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Abstract

In this work, we (team RGAT) describe our ap-
proaches for the SemEval 2024 Task 2: Safe
Biomedical Natural Language Inference for
Clinical Trials (NLI4CT). The objective of this
task is multi-evidence natural language infer-
ence based on different sections of clinical trial
reports. We have explored various approaches,
(a) dependency tree of the input query as addi-
tional features in a Graph Attention Network
(GAT) along with the token and parts-of-speech
features, (b) sequence-to-sequence approach
using various models and synthetic data and
finally, (c) in-context learning using large lan-
guage models (LLMs) like GPT-4. Amongst
these three approaches the best result is ob-
tained from the LLM with 0.76 F1-score (the
highest being 0.78), 0.86 in faithfulness and
0.74 in consistence.

1 Introduction

Clinical trials are advanced treatments and tests to
evaluate new ways of treating life-threatening dis-
eases where interventions include new drugs, cells
and other biological products, advanced surgical or
radiological procedures and devices. As the trial
progresses the observations are documented sys-
tematically in a Clinical Trial report that includes
the subject selection criteria (’Eligibility’), treat-
ments (’Interventions’) and results at group level
including adverse effects. These reports constitute
a rich source of past endeavours to learn from and
help in formulating new treatment plans. However,
the sheer volume of CT reports1 makes it impossi-
ble to conduct extensive manual evaluation. Thus,
it is necessary to have an automated pipeline that
can enquire a CT report for specific hypothesis and
provides high accuracy and reliability at the same
time.

1As of Jan 17, 2024, ClinicalTrials.gov lists 480,795 CT
studies

Natural language inference or NLI (Devlin et al.,
2019) is one of the standard NLP tasks where
a hypothesis is qualified as true (entailment) or
false (contradiction) or even undetermined (neutral)
given a premise. This task is adopted for reasoning
over CT reports by Jullien et al. (2023) where two
new tasks are created based on NLI4CT dataset,
(1) NLI over CT reports and (2) extracting the evi-
dence/mention from CT reports to support the in-
ference label. The Semeval 2024 Task 2 NLI4CT
is also based on the same NLI4CT dataset (identi-
cal for training) with modifications in the test split
(more details in the Data section). The inferencing
is challenging as it requires multi-hop reasoning,
i.e., dependency and aggregation are required over
different pieces of the document.

Other than the complexity associated with multi-
hop reasoning, the domain and the associated word-
distribution also creates significant challenge due
to the presence of aliases, acronyms and biomedi-
cal terminologies (Lee et al., 2019a; Shickel et al.,
2018; Jin et al., 2019). This results in significant
drop in model performance as is evident in the
NLI results last year (Jullien et al., 2023) where it
was found that majority of the submitted solutions
failed to outperform the baseline solution with a
significant margin. The challenge is also evident in
the overall performance of models on general NLI
datasets (e.g., Stanford NLI or SNLI) where the
best model results in 93.1% F1-score (Wang et al.,
2021).

When it comes to different modeling approaches,
many of the top-performing models for the SNLI
dataset are ensemble in nature. While initial in-
dividual models are based on RNN, most of the
latest ones are based on the Transformer architec-
ture and pretrained language models like RoBERTa
or T5. Similar trend can also be seen in Jullien
et al. (2023) where the best model is an ensemble
and both DeBERTa and Flan-T5 made their way to
the top. Interestingly, LLMs like GPT3.5 could not
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make a significant boost in the performance.
In our approach, we explored three different

modeling paradigms, namely, (1) custom Graph At-
tention Network (GAT) based discriminative model
with novel features based on the dependency tree
of the input query, (2) generative models based on
T5 and Flan-T5 but enriched with synthetic data
used for both pre-training and fine-tuning, and (3)
LLM like GPT-4 applied with and without few-shot
examples. It is not surprising that the best perfor-
mance was obtained by GPT-4 stressing on the im-
portance of generic knowledge (that is embedded
in these LLMs) rather than fine-tuning, especially
when the dataset is not large enough.

