-
porated chain-of-thought (CoT) prompting (Wei
et al., 2023). This involved adding specific reason-
ing steps in the output text that the model relied
on to produce the numerical response. According
to Wei et al. (2023), CoT outperforms traditional
prompting and finetuning approaches by providing
intermediate reasoning steps that facilitate model

interpretation. Moreover, in large models, even a
few CoT sequences can outperform some finetuned
pre-trained models in arithmetic and symbolic rea-
soning tasks (Wei et al., 2023).

In our CoT pipeline, our initial approach in-
volved an automatic annotation step, which we
supplemented with manual annotation to handle
more complex calculations. Below, we outline this
annotation process, including additional prepro-
cessing steps implemented to normalize the input
and output data.

Automated Annotation: In the original news ar-
ticles, dates are written in abbreviated form and
placed within brackets before the passage. Since
many headline completion tasks involve subtract-
ing a given number of years mentioned in the article
from the publishing date, we extract this metadata
date and transform it to prefix the overall passage
with a descriptive sentence. For instance, an article
with the date (Feb 13, 2013 6:54 PM) is trans-
formed to The news was published on 13th Febru-
ary in the year of 2013. This approach enables our
models to retrieve explicit and normalized dates for
performing the corresponding mathematical opera-
tions.

Answer extraction is conducted using the spacy
module to tokenize each passage and iterate over
each resulting sentence with a custom placeholder
function. If the answer is found within a sentence,
it is extracted. The main answer extraction function
is then applied to our main 7 placeholder functions
to automate the annotation of the simpler calcula-
tions. Among these, 5 (copy, translation, round,
sround, and paraphrase (Huang et al., 2023)) are
much more straightforward, whereas subtract and
span require a heuristic-based annotation, where
the answer string is preprocessed to fit the appro-
priate format.

For instance in our span recipe,
(get_span_placeholder), we modify the re-
sulting string if the blank contains the following
tokens.

• No._ which we pass to the model as output
with the following explanation: No. 1 typi-
cally refers to the topmost or the best-ranked
item in a list or a competition.

• _M which we pass to the model as output with
the following explanation: The letter ’M’ in
the headline indicates that the answer refers

1262

to an amount that should be transformed to
millions

• _st which we pass to the model as output with
the following explanation: The presence of ’st’
in the headline gives a clue that the answer is
1

Otherwise, we specify that the span containing
the answer may refer to a person, object or event.

As previously stated, each of the simple afore-
mentioned calculations has its own placeholder
function, which we further examine in Table 6 and
pass to our main algorithm in Figure 1.

One of the biggest challenges the automation
system faced was inconsistent annotations from the
original dataset wherein certain passages would not
contain references to the answers at all or, more
egregiously, wrong calculations. For the headline
Wife who got $1B in Divorce: Not Enough where
1 corresponds to the answer, the calculation is as
follows Round(Paraphrase(995, K), 0). Neverthe-
less, the paraphrase should have an M instead of a
K as the value is given in the millions rather than
the thousands.

Furthermore, apart from the provided calcula-
tion, the passages often lack explicit numerical
reasoning to justify why a model should yield the
floor value of a decimal number for a headline in-
stead of rounding it up. For example, in the article
Woman Places $615K Bet on Hillary Clinton the
value must be paraphrased and then rounded up to
the nearest whole number to reach the answer of
615. However, the passage states that “"a 46-year-
old woman just placed a $615,862 bet on Clinton".
Mathematically, the number should be converted
to thousands by dividing by 1000 and then rounded
up, resulting in an answer of 616. Notwithstanding,
the headline reports 615.

Manual Annotation: We employed manual an-
notation to address more complex operations, in-
cluding addition, subtraction, multiplication, and
division. In each case, we began with an automated
step using GPT 3.5, as described in Table 1 and
then manually cleaned up the reasoning steps, as
well as, overall responses using a frontend system
built with streamlit. Figure 2illustrates an exam-
ple where we manually corrected the automated
annotation to describe the steps for solving both
simple and more complex calculations in a fill-in-
the-blank question. In some instances, answers
were incorrect, or the original logic provided by

the model was overly redundant or incorrect. Con-
sequently, we relied on 3 main human annotators4

to review the 1K annotations completed by GPT
3.5 turbo. In Table 7, we can see some examples
of patterns annotators followed to make sure the
dataset would be consistent.

