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Abstract

Large Language models (LLMs) have demon-
strated state-of-the-art performance in vari-
ous natural language processing (NLP) tasks
across multiple domains, yet they are prone to
shortcut learning and factual inconsistencies.
This research investigates LLMs’ robustness,
consistency, and faithful reasoning when per-
forming Natural Language Inference (NLI) on
breast cancer Clinical Trial Reports (CTRs) in
the context of SemEval 2024 Task 2: Safe
Biomedical Natural Language Inference for
Clinical Trials. We examine the reasoning ca-
pabilities of LLMs and their adeptness at log-
ical problem-solving. A comparative analysis
is conducted on pre-trained language models
(PLMs), GPT-3.5, and Gemini Pro under zero-
shot settings using Retrieval-Augmented Gen-
eration (RAG) framework, integrating various
reasoning chains. The evaluation yields an F1
score of 0.69, consistency of 0.71, and a faith-
fulness score of 0.90 on the test dataset.

1 Introduction

Clinical trials serve as essential endeavors to eval-
uate the effectiveness and safety of new medical
treatments, playing a pivotal role in advancing ex-
perimental medicine. Clinical Trial Reports (CTRs)
detail the methodologies and outcomes of these
trials, serving as vital resources for healthcare pro-
fessionals in designing and prescribing treatments.
However, the sheer volume of CTRs (e.g., exceed-
ing 400,000 and proliferating) presents a challenge
for comprehensive literature assessment when de-
veloping treatments (Bastian et al., 2010). Natural
Language Inference (NLI) (Bowman et al., 2015)
emerges as a promising avenue for large-scale inter-
pretation and retrieval of medical evidence bridg-
ing recent findings to facilitate personalized care
(DeYoung et al., 2020; Sutton et al., 2020). The
SemEval 2024 Task 2 on the Natural Language In-
ference for Clinical Trials (NLI4CT) (Jullien et al.,

2024) revolves around annotating statements ex-
tracted from breast cancer CTRs1 and determining
the inference relation between these statements and
corresponding sections of the CTRs, such as Eligi-
bility criteria, Intervention, Results, and Adverse
events. By systematically intervening in the state-
ments, targeting numerical, vocabulary, syntax, and
semantic reasoning, the task aims to investigate
Large Language Models (LLM)s’ consistency and
faithful reasoning capabilities.

In this paper, we experiment with Gemini
Pro (Team et al., 2023), GPT-3.5 (Brown et al.,
2020), Flan-T5 (Longpre et al., 2023) and several
pre-trained language models (PLMs) trained on
biomedical datasets, namely BioLinkBERT (Ya-
sunaga et al., 2022), SciBERT (Beltagy et al.,
2019), ClinicalBERT (Huang et al., 2019). We
conducted zero-shot evaluations of Gemini Pro and
GPT-3.5, employing Retrieval Augmented Genera-
tion (RAG) framework (Lewis et al., 2020) integrat-
ing Tree of Thoughts (ToT) reasoning (Yao et al.,
2023) facilitating multiple reasoning paths. Our
experiments involved applying various instruction
templates to guide the generation process. These
templates were refined through manual compari-
son of the labels within the training dataset against
those generated by the models. The PLMs were
fine-tuned on the provided training dataset, while
the Flan-T5 model was assessed under zero-shot
conditions.

Gemini Pro emerged as the top-performing
model among all the experimented models, achiev-
ing an F1 score of 0.69, with consistency and faith-
fulness scores of 0.71 and 0.90, respectively, on the
official test dataset. Notably, a comparative anal-
ysis between GPT-3.5 and Gemini Pro revealed
shortcomings in GPT-3.5’s performance, particu-
larly in instances requiring numerical reasoning.
For detailed examination of such instances, please

1https://clinicaltrials.gov/ct2/home
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Clinical Trial Report 1

Eligibility Criterion
         ...
Intervention

      ...
Single arm of healthy postmenopausal women to 

      have two breast MRI (baseline and post-treatment)
      ...

Results
         ...
Adverse Events

Adverse Events 1:            
•  Total: 69/258 (26.74%)
• Anaemia 3/258 (1.16%)
  ...

Adverse Events 2:            
• Total: 64/224 (28.57%)
• Anaemia 2/224 (0.89%)
  ...

Clinical Trial Report 2

Eligibility Criterion
       ...
Intervention

      ...
Healthy women will be screened for Magnetic Reson-

      ance Imaging (MRI) contraindications, and then 
      undergo contrast injection, and SWIFT acquisition.
      ...