The organization of the paper is as follows. In
the next section we provide a detailed literature
survey on the techniques employed for NLI. Next,
we present the details of the proposed approaches.
Subsequently, the model predictions and compar-
isons with other baseline methods are discussed.
Finally, conclusions are drawn and scope for future
works is outlined.

2 Related Work

The existing body of work for the general NLI is
quite rich where they are based on the Stanford
NLI (SNLI) dataset (550k examples but restricted
to a single text genre) (Bowman et al., 2015) and
three other NLI datasets present in GLUE (Wang
et al., 2018), namely, MNLI, QNLI and WNLI.
The MNLI (Multi-Genre Natural Language Infer-
ence Corpus) dataset (Williams et al., 2018) is a
crowd-sourced NLI dataset gathered from differ-
ent sources, e.g., government reports (and cov-
ers different genres, e.g., fiction, travel). Given
a premise-hypothesis pair of sentences, the task is
to predict one of the three classes, namely, whether
the premise sentence entails the hypothesis (en-
tailment), contradicts the hypothesis (contradic-
tion), or neither (neutral). The QNLI is modi-
fied from Stanford Question Answer Dataset (Ra-
jpurkar et al., 2016) where the task is to deter-
mine whether the context sentence contains the an-
swer to the question. Similarly, the WNLI dataset
is created from the Winograd Schema Challenge
(Levesque et al., 2012) where a coreference res-
olution problem is converted into an entailment
problem involving a pronoun and its referent. An-
other large NLI dataset is multi-genre NLI (MNLI)
that has 433k examples covering multiple genres
and supporting cross-genre evaluation. Some of the

best performances are obtained by RoBERTa (Liu
et al., 2019b), XLNet (Yang et al., 2020), Multi-
Task Deep Neural Network (MT-DNN) (Liu et al.,
2019a) and generative pre-training (GPT) approach
(Radford et al., 2018).

There are few NLI datasets in the biomedical
domain, namely, MedNLI (Romanov and Shivade,
2018) and BioNLI (Bastan et al., 2022). MedNLI
has 14k example pairs created by clinicians on
4,683 premises with three categories, entailment,
contradiction and neutral. BioNLI, on the other
hand, goes beyond sentence-level inference and in-
cludes large context as premises that requires han-
dling complex texts as well as domain knowledge.
Bastan et al. also includes negative examples as
adversarial hypothesis using nine strategies which
is a speciality of this dataset.

There are three biomedical domain specific mod-
els that are typically used on these datasets. Start-
ing with the available weights of BERT (pretrained
on general domain corpora), BioBERT (Lee et al.,
2019b) is trained on PubMed abstracts and PMC
full-text articles and shown to outperform BERT
on NER, relation extraction and Q&A, all in the
biomedical domain. PubMedBERT (Gu et al.,
2021) is a BERT model created from scratch (rather
than starting with general domain corpora) on
large biomedical domain dataset like PubMed and
achieved impressive performance for tasks like
NER and Q&A. BioLinkBERT (Yasunaga et al.,
2022) further exploited links between PubMed
documents to create a richer context that is used
to build a language model (LM). This model
has obtained SOTA performance on biomedical
datasets such as BLURB (Gu et al., 2021) and
BioASQ (Nentidis et al., 2020). Another model
that achieved SOTA performance on MedNLI is
SciFive (Phan et al., 2021) which is based on T5
paradigm.

There are not many studies on the application
of Graph Neural Network for NLI. Inspired by
KIM (Chen et al., 2018) where external knowledge
is infused for NLI task, Song et al. (2020) devel-
oped a joint training model where Graph Attention
Network (GAT) is used to represent the sub-graph
associated with entities that are involved in the hy-
pothesis. Another closely related GAT application
is from Chen et al. (2021) applied for fact verifi-
cation on Wikipedia articles. Typical applications
of GAT in the NLP domain are for question an-
swering, semantic parsing, information extraction
and Named Entity Recognition (Wu et al., 2022;
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Chakraborty, 2023).