With both our automatic and manual annotations
combined, we proceeded to fine-tune our GPT 3.5
Turbo and flanT5 models to evaluate whether the
improved dataset yielded any advantages over the
baseline. For this fine-tuning process, we main-
tained the same hyperparameters as before, except
for the batch size. The batch size was increased for
the small and base-sized flanT5 models to 16 and
8, respectively. This adjustment was necessary be-
cause we trained these models using a larger GPU,
an A100 40GB GPU.

3.4 Ensemble

Lastly, we implemented an ensembling method us-
ing majority voting, wherein for each passage, we
selected the numerical answer with the most votes
as the correct one. In our ensembling pipeline, we
narrowed down our majority voting to 4 models,
consisting of our best-performing models: one ver-
sion of large flanT5 trained for 3 epochs using only
the NumHG dataset, another large flanT5 trained
using NumHG for 2 epochs, a flanT5 trained for
2 epochs using the DROP dataset, and a CoT fine-
tuned version of GPT 3.5 Turbo. We included
versions that were trained for 2 epochs instead of
3 as they outperformed their 3-epoch counterparts,
particularly the DROP-trained flanT5. However,
this was only the case with the large models, as the
base and small ones consistently performed better
after training for 3 epochs rather than 2. During the
evaluation period, we were unable to finish train-
ing the CoT models; therefore, we only used the
available top 4 models for ensembling.

Since we employed an even number of models
for this method, the likelihood of encountering ties
is high. In instances of a tie, where a unanimous an-
swer majority was absent, we resorted to the answer
generated by our top-performing model—FlanT5
fine-tuned exclusively with NumHG.

4 Results

Based on the results presented in Tables 2 and 3,
we observe that the difference in performance be-
tween the small and base flanT5 models is not par-

4These annotators are the authors of this paper

1263

def get_ans_sent(item):

operations = {"Copy":get_copy_placeholder,"Trans":get_trans_placeholder,
"Span":get_span_placeholder,"Round":get_round_placeholder,"Paraphrase":

↪→ get_paraphrase_placeholder,
"Subtract":get_subtract_placeholder, "SRound":get_round_placeholder}

for operation, function in operations.items():

if check_calculation(item, operation):

return function(item)

return f"So the answer is {item[’ans’]}"

Figure 1: Main function used to annotate our data automatically. Each placeholder contains the find answer function,
which tracks the main spans needed to fill in the blank question.

T5 Flan Small T5 Flan Base T5 Flan Large

NumHG 0.83 0.89 0.91
NumHG+DROP 0.84 0.88 0.90
COT 0.58 0.83 0.88

Table 2: Results of T5 Flan models trained on three
different datasets with the validation set.

T5 Flan Small T5 Flan Base T5 Flan Large

NumHG 0.82 0.84 0.90
NumHG+DROP 0.83 0.88 0.90
COT 0.58 0.83 0.88

Table 3: Results of T5 Flan models trained on three
different datasets with the test set.

ticularly notable, except when employing the CoT
method, where the small models significantly un-
derperform. Additionally, as shown in Table 4, it is
surprising to note that a finetuned GPT 3.5 Turbo
model underperforms compared to the other flanT5
models, despite its larger size. Overall, our team
ranked 5th out of 16 teams, including the baseline,
on the final leaderboard, achieving 91% accuracy
with our majority model.

dev test

NumHG 0.91 0.90
NumHG+DROP 0.90 0.90
COT 0.88 0.88
GPT 3.5 0.85 0.84
GPT 3.5 (fine tuned) 0.81 0.82
Ensemble (Majority) 0.92 0.91

Table 4: Best Results of the models on validation and
test set.

5 Discussion

Our CoT results, as observed in Tables 2 and 3
align with the findings reported by Wei et al. (2023),
indicating that smaller models do not experience
significant gains when using prompting, partly due
to their fewer parameters. In their study, it is ex-
plicitly mentioned that models in the range of 100
billion parameters or more exhibit the highest gains.
However, all of the flanT5 models we utilized have
significantly fewer parameters, failing to reach the
1 billion mark (Chung et al., 2022). We believe
that conducting CoT experiments with the XL and
XXL versions of these models would likely result
in much more significant improvements.