Results
      ...

Adverse Events 
        ...
 

Statement 1: 
The primary trial and the secondary trial 
both used MRI for their interventions.

More than 1/3 of patients in cohort 1 of the 
primary trial experienced an adverse event.

Label: 

Statement 2: 

ENTAILMENT

Label: CONTRADICTION

Type: Comparison

Type: Single

Figure 1: Examples of the dataset used in the NLI4CT task. Statement 1 compares the Intervention section from
two different clinical trial reports, while statement 2 is based on the Adverse Events section of the first clinical trial
report. The evaluation of the first statement requires textual inference skills, while the second requires numerical
inference skills.

refer to Appendix A, where an example showcases
GPT-3.5’s accurate inference yet inadequate con-
clusion. The code to reproduce the experiments
mentioned in this paper is publicly available.2

2 Background

2.1 Related Work

Pretrained Language Models (PLMs) and Large
Language Models (LLMs) exhibit the potential to
yield promising outcomes in the biomedical do-
main due to their ability to comprehend and process
complex medical data effectively. BioLinkBERT
(Yasunaga et al., 2022), pre-trained on PubMed3,
utilizes hyperlinks within documents. It has at-
tained state-of-the-art (SOTA) performance across
a wide range of tasks and various medical NLP
benchmarks, namely BLURB (Gu et al., 2021) and
BioASQ (Nentidis et al., 2020). SciBERT (Beltagy
et al., 2019) is trained on scientific publications
from the biomedical domain in Semantic Scholar4.
ClinicalBERT (Huang et al., 2019) is trained using
clinical text data sourced from approximately 2 mil-
lion clinical notes contained within the MIMIC-III
database (Johnson et al., 2016). Kanakarajan and
Sankarasubbu (2023) employed a fine-tuned Flan-
T5-xxl model with instruction tuning, achieving an
F1 score of 0.834 on the SemEval 2023 Task 7 (Jul-
lien et al., 2023a,b). Zhou et al. (2023) performed
joint semantics encoding of the clinical statements
followed by multi-granularity inference through

2https://github.com/Exploration-Lab/IITK-
SemEval-2024-Task-2-Clinical-NLI

3https://pubmed.ncbi.nlm.nih.gov
4https://www.semanticscholar.org

sentence-level and token-level encoding, getting an
F1 score of 0.856. Although these models have
achieved high performance, there remains a need
for further investigation into their application in
vital areas such as real-world clinical trials.

GPT-3.5, developed by OpenAI5 and compris-
ing 175 billion parameters, uses alternating dense
and locally banded sparse attention patterns in the
transformer layers (Child et al., 2019; Wolf et al.,
2020). The token size limit for GPT-3.5 (free tier)
is 4,096. Gemini Pro, developed by Google Deep-
Mind6 uses decoder-only transformers (Vaswani
et al., 2017) and multi-query attention (Shazeer,
2019) with a context window length of 32,768 to-
kens.

Data Number of Samples Labels
Entailment Contradiction

train 1700 850 850
dev 200 100 100
test 5500 1841 3659

Table 1: The number of samples in each subset of the
data. The distribution of the labels between the train and
the development set is even. Note: The test set labels
were made public after the completion of the task.

2.2 Task and Dataset Description

The NLI4CT task (Jullien et al., 2024) focuses on
textual entailment based on a collection of breast
cancer CTRs, statements, explanations and labels
annotated by domain expert annotators. The CTRs
are in English. The CTRs are segmented into four

5https://openai.com
6https://deepmind.google

1398

https://github.com/Exploration-Lab/IITK-SemEval-2024-Task-2-Clinical-NLI
https://github.com/Exploration-Lab/IITK-SemEval-2024-Task-2-Clinical-NLI
https://pubmed.ncbi.nlm.nih.gov
https://www.semanticscholar.org
https://openai.com
https://deepmind.google


Gemini-Pro

Clinical Trial Report
+

Statement
+

Question

Instruction Template

Input 1

Generated 
Explanation

Based on your explanation,
does the given context imply 

the hypothesis. Write one 
word answer - Yes or No.

Input 2

Label : Yes / No

Model Output

Figure 2: An overview of the proposed system architecture used for the NLI4CT Task

sections - eligibility criteria, intervention details,
results, and adverse events. The statements, with an
average length of 19.5 tokens, make claims about
the information contained in one of the sections
of a CTR or compare the same section from two
different CTRs as seen in Figure 1. The task in-
volves determining the inference relation (entail-
ment or contradiction) between CTR-statement
pairs. The dataset consists of 999 Clinical Trial
Reports (CTRs) and 7400 annotated statements,
which are divided into train, development and test
sets. Table 1 provides statistics for the dataset.

