@inproceedings{chandakacherla-etal-2024-uic,
title = "{UIC} {NLP} {GRADS} at {S}em{E}val-2024 Task 3: Two-Step Disjoint Modeling for Emotion-Cause Pair Extraction",
author = "Chandakacherla, Sharad and
Bhargava, Vaibhav and
Parde, Natalie",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Tayyar Madabushi, Harish and
Da San Martino, Giovanni and
Rosenthal, Sara and
Ros{\'a}, Aiala},
booktitle = "Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.semeval-1.198/",
doi = "10.18653/v1/2024.semeval-1.198",
pages = "1373--1379",
abstract = "Disentangling underlying factors contributing to the expression of emotion in multimodal data is challenging but may accelerate progress toward many real-world applications. In this paper we describe our approach for solving SemEval-2024 Task {\#}3, Sub-Task {\#}1, focused on identifying utterance-level emotions and their causes using the text available from the multimodal F.R.I.E.N.D.S. television series dataset. We propose to disjointly model emotion detection and causal span detection, borrowing a paradigm popular in question answering (QA) to train our model. Through our experiments we find that (a) contextual utterances before and after the target utterance play a crucial role in emotion classification; and (b) once the emotion is established, detecting the causal spans resulting in that emotion using our QA-based technique yields promising results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chandakacherla-etal-2024-uic">
<titleInfo>
<title>UIC NLP GRADS at SemEval-2024 Task 3: Two-Step Disjoint Modeling for Emotion-Cause Pair Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sharad</namePart>
<namePart type="family">Chandakacherla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vaibhav</namePart>
<namePart type="family">Bhargava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Parde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Disentangling underlying factors contributing to the expression of emotion in multimodal data is challenging but may accelerate progress toward many real-world applications. In this paper we describe our approach for solving SemEval-2024 Task #3, Sub-Task #1, focused on identifying utterance-level emotions and their causes using the text available from the multimodal F.R.I.E.N.D.S. television series dataset. We propose to disjointly model emotion detection and causal span detection, borrowing a paradigm popular in question answering (QA) to train our model. Through our experiments we find that (a) contextual utterances before and after the target utterance play a crucial role in emotion classification; and (b) once the emotion is established, detecting the causal spans resulting in that emotion using our QA-based technique yields promising results.</abstract>
<identifier type="citekey">chandakacherla-etal-2024-uic</identifier>
<identifier type="doi">10.18653/v1/2024.semeval-1.198</identifier>
<location>
<url>https://aclanthology.org/2024.semeval-1.198/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>1373</start>
<end>1379</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UIC NLP GRADS at SemEval-2024 Task 3: Two-Step Disjoint Modeling for Emotion-Cause Pair Extraction
%A Chandakacherla, Sharad
%A Bhargava, Vaibhav
%A Parde, Natalie
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Tayyar Madabushi, Harish
%Y Da San Martino, Giovanni
%Y Rosenthal, Sara
%Y Rosá, Aiala
%S Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F chandakacherla-etal-2024-uic
%X Disentangling underlying factors contributing to the expression of emotion in multimodal data is challenging but may accelerate progress toward many real-world applications. In this paper we describe our approach for solving SemEval-2024 Task #3, Sub-Task #1, focused on identifying utterance-level emotions and their causes using the text available from the multimodal F.R.I.E.N.D.S. television series dataset. We propose to disjointly model emotion detection and causal span detection, borrowing a paradigm popular in question answering (QA) to train our model. Through our experiments we find that (a) contextual utterances before and after the target utterance play a crucial role in emotion classification; and (b) once the emotion is established, detecting the causal spans resulting in that emotion using our QA-based technique yields promising results.
%R 10.18653/v1/2024.semeval-1.198
%U https://aclanthology.org/2024.semeval-1.198/
%U https://doi.org/10.18653/v1/2024.semeval-1.198
%P 1373-1379
Markdown (Informal)
[UIC NLP GRADS at SemEval-2024 Task 3: Two-Step Disjoint Modeling for Emotion-Cause Pair Extraction](https://aclanthology.org/2024.semeval-1.198/) (Chandakacherla et al., SemEval 2024)
ACL