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Abstract
This paper presents the Hallucination Recog-
nition Model for New Experiment Evaluation
(HaRMoNEE) team’s winning (#1) and #10
submissions for SemEval-2024 Task 6: Shared-
task on Hallucinations and Related Observ-
able Overgeneration Mistakes (SHROOM)’s
two subtasks. This task challenged its partic-
ipants to design systems to detect hallucina-
tions in Large Language Model (LLM) out-
puts. Team HaRMoNEE proposes two ar-
chitectures: (1) fine-tuning an off-the-shelf
transformer-based model and (2) prompt tuning
large-scale Large Language Models (LLMs).
One submission from the fine-tuning approach
outperformed all other submissions for the
model-aware subtask; one submission from
the prompt-tuning approach is the 10th-best
submission on the leaderboard for the model-
agnostic subtask. Our systems also include
pre-processing, system-specific tuning, post-
processing, and evaluation.

1 Introduction

The HaRMoNEE team proposes two architectures
to use on the SHROOM (Mickus et al., 2024) task:
transformer model fine-tuning and large-scale LLM
prompt tuning. First, we pre-process the data. We
identify two fields from each example to use in our
models.

For the fine-tuning models, the fields are then
formatted into a single string with a separator to-
ken. We use three different training strategies with
SHROOM data to improve performance on the test
sets. Finally, we run the model on the test set and
post-process the data to get a score. For prompt-
tuning, the prompt is constructed around the two
selected fields. Using the validation datasets, we
experiment with two models and two prompts. We
select the best of both and finally evaluate the test
sets.

This paper reports our results from these experi-
ments submitted during the SHROOM task’s eval-

uation phase. We discuss the data, the task, our
methods, and the experiments we ran. In addition,
we analyze and discuss our results and make pro-
posals for future work in hallucination recognition.
We make our code and best results publicly avail-
able.1

2 Related Work

Several approaches have been taken to scoring
faithfulness and identifying hallucinations. La-
ban et al. (2022a) proposed to use Natural Lan-
guage Inference (NLI) to detect inconsistency in
summarization tasks. They applied NLI to sen-
tence pairs and aggregated the scores on the doc-
ument level to obtain a faithfulness score. Lat-
timer et al. (2023) adopted a similar method by
chunking the whole document into smaller pieces.
However, they prompted LLMs to generate their
scores. TrueTeacher (Gekhman et al., 2023) lever-
aged LLMs to generate synthetic data that could
augment models’ ability to identify factual incon-
sistencies in summarization tasks. AlignScore (Zha
et al., 2023) is a unified evaluation metric for fac-
tual inconsistency that is based on the information
alignment between two arbitrary text pieces. Self-
CheckGPT (Manakul et al., 2023) proposed using
LLMs, particularly GPT models, to generate multi-
ple potential consistent/contradictory responses as
a task-agnostic method for hallucination detection
and fact-checking.

Several datasets for NLI and hallucination are
commonly used to pre-train and fine-tune models
for these tasks. SNLI (Bowman et al., 2015) is a
large NLI dataset collected from image captions. It
consists of sentence pairs labeled as entailment,
contradiction, or neutral. PAWS (Zhang et al.,
2019) proposed a new dataset for paraphrase iden-
tification that features non-paraphrase pairs with
high lexical overlap. Honovich et al. (2022) stud-

1https://github.com/brandeis-llc/shroom
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Field Value
task “DM”
src “I’m an avid reader. What is the meaning of avid?”
hyp “Having an intense interest in something.”
tgt “enthusiastic; keen; eager; showing great interest in something or desire to do something”
ref “tgt”
model “ltg/flan-t5-definition-en-base”
labels [“Not Hallucination”, “Not Hallucination”, “Hallucination”, “Not Hallucination”, “Not Hallucination”]
label “Not Hallucination”
p(Hallucination) 0.2

Figure 1: Example data

ied the factual consistencies from text generation
systems. They proposed TRUE, an automatic fac-
tual consistency assessment tool for tasks including
summarization, dialogue generation, fact verifica-
tion, and paraphrase detection. HaluEval (Li et al.,
2023) proposed a dataset with human-annotated
hallucinated instances specifically for evaluating
the performance of LLMs in recognizing hallucina-
tions.

Laban et al. (2022b) and Zha et al. (2023) both
fine-tune pre-trained language models to obtain
a score for each example indicating faithfulness
between two texts or the likelihood of the presence
of hallucination in one of the texts. Lattimer et al.
(2023), Gekhman et al. (2023), and Manakul et al.
(2023) all use LLMs in various ways to perform
the same tasks.