3 Task Description & Data

The dataset for Multi-evidence NLI for Clinical
Trial (NLI4CT) is based on a collection of breast-
cancer CT reports2 containing statements, expla-
nations and labels annotated by domain expert an-
notators (Jullien et al., 2024). Each CT report has
four sections: (a) Eligibility criteria (a set of condi-
tions for patients to be included in the trial cohort),
(b) Intervention (information regarding the details
of treatments administered), (c) Results (what is
the outcome of these treatments) and (d) Adverse
events (if anything was observed during the period
of the trial). The annotated statements (hypothe-
sis) are claims extracted from one of the four sec-
tions (with an average length of 19.5 tokens) and
may even compare more than one report. Each
statement is qualified as either ’Contradiction’ or
’Entailment’.

There are 1700 examples in the training set and
200 in the development/validation set with exactly
50:50 split of the two classes. The test set has
5500 examples with unknown label distribution. A
typical example looks like the following:

1. Hypothesis: ’All the primary trial participants
do not receive any oral capecitabine, oral lapa-
tinib ditosylate or cixutumumab IV, in contrast
all the secondary trial subjects receive these.’

2. Primary context: ’Patients with early stage,
ER positive primary breast cancer undergo
FLT PET scan at baseline and 1-6 weeks after
the start of standard endocrine treatment. The
surgery follows 1-7 days after the second FLT
PET scan.’

3. Secondary context: ’Patients receive oral
capecitabine twice daily on days 1-14 and oral
lapatinib ditosylate once daily on days 1-21.
Courses repeat every 21 days in the absence of
disease progression or unacceptable toxicity’

4. Label: ’Contradiction’

where the secondary context provides the justifica-
tion of the label.

4 Methodology

We have explored three different modeling strate-
gies for the prediction of the inference label. They

2extracted from https://clinicaltrials.gov/ct2/home

Figure 1: The architecture of the custom model using
GAT and Multi-head attention (MHA).

are (1) custom discriminative model with GAT ap-
plied to create features from the dependency tree of
the hypothesis statement, (2) sequence-to-sequence
generative models based on T5 and Flan-T5 but en-
riched with synthetic data used in both pre-training
and fine-tuning and (3) LLM based solution with
and without Few-shot examples.

4.1 Discriminative Model

The architecture of our custom discriminative
model is shown in Fig 1. We use the tokens of
both the hypothesis and the premises to gener-
ate a representation using either a standard BERT
or RoBERTa model (referred as htokens for the
hypothesis and hpre for the premise. Following
the RGAT approach of Wang et al. (2020) (origi-
nally meant for aspect polarity detection) we utilize
the dependency structure of the input hypothesis
(Xh

dep) that captures the grammatical relations by
connecting the words with the corresponding de-
pendency type. However, we do not reorient the
dependency tree since there is no aspect word in our
application. Using GAT based processing of the
hypothesis dependency tree we generate additional
features hdep. Details of the GAT based processing
are provided in Appendix A. We concatenate both
the features of the hypothesis (hdep and htokens)
and pass through a linear layer to create the final
hypothesis feature, hhyp. For the premise, there is
only the token based feature, hpre, which is used as
a key and value in a standard multi-head attention
(MHA) with hhyp as the query vector. This process
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is repeated multiple times (maximum 3) with the
output of the previous MHA layer. Finally, we take
the first vector of the MHA output (corresponding
to [CLS]) and pass it through a linear layer to gen-
erate the logits. The model is trained for binary
cross-entropy loss.

4.2 Generative Model

In the 2023 SemEval challenge (Jullien et al.,
2023), it was found that generative models out-
performed discriminative models on the entailment
task. We also explore different T5 models (small
and base T5 and base SciFive) for the current en-
tailment task with the exception that we have also
generated synthetic data for pre-training as well as
fine-tuning.

