
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 1405–1411
June 20-21, 2024 ©2024 Association for Computational Linguistics

PEAR at SemEval-2024 Task 1:
Pair Encoding with Augmented Re-sampling

for Semantic Textual Relatedness

Tollef Emil Jørgensen
Norwegian University of Science and Technology

tollef.jorgensen@ntnu.no

Abstract

This paper describes a system submitted to the
supervised track (Track A) at SemEval-24: Se-
mantic Textual Relatedness for African and
Asian Languages. Challenged with datasets
of varying sizes, some as small as 800 sam-
ples, we observe that the PEAR system, using
smaller pre-trained masked language models to
process sentence pairs (Pair Encoding), results
in models that efficiently adapt to the task. In
addition to the simplistic modeling approach,
we experiment with hyperparameter optimiza-
tion and data expansion from the provided train-
ing sets using multilingual bi-encoders, sam-
pling a dynamic number of nearest neighbors
(Augmented Re-sampling). The final models
are lightweight, allowing fast experimentation
and integration of new languages.

1 Introduction

The overall aim of the Semantic Textual Related-
ness (STR) shared task (Ousidhoum et al., 2024b)
is to correctly predict the relatedness between a
given sentence pair on a scale from 0 to 1, de-
scribed as closeness in meaning (Abdalla et al.,
2023; Ousidhoum et al., 2024a), exemplified by
expressing the same views and one elaborating on
the other. This shared task covers a broader aspect
of the well-established semantic textual similarity
(STS) field, which fails to address the intuitive re-
latedness between two sentences.

From available STS data, such as from the
SemEval-2012 task on similarity (Agirre et al.,
2012), the sentences “A man is peeling a banana”
and “A woman is peeling a potato” receive a nor-
malized similarity of 0.3. In contrast, the two
descriptions have a higher degree of relatedness,
where something is being peeled. Relatedness
tends to focus less on equivalence and paraphrasing
and more on the broader case of entailment and the
cause-effect relationship between two sentences.
The task consists of three tracks: A (supervised), B

(unsupervised), and C (cross-lingual). The system
described here will only consider Track A, allowing
the use of any training data. Refer to Ousidhoum
et al. (2024a) for more details.

The System and Constraints This paper pro-
poses a system for any language with an available
pre-trained masked language model (MLM), such
as BERT or RoBERTa, used to process pairs of
sentences with full cross-attention. The constraint
of using limited-size MLMs was set early in the
project to study their performance compared to
the impressive baselines observed through exist-
ing multilingual bi-encoders. However, following
ideas of Thakur et al. (2021), the addition of weakly
supervised labels from such bi-encoders was added
as an optional step to inspect its impact on smaller
datasets.

Being unfamiliar with most of the involved lan-
guages and thus being unable to verify the results,
no language-specific rules were implemented. Con-
sequently, no text manipulation (such as paraphras-
ing and replacing words), back-translation, or nor-
malization steps were applied. While the task or-
ganizers permitted the use of any available data for
the supervised track, in addition to large language
models to a limited extent, the presented approach
only uses the supplied training dataset per language.
While performance suffers in some cases, we hope
that the aforementioned constraints help to support
as many future languages as possible with little to
no modification. Continuing the idea of supporting
lower-resourced languages, this system only uses
base size transformer MLMs, ranging from 110M
to 125M parameters.
All code is available on GitHub.1

2 Data

The full dataset for SemRel consists of 14 lan-
guages. However, only 9 of the 14 languages

1https://github.com/tollefj/SemRel-2024
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Language ISO 639-2/3 Family Selected Model Train Dev Test Total
Amharic amh Afro-Asiatic Davlan/xlm-roberta-base-finetuned-amharic 992 95 171 1,258
Algerian Arabic arq Afro-Asiatic CAMeL-Lab/bert-base-arabic-camelbert-da 1,262 92 584 1,938
Moroccan Arabic ary Afro-Asiatic CAMeL-Lab/bert-base-arabic-camelbert-da 925 70 427 1,422
Hausa hau Afro-Asiatic Davlan/xlm-roberta-base-finetuned-hausa 1,763 212 603 2,578
English eng Indo-European FacebookAI/roberta-base 5,500 250 2,500 8,250
Spanish esp Indo-European PlanTL-GOB-ES/roberta-base-bne 1,562 140 600 2,299
Marathi mar Indo-European l3cube-pune/marathi-roberta 1,155 293 298 1,746
Kinyarwanda kin Niger-Congo Davlan/xlm-roberta-base-finetuned-kinyarwanda 778 102 222 1,102
Telugu tel Dravidian l3cube-pune/telugu-bert 1,146 130 297 1,573