3 Data and Task

SHROOM is split into two subtasks, model-aware
and model-agnostic, with corresponding datasets.
Task participants receive two sets of unlabeled train-
ing data, two sets of labeled validation data, and
two unlabeled test sets. There is also a smaller
labeled trial dataset.

3.1 Datasets
Table 1 shows a breakdown of each dataset. Ta-
ble 2 shows a breakdown by label for the labeled
datasets. The training sets are evenly split by ex-
ample task. The validation and test sets are split
25:37.5:37.5. In each of the validation and test sets,
there are more examples of “Not Hallucination”
than “Hallucination”.

Figure 1 is an example from the model-aware
validation set. Every datapoint in the datasets in-
cludes the following fields: task (task: the task
that the model is trained to perform, e.g. “DM”,
“MT”, “PG”2), src (source: the text passed to the

2DM = Definition Modeling, MT = Machine Translation,

model), hyp (hypothesis: the model output), tgt
(target: the “gold” text that the model should out-
put), ref (reference: which field should serve as a
reference for semantic information, e.g. “src” or
“tgt”).

The model-aware datasets include the additional
field model (the name of the model used). The la-
beled data includes labels (the list of votes from
all annotators), label (“Hallucination” or “Not
Hallucination”), and p(Hallucination) (proba-
bility of hallucination: the likelihood that the model
output contains hallucinated content).

The validation and test sets were labeled through
crowdsourcing. Five annotators annotated each
datapoint for the validation and test sets, and three
annotators each for the trial set. The label of each
datapoint is the label the majority of annotators
chose. The probability of hallucination is reported
as the ratio of “Hallucination” labels to all labels.

3.2 Task

This task is a binary classification task to determine
whether the text generated by the LLM contains any
hallucinated content. Accuracy is the main bench-
mark for this task. This task also uses Spearman’s
correlation coefficient, ρ, to measure the degree of
agreement using p(Hallucination).

From the example in Figure 1, we see the chal-
lenges of this task. Annotators were asked to
determine whether the hypothesis, “Having an
intense interest in something.” contains halluci-
nated information. In addition, annotators know
that the hypothesis was generated by the model
tg/flan-t5-definition-en-base, a Definition
Modeling model, from the input “I’m an avid
reader. What is the meaning of avid?” Anno-
tators are told to use “enthusiastic; keen; eager;
showing great interest in something or desire to do
something” as a semantic reference to make their

PG = Paraphrase Generation
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Dataset Trial Train Agnostic Train Aware Val Agnostic Val Aware Test Agnostic Test Aware
PG 9 10,000 10,000 125 125 375 375
MT 35 10,000 10,000 187 188 562 563
DM 36 10,000 10,000 187 188 563 562
Total 80 30,000 30,000 499 501 1,500 1,500

Table 1: Dataset Task Statistics, PG = Paraphrase Generation, MT = Machine Translation, DM = Definition
Modelling

Dataset Val AG Val AW
Hallucination 218 206
Not Hallucination 281 295
Total 499 501
Dataset Test AG Test AW
Hallucination 611 551
Not Hallucination 889 949
Total 1,500 1,500

Table 2: Dataset Label Statistics, AG = model-agnostic,
AW = model-aware

decision.
In this example from the model-aware valida-

tion dataset, four out of five annotators label this
as “Not Hallucination”. A simple probabilistic
model may not be able to identify hallucinations.
In this example, the target includes a few defini-
tions of avid. Human annotators recognize that
only matching one definition indicates no halluci-
nation is present, while a probabilistic model will
only see that very few tokens between these fields
match. Here, one annotator did believe there was
hallucination present, possibly because the hypoth-
esis was not equally diverse or not semantically
similar enough.

Another challenge is approximating the diversity
of what humans consider a “Hallucination” to be
across the three example tasks (PG, MT, DM). With
all of this in mind, we formulate methods to identify
hallucinations in LLM output.

4 Methods

4.1 Model Fine-Tuning

We first explore how transformer-based models
would perform on this task. Due to the similarity
of this task to NLI, models made for hallucination
detection and NLI models are considered. For our
preliminary experimentation, all models are trained
and tested using only the validation datasets as they
are labeled. Each of the validation datasets was

split 80/20 into a train and test subset. The best-
performing model is used for evaluation on the test
set. Our preliminary experimentation shows that
hallucination recognition models significantly and
consistently outperform NLI models.