4.2.1 Generation of Synthetic Data
For generating synthetic data for T5 pre-training we
follow (1) the standard T5 random span masking3

for both the hypothesis and premise sentences and
(2) ask GPT-4 to identify spans and mask them
subsequently. The first approach works better for
the quality of the data and we use this approach for
generating the final pre-training data. We have used
noise density = 0.4 and average noise span length
of 2 and generate 73,457 pre-training examples.

For generating additional fine-tuning data, we
use GPT-4 (with temperature = 0.7) with three ad-
ditional tasks, namely, (a) Question answering on
the premise text, and (b) additional inference data
from the same set of premises and (c) create a con-
tradictory hypothesis from the original hypothesis.
For the first task, examples look like

1. Question: ’How many weeks after the start of
standard endocrine treatment is the second
FLT PET scan conducted?’, Answer: ’1-6
weeks’

2. Question: ’On which days is oral capecitabine
given in Arm A?’, Answer: ’days 1-14’

Additional NLI examples are

1. Hypothesis:No adverse events were reported
in the clinical trial., Label: Entailment

2. Hypothesis: The clinical trial report had 765
adverse events in one section and 88 in another
section., Label: Contradiction

3https://github.com/google-research/text-to-text-transfer-
transformer

In this process we generate 11k Q&A pairs and 45k
NLI pairs and 1700 contradictory NLI examples
from the original 1700 training examples.

4.3 Large Language Model

It was also observed in 2023 SemEval challenge
(Jullien et al., 2023) that increase in model size also
improves the performance. We further validate this
hypothesis by applying GPT-4 to the NLI task with
and without few-shot examples.

4.4 Implementation Details

For the discriminative model we use the bi-affine
parser (Dozat and Manning, 2016) from AllenNLP
for dependency parsing. For all experiments,
the embedding dimension for the dependency re-
lation is same as the hidden dimension of the
BERT/RoBERTa model. We use 3 MHA layers
with 8 heads and 2 GAT layers with 6 heads and
all the dropouts are fixed at 0.3. The model has
a total of 110 million parameters for BERT-base
and 351 million parameters for BERT-large. The
last hidden state of the pre-trained BERT4 is used
for the initial token representations which is sub-
sequently fine-tuned. All models are trained for
50 epochs using Adam optimizer (Kingma and Ba,
2014) (with the default parameters), a learning rate
of 5× 10−5 and a batch size of 8.

We have pretrained both small and base T5 mod-
els for subsequent NLI task. Pretraining is done
for 20 epochs with a batch size of 16 and learning
rate of 5 × 10−5 with Adam optimizer. From the
73,457 span masked examples, we use 66111 for
training and 7346 for validation that is used to keep
track of the validation loss and saving the model.

5 Results

In this section, first we describe the performance of
the custom discriminative model followed by the
performance of the fine-tuned T5 model and finally
the results from GPT-4. Although we compute pre-
cision, recall and F1-score for all our experiments
we report only F1-score here. It is to be noted that
we did not evaluate our model on the test dataset
for all our experiments and submitted test results
only for the best validation performance. Thus, for
most of our experiments we report only the valida-
tion F1-score and also mention the test F1-score
wherever available. Table 1 summarizes the results
from the custom discriminative model. There are

4https://github.com/huggingface/transformers
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Model Type Base Model Model Parameters Dev-F1 Test-F1
Cross-attention BERT-base 110 M 0.64

Combined pooler BERT-base 110 M 0.65
Cross-attention + GAT BERT-base 110 M 0.67 0.49
Cross-attention + GAT BERT-large 351 M 0.67 0.50

Table 1: Performance of the custom discriminative model on the validation and test dataset

Model Type Model Additional Data Dev-F1 Test-F1
random initial weight small T5 (60.5 M) None 0.55
random initial weight small T5 (60.5 M) synthetic NLI data-I 0.51
random initial weight small T5 (60.5 M) synthetic NLI data-II 0.53

pretrained with CTR data small Flan-T5 (76 M) None 0.58
pretrained base T5 (223 M) None 0.64
pretrained base T5 (223 M) Synthetic Q&A data 0.43
pretrained base T5 (223 M) Synthetic NLI-I data 0.55
pretrained base T5 (223 M) Synthetic NLI-II data 0.54
pretrained Flan-T5 base (247 M) None 0.66 0.608
pretrained Flan-T5 base (247 M) Synthetic NLI-I - 0.535