Table 1: Included languages and their respective families, along with data sources and data split size.

are included for Track A and have labeled relat-
edness scores between 0 and 1. Table 1 contains
an overview of the languages, data sizes, and se-
lected language models for experiments. Besides
the differences in data size, the score distributions
also vary greatly, as evident from the four exam-
ples in Figure 1. Moreover, when inspecting the
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Figure 1: Examples of score distributions.

textual distributions through adversarial validation,
modeled by adding a binary classification head to
an XLM-R model (Conneau et al., 2020), most
languages were seemingly sampled from the same
distribution, with an expected ROC-AUC score of
0.5.2 The English test split, however, had distribu-
tions deviating from the train split, shown in Figure
2. ROC curves for more languages are found in
Appendix A. Attempts were made to iteratively
sample the training set until a better distributional
match with the test set was found, with little suc-
cess in improving results. The more data, the better.

3 Related Work

Semantic Textual Relatedness (STR), in the context
of language modeling and prediction, has consid-

2An ROC-AUC score of 0.5 indicates that a model cannot
differ between samples in the provided data sources.
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Figure 2: ROC curves for train/dev/test splits on the
English data.

erably less research connected to it than Seman-
tic Textual Similarity (STS), which has several
datasets and evaluation benchmarks openly avail-
able (Muennighoff et al., 2023), many of which
tied to the STS task within SemEval (Agirre et al.,
2012). The included data is mainly monolingual
English, but more recent additions added limited
multilingual and cross-lingual tasks (Cer et al.,
2017; Chen et al., 2022). The first STR dataset
was introduced by (Abdalla et al., 2023), including
a monolingual dataset of 5,500 English sentence
pairs. New for this task is the inclusion of sev-
eral low-resource languages not yet studied at the
sentence level.

The field of natural language processing has dras-
tically changed since the release of the majority of
the datasets and shared tasks for semantic textual
similarity, where the top-scoring methods typically
included a significant amount of feature engineer-
ing based on methods like n-gram overlaps, edit dis-
tance, and longest common substrings, word align-
ments, and more, applied to both regression and
deep learning models (Tian et al., 2017; Maharjan
et al., 2017). Additionally, knowledge-informed
systems included semantic information with Word-
Net and word frequency corpora (Wu et al., 2017).
Applying the same efforts to new languages would
require significant work, such as collecting new
corpora.

Sentence Embeddings Modeling similarity be-
tween sentences is commonly associated with sen-
tence embedding models, some of which include
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more than a billion gathered training pairs (Reimers
and Gurevych, 2019; Wang et al., 2024). While ap-
plicable across many languages and domains, with
models initialized from the XLM-Roberta models
(Conneau et al., 2020), the included languages do
not cover many of which are part of SemRel 2024.

Encoding Sentence Pairs This paper focuses on
sentence-pair modeling, encoding the sentences
with existing pre-trained language models to create
a simpler model that allows fast and easy imple-
mentation for any language. This modeling scheme,
referred to as cross-encoders, indicating full (cross)
self-attention over the entire context, is well ex-
plained in previous work by (Wolf et al., 2019; Vig
and Ramea, 2019; Humeau et al., 2020). Further-
more, cross-encoders have succeeded in supervised
and unsupervised applications (Thakur et al., 2021;
Liu et al., 2022). In addition to the sentence scor-
ing, we follow the work by Thakur et al. (2021)
to augment data with a bi-encoder, although on
much smaller datasets, where the original work
was carried out on data up to millions of samples.
For details on bi-encoders and sentence embedding
models, refer to the excellent implementations by
(Reimers and Gurevych, 2019; Humeau et al., 2020;
Liu et al., 2022). The baseline provided by the task
organizers is LaBSE, a dual-encoder BERT-based
sentence embedding model (Feng et al., 2022).

4 System Overview

After restructuring the provided datasets into sen-
tence pairs with their respective labels, they are
passed to a MLM with an added regression head;
using a sigmoid layer on top of the pooled out-
put, the model is trained using a single-class binary
cross-entropy loss, with mean reduction:

ℓ(x, y) =
1

n

n∑

i=1

{l1, . . . , lN}⊤

ln = −wn [yn log σ(xn)

+(1− yn) log(1− σ(xn))]

The models (Table 1) were chosen based on
searches for existing models in the tasks’ languages
and closely related language families. In the de-
velopment phase, scoring was based on 5-fold val-
idation, benchmarked with language-specific and
merged data. Experiments, including those pre-
sented in Section 6, are on the final release of la-
beled test datasets.