Despite the similarity of NLI to this task,
the SHROOM dataset is more diverse than NLI
datasets. SHROOM’s three example tasks include
many different forms of hallucinations that NLI
models do not encounter as frequently or at all in
their training. Models for hallucination recognition
are usually trained on NLI datasets as well as oth-
ers. This data diversity makes hallucination models
especially well suited for the hallucinations and
data in the SHROOM task.

After identifying the best model, we experiment
with different fine-tuning approaches. We vary the
number of epochs, which data the model is fine-
tuned on, and the order of fine-tuning. Additionally,
we inference these models before any training to
serve as a baseline.

All models we fine-tune take in two texts as
input. The first text is the frame of reference to
determine if hallucinated material is present. The
second text is the text that may or may not have a
hallucination. The output of the model is a number
from 0 to 1. A score of less than 0.5 indicates that
a hallucination is “likely” present.

A score of 0 represents high confidence that hal-
lucination is present; a score of 1 represents high
confidence that hallucination is not present. Be-
cause this scale is inverse to the scale used by the
task organizers, where p(Hallucination) being 1
indicates all annotators have chosen the label “Hal-
lucination”, the model output is subtracted from 1
and the difference is used as p(Hallucination).

For our fine-tuning model architecture (as shown
in Figure 3), we pre-process each datapoint by se-
lecting two text fields to pass to the model and
inverting the numerical scale to match the model
output. After training, we post-process the output
by re-inverting the numerical scale to get our label
and p(Hallucination) fields.
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Definition modeling is a task to generate a def-
inition for a given word in context. In the ex-
ample shown below, The source corresponds
to the context; The target is the correct defi-
nition for this context; the hypothesis is the
predicated definition from the model.

Example:
source: The sides of the casket were cov-
ered with heavy black broadcloth, with velvet
caps, presenting a deep contrast to the rich
surmountings. What is the meaning of sur-
mounting?
target: A decorative feature that sits on top of
something.
hypothesis: A sloping top.

Your task is to answer whether the hypothesis
from the example contains any hallucination
(e.g., incorrect semantic information unsup-
ported or inconsistent with the source) and
explain why. The target is inferred from the
source without any hallucination. You should
consider both the source and the target before
making a judgment on the hypothesis.

The output should be formatted as a JSON
instance that conforms to the JSON schema
below.
As an example, for the schema {“properties”:
{“foo”: {“title”: “Foo”, “description”: “a list
of strings”, “type”: “array”, “items”: {“type”:
“string”}}}, “required”: [“foo”]}
the object {“foo”: [“bar”, “baz”]} is a well-
formatted instance of the schema. The object
{“properties”: {“foo”: [“bar”, “baz”]}} is not
well-formatted.

Here is the output schema:
{“properties”: {“answer”: {“title”: “Answer”,
“description”: “answer ’Yes’ if the hypothe-
sis contains hallucination; answer ’No’ if the
hypothesis does not contain hallucination”,
“type”: “string”}, “reason”: {“title”: “Rea-
son”, “description”: “a brief explanation to
your answer”, “type”: “string”}}, “required”:
[“answer”, “reason”]}

Figure 2: GPT Prompt 1 (Three Fields)

4.2 LLM Prompt-Tuning

Our team also uses LLMs as black-box hallucina-
tion detection systems. We first experiment with
zero-shot classification on the validation sets. We
use GPT-3.5 (Brown et al., 2020) and GPT-4 (Ope-
nAI, 2023) with the prompt shown in Figure 2. If
a model performs well on the validation sets, it
would also be used to evaluate the test sets.

After choosing a model, we tune the prompt.
The prompts we experiment with vary with respect
to which fields are provided, the structure/order of
the prompt, the inclusion of the task definition, and
the overall verbosity of the prompt. One additional
experiment we performed was the specific format
of the model response. Asking a large-scale LLM
to respond to a Yes/No question and give a reason
may lead to many different responses. Although
we expect the model to answer “Yes” or “No” when
told to, it may ignore that part of the instruction
and respond in a way that is correct but not directly
interpretable by our post-processing such as “This
contains a hallucination” instead of “Yes”.