3 System Overview

LLMs such as GPT-3 (Brown et al., 2020) and
Gemini Pro (Team et al., 2023) have shown re-
markable performances across various tasks. For
the NLI4CT task, we have experimented with Gem-
ini Pro, GPT-3.5, Flan-T5 (Longpre et al., 2023),
BioLinkBERT (Yasunaga et al., 2022), SciBERT
(Beltagy et al., 2019), ClinicalBERT (Huang et al.,
2019) and ClinicalTrialBioBert-NLI4CT7. The per-
formance of the different models is shown in Figure
7. Zero-shot evaluation was done on Gemini Pro
and GPT-3.5, Flan-T5 was instruction fine-tuned
following Kanakarajan and Sankarasubbu (2023),
and the rest of the models were trained on the given
train and development dataset. Gemini Pro and
GPT-3.5 were considered for further experimenta-
tion because of their superior performance.

The proposed system utilizes structured instruc-
tion templates and multi-turn conversation tech-
niques to generate explanations and labels for the
statements provided as input, as shown in Figure 2.

Reasoning is an essential ability required by
an LLM to solve complex problems (Qiao et al.,

7https://huggingface.co/domenicrosati/ClinicalTrialBioBert-
NLI4CT

2022). Tree of Thoughts (ToT) framework (Yao
et al., 2023) and Chain-of-Thought (CoT) reason-
ing (Wei et al., 2022) is integrated into the models,
facilitating multiple reasoning paths.

3.1 Reasoning Frameworks

Chain-of-Thought (CoT) prompting (Wei et al.,
2022) has demonstrated promising results in im-
proving the reasoning abilities of LLMs. To eval-
uate Gemini Pro and GPT-3.5, we used Zero-shot-
CoT (Kojima et al., 2022) prompt reasoning with-
out requiring few-shot demonstrations. The phrase

“Let’s think step by step” is added after the instruc-
tion as shown in Figure 3.

“{premise}

{statement}
Is the given statement correct based on the information 
provided above? Let’s think step by step.”

>> {explanation by model}

“From your answer above, is the statement true or false? 
Write one word answer.”

>> {True / False}

Figure 3: Instruction template for CoT prompting

Tree-of-Thought (ToT) framework (Yao et al.,
2023; Long, 2023) relies on trial and error method
to solve complex reasoning tasks. It facilitates
multi-round conversations and backtracking. Our
system allows for three reasoning paths using the
prompt shown in Figure 4.8

For the evaluation of the model, the input to
Gemini Pro and GPT-3.5 is constructed using an
instruction template containing the appropriate
prompt for ToT or CoT reasoning, data from the

8https://github.com/dave1010/tree-of-thought-prompting
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Imagine three different clinical experts are answering 
the question given below.
All experts will write down first step of their thinking,
then share it with the group.
Then all experts will go on to the next step of their
thinking.
If any expert realises they're wrong at any point then
they leave.
They will continue till a definite conclusion is reached.

Figure 4: Prompt for Tree of Thought reasoning

CTR which constitutes the premise and the state-
ment or the hypothesis as shown in Figure 2. A
series of two questions is presented to the model to
generate both the explanation and the correspond-
ing label. Multi-turn conversation (Zhang et al.,
2018) is used to include the generated explanation
as context for generating the final label. The expla-
nation is also retained for further experimentations.
The generated final label is converted as follows:
{"Yes": "Entailment", "No": "Contradiction"}. A
comparison of the performance of GPT-3.5 and
Gemini Pro after integrating CoT and ToT reason-
ing frameworks is shown in Figure 6.

4 Experimental setup

4.1 Data Preprocessing

As discussed in Section 2.2, the statements can
make claims about the information contained in
one of the sections of a CTR, which is then called
a “Single” statement or compare the same section
from two different CTRs, called a “Comparison”
statement. In “Single” statements, the term “pri-
mary” is employed to assert a claim. Evidence
from the CTR is compiled into a unified text struc-
ture, exemplified as follows: “For the primary trial
participants, {primary evidences}”. In contrast,
for “Comparison” statements, the term “secondary”
accompanies “primary”. The evidences are then
compiled as: “For the primary trial participants,
{primary evidences}. For the secondary trial par-
ticipants, {secondary evidences}”.