5.1 Error Analysis
For our error analysis, we converted our model pre-
dictions into strings to facilitate comparison with
their corresponding ground truths. It’s important to
note that while the competition required numerical
values to be uploaded, some ground truths were for-
matted with commas (e.g., 1,500 instead of 1.5) or
included important dates such as 9/11. In cases like
the latter, where the ground truth couldn’t be con-
verted to a real number, we cast our results to string
values. However, even with this adjustment, dis-
crepancies in formatting, such as our model yield-
ing 4.5 while the ground truth is 4.50, resulted
in evaluations as incorrect. When accounting for
these differences, the accuracy rate of the majority
voting ensembling method reached 93%. Addition-
ally, some answers in the test set were tagged as
unanswerable.

In Table 5, we observe the error rate of our best
majority voting ensembling method. Despite our
best-performing model achieving a 91% accuracy
rate, as noted in Table 4, we can see a high error
rate for complex operations such as addition, multi-

1264

ply, and subtraction. Additionally, the surprisingly
high error rate for the round operation may stem
from inconsistencies in the annotation process. As
mentioned in Section 3, there are no contextual
hints in the passage besides the calculation to aid
the model in flooring a value instead of rounding
it up. Moreover, certain calculations that instruct
the model to round up a value, such as 2.8, have a
ground truth of 2 instead of 3.

Nevertheless, our models encountered several
round-up errors where they failed to generalize
properly, particularly when rounding up to the near-
est tenth. For example, in an operation yielding
4.831 where rounding up to the nearest tenth should
result in 4.83, our models rounded it up to 4.8. Sim-
ilarly, in cases where 4.8 should be rounded up to
the nearest whole number, our flanT5 models of-
ten failed to round it up to 5, opting instead for 4.
In approximately 80% of cases where round op-
erations were inaccurately predicted, the primary
issue was the selection of an incorrect upper or
lower bound for the rounding operation.Many of
these mistakes involved multiple complex calcu-
lations, where a round operation had to be com-
puted after 2 or 3 additional computations. An
example of this issue can be seen in the operation:
Round(Divide(85,12),0) where the result is sup-
posed to be 7, but the model incorrectly yields 85
to complete the headline Robert Durst Gets ____
Years for Gun Charges. However, the article explic-
itly states “"Robert Durst, millionaire oddball and
star of HBO’s true-crime documentary The Jinx,
pleaded guilty to gun charges Wednesday in New
Orleans, earning him 85 months in prison". While
the headline requests years, the model fails to con-
vert the value in months to years by dividing by
12, instead simply copying the number 85 from the
span.

Similarly, we encountered errors with the copy
operation, where either the model would copy an
incorrect value or, more egregiously, round it up to
another value. For instance, in the headline Spanish
Bank Offers $____B to Madoff Victims the article
states that “Spanish banking giant Banco Santander,
whose clients lost nearly $3.1 billion in Bernard
Madoff’s Ponzi scheme, has offered to pay back
customers some $1.82 billion, reports Bloomberg.".
Therefore, the correct answer should be 1.82, but
our model incorrectly rounds this value to 1.8. We
estimate that if we account for these errors, our
majority ensembling could potentially achieve a

2% increase over our 91% result.
Finally, the divide calculation presents fewer

errors in our models, with most mistakes occur-
ring within complex operations involving multiple
calculations. However, it’s worth noting that ra-
tio conversion, specifically converting a ratio to
a percentage and viceversa, poses a challenge for
our models. This challenge is evident in the Di-
vide(1,20%) calculation where the expected result
is 5 to complete the headline Odds of a Depres-
sion? 1 in ____. Unfortunately, our model yields
4, indicating that it interpreted 20% as 25%. While
such corner cases underscore that our models may
not always accurately translate fractions to their
corresponding real numbers (i.e., dividing the per-
centage number by 100), it’s important to consider
the context. In the article, multiple percentages
were mentioned in the following spans: “The bad
news is that this recession is likely to be America’s
worst since WWII—but the good news is there’s
only a 20% chance it will become a depression
(...) The lack of any major global conflicts means
the chance of a depression being a major one—a
decline of 25% or more—is only 2%". In other
words, the model did not identify the span with
the right percentage to convert to its corresponding
ratio, which is 20% rather than 25%.