Asking the model to respond in JSON format
increased the likelihood that the answer would be
directly interpretable. Additionally, we ask our
models to provide explanations for their “Yes” or
“No” responses. While we do not use these to de-
termine the label or p(Hallucination) for any
datapoint, we found that asking LLMs to provide
reasoning boosted performance. Shorter prompts
such as those seen in Figure 5 were also used with
these models. To ensure replicability, we set the
hyperparameter temperature to 0.0. Setting this
hyperparameter as such leads to increased deter-
minism in responses.

Our post-processing assigns the label field
“Hallucination” or “Not Hallucination” based on
the value of the key answer found in GPT’s JSON
output. For these models, p(Hallucination)
was set naively. Therefore, if the model returns
...{“answer”: “Yes”}..., label is “Halluci-
nation” and p(Hallucination) is 1. When “Not
Hallucination” is the label, p(Hallucination) is
0.

5 Experiments

Each datapoint contains up to three semantically
relevant text fields, hyp, src, and tgt. In the
model-agnostic subtask, these fields are always
provided. In the model-aware subtask, tgt is left
blank if the task is Paraphrase Generation (PG).
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Figure 3: Fine-tuning architecture

Data
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(Interpret JSON)
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Figure 4: Prompt-tuning architecture

Your task is to determine whether the hypoth-
esis contains any hallucinations based on the
target. (e.g., incorrect semantic information)
and explain why. Only consider target and
hypothesis when making the judgement. Your
answer must start with ’Yes’ or ’No’.

Example:
target: A decorative feature that sits on top of
something .
hypothesis: A sloping top .

The output should be formatted as a JSON
instance that conforms to the JSON schema
below.
As an example, for the schema {“properties”:
{“foo”: {“title”: “Foo”, “description”: “a list
of strings”, “type”: “array”, “items”: {“type”:
“string”}}}, “required”: [“foo”]}
the object {“foo”: [“bar”, “baz”]} is a well-
formatted instance of the schema. The object
{“properties”: {“foo”: [“bar”, “baz”]}} is not
well-formatted.

Here is the output schema:
{“properties”: {“answer”: {“title”: “Answer”,
“description”: “answer ’Yes’ if the hypothe-
sis contains hallucination; answer ’No’ if the
hypothesis does not contain hallucination”,
“type”: “string”}, “reason”: {“title”: “Rea-
son”, “description”: “a brief explanation to
your answer”, “type”: “string”}}, “required”:
[“answer”, “reason”]}

Figure 5: GPT Prompt 2 (Two Fields)

We experiment by varying which of these fields get
passed to our model and the structure of the model
input.

We conduct a series of experiments using two ap-
proaches to detecting hallucinations. We first fine-
tuned existing hallucination detection models using
SHROOM validation data. Second, we experiment
with a series of prompts to increase determinism
and accuracy of LLMs on the same task. We show
similarities of note between the best results of each
architecture.

5.1 Fine-Tuning Experiments

The model that we find to perform the best on
this task is a model to detect LLM-generated
hallucinations. We find that the best results
were obtained from this model when the in-
put is of the form [CLS]+tgt+[SEP]+hyp
for DM and MT. When tgt is not provided
for the model-aware PG examples, the input
[CLS]+src+[SEP]+hyp is used. This model is
vectara/hallucination_evaluation_model
on HuggingFace. This model took
microsoft/deberta-v3-base (He et al.,
2021) and trained it on two NLI datasets, SNLI
(Bowman et al., 2015) and MultiNLI (Williams
et al., 2018), as well as one paraphrase dataset,
Paraphrase Adversaries from Word Scrambling
(PAWS) (Zhang et al., 2019).

We first conducted our preliminary experiments
on the split validation sets. After, we took the best-
performing model, fine-tuned it on the entire vali-
dation set(s), and evaluated it on the test set(s). We
experimented with varying the number of epochs,
the datasets used, and the training order.

For both the model-agnostic and model-aware
subtasks, we experimented with inferencing, 1-5
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Dataset Test AG Test AW
Metric acc ρ acc ρ

SHROOM Baseline 0.697 0.403 0.745 0.488
Corresponding Dataset 0.783 0.663 0.813 0.699
All Data 0.785 0.652 0.808 0.713
All + Corresponding 0.783 0.683 0.810 0.671
GPT-4 (Two Fields) 0.814 0.626 0.783 0.614

Table 3: Best results from each approach and the base-
line results. Corresponding Dataset, All Data, and All +
Corresponding are fine-tuning results; GPT-4 is prompt-
tuning results

epochs of training on the corresponding validation
dataset, 1-5 epochs of training on all validation
data, and 1, 3, or 5 epochs of training on both
validation datasets before one epoch of tuning on
the corresponding validation dataset.