4.2 Hyperparameter Tuning

For Gemini Pro, the temperature of the model
is set to 0.7 and the safety settings are set to
"BLOCK_NONE". For GPT-3.5, the models "gpt-
3.5-turbo-0613" and "gpt-3.5-turbo-1106" are used
for experimentation among which "gpt-3.5-turbo-
0613" performs considerably better. The tempera-
ture of the model is set to 0.6.

4.3 Prompt Engineering
The system was experimented with several prompts
to improve its performance. The explanations gen-
erated by the model were examined manually to
identify instances where the solution deviated from
the correct path. The prompt “You are a clinical ex-
pert and can seamlessly perform natural language
inference” was introduced to give the model an
identity. Additionally, rules were enforced to con-
fine the model’s output within the provided context
and to prevent hallucinations, achieved through the
prompt: “Please align with the context given and
do not make any false assumptions of your own.”
Furthermore, to integrate CoT reasoning within
the ToT framework, the prompt ”Provide a step-
by-step explanation of your thought process” was
introduced. The final instruction template is shown
in Figure 5.

Several experiments were conducted to assess
the model’s performance on extracting the labels
"Entailment" or "Contradiction" in the second
question of the multi-turn conversation. The F1
scores for various prompts on the development set
are presented in Table 2. Ultimately, Prompt 4
demonstrated the best performance and was chosen
for the final pipeline.

Prompt F1 score

Based on the comprehensive evaluation
of the model’s responses, is the given
hypothesis deemed to be true or false?
Write one word answer. 0.689

Does this imply that the given hypothesis
is supporting the report or not? Give one
word answer (Yes / No). 0.667

From your answer above, is the statement
true or false? Write one word answer. 0.656

Based on your explanation, does the given
context imply the hypothesis. Write one
word answer. 0.723

Table 2: Performance of the model on the dev data for
different prompts for extracting the labels

4.4 Evaluation Metrics
The NLI4CT task (Jullien et al., 2024) is evaluated
on the basis of three metrics - F1 score, consistency
and faithfulness. Faithfulness measures the accu-
racy of the system’s predictions by evaluating its
ability to predict outcomes for altered inputs cor-
rectly. If the model correctly adjusts its predictions
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You are a clinical expert and can seamlessly perform natural language inference.

Imagine three different clinical experts are answering the question given below.
All experts will write down first step of their thinking, then share it with the group.
Then all experts will go on to the next step of their thinking.
If any expert realises they're wrong at any point then they leave.
They will continue till a definite conclusion is reached.

Please align with the context given and do not make any false assumptions of your
own.

CONTEXT: {evidences}

QUESTION: Does the context imply the hypothesis {statement}? Provide a step-by-
step explanation of your thought process.

Turn 1

Based on the comprehensive evaluation of the model's responses, does the given
context imply the hypothesis? Write one word answer - Yes or No.

Turn 2

Model Identity

ToT Reasoning

CoT Reasoning

Evidences from CTR

Reduction of 
Hallucination

Final Question

Figure 5: Final Instruction Template

in response to semantic alterations, it demonstrates
higher faithfulness. On the other hand, consistency
evaluates the model’s ability to provide consistent
predictions for semantically equivalent inputs.

5 Results

The zero-shot evaluation of Gemini Pro yielded an
F1 score of 0.69, with a consistency of 0.71 and a
faithfulness score of 0.90 on the official test dataset.
Our system achieved a fifth-place ranking based
on the faithfulness score, a sixteenth-place ranking
based on the consistency score, and a twenty-first-
place ranking based on the F1 score. Gemini Pro
outperforms GPT-3.5 with an improvement in F1
score by +1.9%, while maintaining almost similar
consistency score. Additionally, the faithfulness
score of Gemini Pro improves by +3.5% compared
to GPT-3.5, as illustrated in Table 3.

Model Base F1 Consistency Faithfulness

Gemini Pro 0.691 0.712 0.901
GPT-3.5 0.672 0.713 0.866

Table 3: Results on the test data using Gemini Pro and
GPT-3.5

The system utilizing Gemini Pro attained an F1
score of 0.72, while GPT-3.5 achieved an F1 score
of 0.68 on the training dataset. Manual examination

of the model-generated explanations and a compar-
ison of the generated labels with the original labels
was conducted to refine the prompts and enhance
the model’s responses.