6 Conclusion

In this paper we observed that introducing addi-
tional observations with detailed reasoning steps
can enhance a model’s ability to solve mathemati-
cal problems while also highlighting areas where
its reasoning may fall short. Nevertheless, our re-
sults suggest that larger models may derive the
most benefit from a CoT + finetuning approach.
Because of this, we argue that leveraging larger
LLMs could lead to even greater gains in quantita-
tive reasoning tasks. Furthermore, while we have
provided access to our open dataset5, we recognize
the importance of improving automatic annotations
through crowdsourcing to achieve more accurate
results. Given that our automatic annotations some-
times exhibit issues in reasoning steps compared
to manual annotations, and certain entries in the
original dataset are ambiguous or erroneous, we
emphasize the necessity of data cleanup to enhance
mathematical reasoning in language models.

5COT Automatic and Manually annotated dataset

1265

https://huggingface.co/datasets/Zappandy/COT-headline-generation

References
Chung-Chi Chen, Jian-Tao Huang, Hen-Hsen Huang,

Hiroya Takamura, and Hsin-Hsi Chen. 2024.
Semeval-2024 task 7: Numeral-aware language un-
derstanding and generation. In Proceedings of the
18th International Workshop on Semantic Evalua-
tion (SemEval-2024). Association for Computational
Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Keith Cortis, André Freitas, Tobias Daudert, Manuela
Huerlimann, Manel Zarrouk, Siegfried Handschuh,
and Brian Davis. 2017. SemEval-2017 task 5: Fine-
grained sentiment analysis on financial microblogs
and news. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 519–535, Vancouver, Canada. Association for
Computational Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Yu Feng, Jing Zhang, Xiaokang Zhang, Lemao Liu,
Cuiping Li, and Hong Chen. 2021. Injecting numer-
ical reasoning skills into knowledge base question
answering models. arXiv preprint arXiv:2112.06109.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. arXiv preprint arXiv:2004.04487.

Jian-Tao Huang, Chung-Chi Chen, Hen-Hsen Huang,
and Hsin-Hsi Chen. 2023. Numhg: A dataset for
number-focused headline generation. arXiv preprint
arXiv:2309.01455.

Maël Jullien, Marco Valentino, Hannah Frost, Paul
O’regan, Donal Landers, and André Freitas. 2023.

SemEval-2023 task 7: Multi-evidence natural lan-
guage inference for clinical trial data. In Proceedings
of the 17th International Workshop on Semantic Eval-
uation (SemEval-2023), pages 2216–2226, Toronto,
Canada. Association for Computational Linguistics.

Jeonghwan Kim, Junmo Kang, Kyung-min Kim, Gi-
won Hong, and Sung-Hyon Myaeng. 2022. Exploit-
ing numerical-contextual knowledge to improve nu-
merical reasoning in question answering. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2022, pages 1811–1821, Seattle, United
States. Association for Computational Linguistics.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2024.
Deductive verification of chain-of-thought reasoning.
Advances in Neural Information Processing Systems,
36.

Aakanksha Naik, Abhilasha Ravichander, Carolyn Rose,
and Eduard Hovy. 2019. Exploring numeracy in
word embeddings. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3374–3380.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models.

Dhanasekar Sundararaman, Shijing Si, Vivek Subra-
manian, Guoyin Wang, Devamanyu Hazarika, and
Lawrence Carin. 2020. Methods for numeracy-
preserving word embeddings. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4742–4753.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do nlp models know num-
bers? probing numeracy in embeddings. arXiv
preprint arXiv:1909.07940.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018. Translating a math word
problem to an expression tree. arXiv preprint
arXiv:1811.05632.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn,
Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse
Spencer-Smith, and Douglas C Schmidt. 2023. A
prompt pattern catalog to enhance prompt engineer-
ing with chatgpt. arXiv preprint arXiv:2302.11382.

1266

http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
https://doi.org/10.18653/v1/S17-2089
https://doi.org/10.18653/v1/S17-2089
https://doi.org/10.18653/v1/S17-2089
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/2023.semeval-1.307
https://doi.org/10.18653/v1/2023.semeval-1.307
https://doi.org/10.18653/v1/2022.findings-naacl.138
https://doi.org/10.18653/v1/2022.findings-naacl.138
https://doi.org/10.18653/v1/2022.findings-naacl.138
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903

Jialiang Xu, Mengyu Zhou, Xinyi He, Shi Han,
and Dongmei Zhang. 2022. Towards robust nu-
merical question answering: Diagnosing numeri-
cal capabilities of nlp systems. arXiv preprint
arXiv:2211.07455.