5.2 Prompt-Tuning Experiments
In addition to fine-tuning off-the-shelf models, we
experiment with GPT-3.5 and GPT-4 using several
prompts. After evaluating the validation sets on
GPT-3.5 and GPT-4, further prompt tuning was
done on GPT-4 due to its superior performance.

The first prompt we experiment with includes
hyp, src, and tgt, task instructions, the example
task definition, and the main prompt. The second
prompt we used only included two fields (hyp and
tgt for DM and MT, hyp and src for PG), task
instructions, and the main prompt.

6 Results

Our best results from each training architecture are
shown in Table 3. One notable similarity between
our best results from each system is that they re-
quired pre-processing (data pruning). We obtain
our best results by only including two of the three
meaningful fields for each datapoint in both fine-
tuning and prompt-tuning methods. For the fine-
tuning methods, converting three fields into two via
concatenation underperformed ignoring one field
(src was ignored if tgt was provided). Addition-
ally, removing the definitions of DM, MT, and PG
from the prompt led to improved results.

Despite not making explicit use of the model
field for the model-aware subtask, our models’ best
performances earned a higher spot in the model-
aware subtask than the model-agnostic one. For
the model-aware subtask, we use src when tgt
is not provided for the model-aware PG examples.
We also believe it to be due to the differences in
other fields. For instance, the DM examples for the

Dataset Test AG Test AW
PG 0.789 0.875
MT 0.851 0.837
DM 0.794 0.747
All 0.814 0.813

Table 4: Accuracy of best submission to each subtask
split by example task

# of epochs 0 1 2 3 4 5
Agnostic Data 0.756 0.769 0.776 0.776 0.783 0.783
All Data 0.756 0.779 0.777 0.777 0.785 0.780
All + Agnostic Data 0.756 0.783 0.775 0.783
Aware Data 0.794 0.804 0.804 0.805 0.813 0.803
All Data 0.794 0.796 0.808 0.808 0.808 0.797
All + Aware Data 0.794 0.808 0.810 0.795

Table 5: Table of accuracy data shown in Figure 6

model-aware and model-agnostic tasks are format-
ted differently. The model-aware examples ask for
the definition explicitly at the end of the src field
(e.g. “... What is the meaning of spoilage ?”). The
model-agnostic examples put the word to define in
tags (e.g. “The <define> sacrifice bunt </define>
was fielded cleanly...”). These different tagging
strategies reflect inputs different DM models take
in. Based on our results in Table 4, it seems that our
systems are better are recognizing hallucinations
obtained via <define> tags.

Scores within .001 point of each other were ob-
tained for each subtask using these systems, yet
different systems performed the best for each. Our
shorter prompt with GPT-4 produced our best re-
sults (#10) for the model-agnostic subtask, .117
points above the task organizer baseline. Training
on the corresponding SHROOM validation dataset
produced the best results (#1) for the model-aware
subtask, .068 points above the task organizer base-
line.

6.1 Fine-Tuning Results

Our team’s first experiments on the test set involved
varying the number of epochs, the training set(s),
and the training order. These results for the model-
agnostic and model-aware subtasks are shown in
Figure 6 and Table 5. The 0 epoch results are from
inferencing the model before training on SHROOM
data. They serve as a baseline for all training strate-
gies. This model’s strong performance at inference
for both test sets made it a strong contender for
more fine-tuning. On the model-agnostic subtask,
inferencing resulted in an accuracy of 0.756. On
the model-aware subtask, it obtained a score of
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Figure 6: Line graphs showing accuracy on the test sets
of both subtasks after fine-tuning

Figure 7: Confusion matrix for the #1 submission on
the model-aware dataset (fine-tuning approach)

Figure 8: Confusion matrix for the #10 submission on
the model-agnostic dataset (prompt-tuning approach)

Dataset Val AG Val AW
SHROOM Baseline 0.649 0.707
GPT-3.5 0.661 0.596
GPT-4 (Three Fields) 0.778 0.751
GPT-4 (Two Fields) 0.782 0.773

Table 6: Comparison of the baseline results to our results
on the validation sets using accuracy

0.794.
Training with any SHROOM data led to better

performance on the test set. For the model-agnostic
subtask, our team’s best result came from fine-
tuning the model on the model-agnostic and model-
aware datasets together for four epochs. This in-
creased the accuracy from our inference baseline by
0.029 to 0.785. On the model-aware subtask, our
team’s best results were obtained after fine-tuning
the model using only the model-aware data for four
epochs. This increased the accuracy from the in-
ference baseline by 0.019 to 0.813, our winning
submission for the model-aware subtask.