- GPT-4 (0613) Zero-shot - 0.761

Table 2: Performance of different generative models including GPT-4.

four flavors of this model, one with BERT-large and
three with BERT-base. Within BERT-base, we have
one with cross-attention, one without (’combined-
pooler’ that only concatenates the two BERT out-
puts) and the third one with cross-attention and
GAT. It can be seen that the presence of GAT im-
proves the validation F1 score over the other vari-
ants. However, the performance does not improve
with the larger BERT model. Surprisingly, the cor-
responding test F1-score shows significant degra-
dation implying substantial difference in the test
data distribution (tokens, nature of problem or la-
bel) from that of the validation dataset. The small
number of validation dataset also contributes to this
mismatch.

Table 2 captures the details of different experi-
ments with generative models like, T5, Flan-T5 and
GPT-4. The size of the generative model (small vs.
base) has strong contribution to the performance as
confirmed earlier (Jullien et al., 2023). However,
the addition of synthetic data does not improve
(rather degrade) the F1-score which is evident for
both the small and base version of T5. This chal-
lenges the traditional belief of improvement due to
multi-task learning and indicates potential conflicts
in the synthetic data due to either a mismatch in
the nature of the problem (e.g., Q&A) or accuracy
of the synthetic data (since they are not manually
verified). The best result is obtained by a base Flan-

T5 model trained without any synthetic dataset that
results in a test F1-score of 0.61. Finally, using
GPT-4 (version 0613, maximum context length of
8192) without any Few-shot examples results in
the best test F1-score of 0.76.

6 Conclusion

In this work we have explored both discrimina-
tive and generative models for NLI applied to CT
reports. While our custom discriminative model
outperforms generative models like T5-base and
Flan-T5-base the same is not true when evaluated
on the test dataset indicating the limitation of the
small validation dataset and significant change in
data distribution. Since the training dataset is small
(1700) we also explore enriching the same with
synthetic data created by LLMs like GPT-4 for ad-
ditional task (e.g., Q&A) and the same NLI task.
However, the addition of these synthetic data sub-
stantially degrades the performance rather than im-
proving pointing to a deeper analysis of the role of
synthetic data for NLI task. The only exception is
in the pretraining synthetic data created for small
Flan-T5 model that boosted the final performance.
The best result is obtained by GPT-4 without using
Few-shot examples and we suspect both the addi-
tion of examples and modification of the prompt
can further improve the performance.
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A Graph Attention Network

The dependency tree can be represented by a graph
structure where each node is a word and the edges
between them are represented by the dependency

relation, e.g., nominal subject, adverbial modifier,
etc. Following Wang et al. (2020), given a neigh-
borhood of a node Ni, the node embeddings can
be iteratively updated using multi-head attention
(with K attentional heads) as

hl+1
atti = concatKk=1

∑

j∈Ni

αlk
ijW

l
kh

l
j , (1)

αlk
ij = attention(i, j), (2)

where hl+1
atti is the attention head of node-i at layer

l+1 and αlk
ij is the normalized attention coefficient

computed by the k-th attention at layer l and W l
k is

an input transformation matrix.
In addition to the attention head of word-i a rela-

tional head is also computed for this node as

hl+1
reli

= concatMm=1

∑

j∈Ni

βlm
ij W l

mhlj , (3)

glmij = σ(relu (rijWm1 + bm1)Wm2 + bm2) (4)

βlm
ij = exp(glmij )/

∑

j∈Ni

exp(glmij ) (5)

where rij denotes the relation embedding between
node-i and j and M is the number of relational
heads. The final representation of each word (node)
is a concatenation of the attention and relational
embeddings:

xl+1
i = concat(hl+1

atti , h
l+1
reli

) (6)

hl+1
i = relu

(
Wl+1x

l+1
i + bl+1

)
(7)
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