Peng-Jian Yang, Ying Ting Chen, Yuechan Chen, and
Daniel Cer. 2021. Nt5?! training t5 to perform nu-
merical reasoning. arXiv preprint arXiv:2104.07307.

A Error Analysis

Percentage Error Rate Count Error Rate

Addition 46% 42
Copy 4% 148
Divide 36% 4
Multiply 74% 20
Paraphrase 4% 16
Round 55% 101
Span 7% 1
Subtract 63% 59
Translation 2% 20

Table 5: The error rates are over the total amount of a
given operation, not for the whole dataset. Note that
Sround error rate is computed with the round operation.

B Data Annotation

Figure 2: Example of our manual annotation system on
streamlit

1267

Recipe Function Example Operation
Copy The simplest placeholder as the model simply

takes the exact response taken from a given
span in the passage

A union repping 2 million health care workers
has made quite a find: 39 million N95 masks

39 → 39

Translation Similarly to the copy placeholder, the answer
is present in a given sentence. Thus, we state
that the answer must be converted to its corre-
sponding numerical value.

A University of Utah student paid his tuition
bill with 2,000 one-dollar bills

one → 1

Paraphrase Involves paraphrasing a value that is appended
in the headline by K, M, or B. That is to say, if
the value is to be expressed in the thousands
(K), millions (M), or billions (B), the numeri-
cal value found in the passage must be trans-
formed accordingly.

A Florida travel insurance company has
awarded a Georgia high school teacher
$10,000

$10,000 → 10

Round Akin to paraphrase, round implies rounding
a value to its nearest whole number or tenth
depending on the specified decimal in the cal-
culation.

Hackers made public the email addresses, user-
names, and passwords of 790,724 Brazzers
members.

$790,724 → 791

Sround Instead of approximating to the greater value,
in sround the model must transform the value
to its nearest floor value.

Today’s after-hours bad news from the credit-
crunch front comes from insurer AIG, which
reported a fourth-quarter loss of $5.29 billion

$5.29 → 5

Span It fetches the span in the given passage the
headline is referring to

Brooklyn store owner Jacob Hamula could
have ended up a victim of Salvatore Perrone,
the suspected serial killer believed to have
gunned down three other store owners before
police nabbed him.

Brooklyn store owner Jacob Hamula → 1

Subtract It implements a heuristic whereby the model
subtracts between the published date and the
date mentioned in the passage as long as these
dates are present in the metadata date and the
article

(Apr 1, 2014 4:03 AM CDT) Steve Jobs did it;
Google founders Sergey Brin and Larry Page
did, too. Now Mark Zuckerberg is joining
the ranks of the $1-a-year CEOs, Bloomberg
reports. That’s what the Facebook boss earned
in salary last year

(Apr 1, 2014 4:03 AM CDT) & last year → 2014 - 1 = 2013

Table 6: Placeholder functions used in our automatic annotation. Note that the round operation includes a paraphrase
one in the given example. Additionally, the recipe for round and sround is virtually the same. Finally, the only
subtract operations that were automatically annotated with this method involve dates. Otherwise, they are deemed
as more “complex" operations that were manually annotated.

Recipe Pattern Example
Paraphrase From the presence of "M" at the end of the fill-in-the-blank, we can infer that

the blank in the question is asking for the value in millions. The sentence
states that the population will be 308,400,408, so we need to convert this value
to millions. To do this, we divide 308,400,408 by 1,000,000 which gives us
308.400. Since the question asks for the value in millions, we round down to
the nearest whole number, which is 308. So the answer is 308.

Translation (transform dates) The presence of both the apostrophe (’) and "s" surrounding the blank strongly
indicates that the number is abbreviated and pertains to a decade. Taking the
example of the ’80s, which covers the years 1980 to 1989, when individuals
refer to "the ’80s," they are typically referring to the complete decade. Since
1987 is within the timeframe of the ’80s, it logically follows that the appropriate
response is 80. So the answer is 80.

Translation (transform to ratio) The term "quarter" refers to one part out of four equal parts. In the context of
numbers or fractions, "1 in 4" is used to express the concept of a quarter. This
means that when something is divided into four equal parts, you are referring to
one of those parts.

Table 7: Some example patterns used by the annotators to keep annotations consistent across some example tasks.

1268