As seen in Figure 7, this architecture performs
well on the SHROOM model-aware subtask. Fig-
ure 9 and Table 4 show a breakdown by task. This
model performed very well on PG and MT but
much worse on DM. We believe this task has the
lowest accuracy for the same reason we identified
earlier in the paper. The target, source, and hypoth-
esis fields may vary much more than in the other
two tasks. The target may be much more or much
less semantically rich than the hypothesis, which
can be interpreted by human annotators and out
models in many different ways. For the winning
submission, the accuracy for the PG task was .875,
MT was .837, and DM was .747.
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Figure 9: Confusion matrices for the #1 submission on the model-aware dataset (fine-tuning method) split by
example task. Left to right: Paraphrase Generation, Machine Translation, Definition Modeling

Figure 10: Confusion matrices the #10 submission on the model-agnostic dataset (prompt-tuning method) split by
example task. Left to right: Paraphrase Generation, Machine Translation, Definition Modeling

6.2 LLM-Tuning Results

Our LLM experimentation results are shown in
Table 6. Because we experimented with prompt-
tuning on the validation sets, we were able to di-
rectly compare our results to the baselines provided
by the task organizers. We found that GPT-3.5 per-
formed worse than the baseline for one subtask
and did not pursue further experiments with it. We
tested two prompts on the validation sets.

Our first prompt (Figure 2) includes all mean-
ingful fields that annotators had access to when
labeling the data. For the model-agnostic subtask,
this prompt outperformed the baseline by 0.129
with an accuracy of 0.778. it improved the accu-
racy in the model-aware subtask by 0.044 with an
accuracy of 0.751.

Our second prompt (Figure 5) includes selected
fields of meaningful information from each data-
point. It does not explain the example task (DM,
MT, or PG) for the datapoint but still explains the
shared-task instructions and output formatting in-
structions. This reduction in verbosity led to im-
proved performance for both subtasks. For the
model-agnostic validation set, this change resulted
in a .133 point increase in accuracy above the base-
line and a .004 point increase compared to the first
prompt. For the model-aware validation set, this

change resulted in a .066 point increase compared
to the baseline and a .022 increase compared to the
first prompt.

We also experimented with few-shot learning
and found that both random examples and selected
examples did not improve performance on either
subtask. Overall, we found that a less verbose
prompt outperformed a more verbose prompt indi-
cating that GPT has difficulty making connections
across large amounts of text. Additional informa-
tion that GPT may not need in each prompt, such
as the example task definition and the third field,
adds noise to the prompt and impairs its ability to
detect hallucinations.

The confusion matrices in Figures 8 and 10 show
the performance of this architecture on the entire
test set and on each task for the model-agnostic sub-
task. For this submission, the accuracy for the PG
task was .789, significantly lower than the other ex-
ample tasks. We believe this is because we used the
tgt field for all tasks here as it is always provided.
In the model-aware subtask, tgt is not provided
for PG examples, so src is used instead. This
may indicate that tgt is best for MT and DM, but
src for PG even if tgt is provided. The accuracy
for the MT task examples was .851, similar to the
model-aware subtask. The accuracy for Definition
Modeling was .794.
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7 Discussion and Conclusion

In this paper, we present two systems for hallucina-
tion recognition, one transformer-based model fine-
tuned on SHROOM data and one prompt-tuned
zero-shot classification model using GPT-4. Our
results show that both systems can better handle
semantically complex tasks such as hallucination
recognition when only semantically relevant infor-
mation is provided. Pre-processing each example
is essential to good performance on this task. From
our results, fine-tuning using available labeled data
from all tasks improves performance from the base-
line. Additionally, pruning information such as
over-explicit instructions, irrelevant fields, and def-
initions from prompts also improves performance
from the baseline.

Some avenues we did not fully explore include
training on pseudo-labeled training data, training
on additional datasets besides SNLI, MultiNLI, and
PAWS (specifically adversarial translation or word
disambiguation datasets), as well as experimenting
with dense paraphrasing and frame saturation meth-
ods as proposed by Tu et al. (2023). In this shared
task, our team found that it is easier to harmonize
by tuning fewer, clearer voices.
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