Figure 6: Comparison of the performance of Gemini Pro
and GPT-3.5 without the integration of any reasoning
framework, with CoT reasoning, with ToT reasoning
and with both the reasoning frameworks combined.

As depicted in Figure 6, the integration of CoT
reasoning led to an increase in performance for
Gemini Pro and GPT-3.5 by 0.8% and 1.9%, respec-
tively. Furthermore, upon integrating the ToT rea-
soning framework, the performance improved by
3.2% and 4.3%, respectively. When both ToT and
CoT reasoning were integrated, the models showed
an increase in performance by 3.8% and 5.1%, re-
spectively, compared to the baseline model.

1401



Figure 7 compares the performance of Gemini Pro
and GPT-3.5, both without reasoning frameworks,
with Flan-T5 and other experimented PLMs. Gem-
ini Pro achieved the highest F1 score of 0.65, fol-
lowed closely by GPT-3.5 with an F1 score of 0.62.
Flan-T5 performed moderately with an F1 score
of 0.57, while BioLinkBERT, SciBERT, Clinical-
BERT, and CTBioBERT displayed lower F1 scores
ranging from 0.46 to 0.53.

Figure 7: Performance (F1 Score) of the different exper-
imented models. Note: CTBioBert represents the model
ClinicalTrialBioBert-NLI4CT.

A comparative analysis between GPT-3.5 and
Gemini Pro highlighted GPT-3.5’s shortcomings
in tasks requiring logical reasoning. Appendix A
presents the example responses for both the models.
The appendix further analyzes potential reasoning
errors made by GPT-3.5 and Gemini Pro.

6 Conclusion

This paper presents an evaluation of several pre-
trained language models (PLMs), and GPT-3.5,
Gemini Pro, under zero-shot conditions. Our anal-
ysis focuses on assessing the reasoning capabilities
of GPT-3.5 and Gemini Pro and their adeptness at
logical problem-solving. In the NLI4CT task, we
achieved an F1 score of 0.691, consistency of 0.71,
and faithfulness of 0.90. Additionally, our findings
underscore that prompt engineering is crucial for
large language models (LLMs). We have made our
instruction templates and code publicly available
to facilitate reproducibility.
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Appendix

A Example Responses

As illustrated in Figure 8, GPT-3.5 exhibits lim-
itations in numerical reasoning tasks. Although
steps 1 and 2 of the example are executed correctly,
GPT-3.5 starts hallucinating in step 3, leading to
illogical reasoning and ultimately yielding an in-
correct conclusion that the statement is incorrect.
When the same input is given to Gemini Pro, it
correctly concludes that the statement entails the
CTR as shown in Figure 9.

Step 1: Assess the exclusion criteria for the primary trial.
     - The exclusion criteria mention a Karnofsky Performance status <90% 
        as an exclusion criterion.
     - This means that patients with a Karnofsky status below 90% would not 
        be eligible for the trial.
Step 2: Compare the Karnofsky status of 94% mentioned in the hypothesis 
        with the eligibility criteria.
     - According to the hypothesis, patients with a Karnofsky status of 94% 
        would be eligible for the primary trial.
Step 3: However, based on the exclusion criteria, a Karnofsky Performance 
        status < 90% is not eligible, regardless of the specific value (i.e. 94%).

Conclusion: "Patients with a Karnofsky status of 94% are eligible for the 
        primary trial" is incorrect.

Figure 8: Example of an incorrect response by GPT-3.5

Step 1: Check the inclusion criteria for Karnofsky Performance status.
Step 2: The inclusion criteria state that Karnofsky Performance status must
be >= 90%.  

Conclusion: Patients with a Karnofsky status of 94% are eligible for the
primary trial because the inclusion criteria state that Karnofsky
Performance status must be >= 90%. 

Figure 9: Response by Gemini Pro for the same state-
ment

Figure 10 showcases an excellent example of
Gemini Pro’s mathematical reasoning.

   Hypothesis: Neutropenia affected the majority of patients in cohort 1 of 
                the primary trial.
   Label: Contradiction

Explanation:
...              
From the context, we know that the total number of patients in cohort 1 of
the primary trial is 69, and the number of patients who experienced
neutropenia in  cohort 1 of the primary trial is 4. Therefore, the
percentage of patients in cohort 1 of the primary trial who experienced
neutropenia is 4/69 * 100 = 5.8%.   
                                
Since 5.8% is not the majority, the hypothesis is incorrect.

Figure 10: An example response by Gemini Pro show-
casing its mathematical reasoning ability.
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