Augmented Re-sampling In a separate mod-
ule, a bi-encoder (multilingual-e5-base) is em-
ployed to find the closest non-existing sentence
pairs in the data by creating sentence embeddings
and searching for nearest k neighbors with cosine
similarity. Before initializing the bi-encoder, the
cross-encoder is trained for Eweak epochs before
predicting weak labels for the augmented pairs
(si, sj , predi,j), which are added to the training
data. k determines the number of nearest neigh-
bors to retrieve for each source sentence. A Figure
outlining the weak supervision pipeline is found in
Figure 3.

Dataset
(s1, s2, label)

Pre-trained
bi-encoder

Trained
cross-encoder

Masked LM

k-NN
cos_sim
(si, sj)

Augmented data
(si, sj , predi,j)

Eweak

k

Figure 3: The weak supervision pipeline

Modularity A big focus in the development was
to keep it as modular as possible. Models, parame-
ters, data selection, and more are easily controlled
through passed arguments. Furthermore, the cross-
encoder is provided as a standalone module with
varying levels of abstraction, e.g., calling fit directly
or through a provided training pipeline, including
optional weak supervision labeling.

5 Experimental Setup

All experiments and evaluations use the official
train/dev/test data splits where applicable, and
scores are presented by the Spearman rank cor-
relation coefficient multiplied by 100. In the devel-
opment phase, we studied the effect of combining
or using only per-language data, working as an
initial baseline before dev- and test labels were re-
leased. This was done by 5-fold validation. As
stated in Section 1, no text manipulation or prepro-
cessing was done to keep evaluations fair across
languages. Moreover, upon manual inspection, the
data seemed sufficiently preprocessed. The follow-
ing definitions will be used to differ between model
configurations:
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• init: no training, only initial weights
• all: trained on all languages combined
• lang: trained on one language

Experiments were conducted in three parts:

1. Multilingual sentence embeddings with
multilingual-e5-base (Wang et al., 2024)

2. Multi+monolingual MLMs as cross-encoders
with XLM-R (Conneau et al., 2020) and mod-
els from Table 1.

3. Augmented data from bi-encoders

Augmentation and optimization As the data
sizes and model configurations vary, Optuna (Ak-
iba et al., 2019) is set up to search for parameter
values for learning rates, k, epochs (E), weak train-
ing epochs (Eweak), and max gradient norm (G)
for clipping. With the augmentation being highly
experimental for smaller datasets, we refrain from
modifying the bi-encoder and use only its initial
weights. Thus, this part of the system can easily
be swapped with future models. While limiting
the search, the learning rate, gradient clipping, and
the k nearest neighbors for augmentation proved
to be the most crucial parameters. Table 2 lists the
parameters and ranges.

Hparam Type Search Space
lr float 10−6 to 10−4 (log)
k int 0 to 3
E int 1 to 5
Eweak int 0 to 2
G float 0.1 to 1.0

Table 2: Hyperparameter search space.

No External Data Given the readily avail-
able sentence similarity data, such as the STS-
Benchmark dataset (Cer et al., 2017), experiments
were done to include it in the training pipelines.
However, we observed no benefits from this, likely
affected by the diverging definitions and annota-
tion styles of relatedness and similarity. Figure
4 shows scores with and without adding the STS-
Benchmark dataset (Cer et al., 2017).

6 Results

Results from k-fold validation to quantify the differ-
ences between combining training sets vs. training
per language show that combining data has a clear
benefit. See table 3. However, important factors to
consider are data size (e.g., 12,000 vs. 600 samples)
and that we are validating in-domain. However,
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Figure 4: Scores on English-dev with and without STS
data (dotted lines)

similar results on the development set show dimin-
ishing effects for merging data when predicting out-
of-domain data. Development set scores are found
in Appendix B. Furthermore, the results indicate
how powerful MLMs are once trained, outscor-
ing the e5 model for most languages. Although
the system performed well on the smaller dev sets,
ranking in the top 2-4 in most languages in the com-
petition, it struggled on the test sets. This is likely
attributed to data distribution, overfitting, and thus
failure to generalize relatedness. From the results
with augmentation in Table 5, the observed change
from default parameters is marginal for most lan-
guages. Increasing k without parameter optimiza-
tion resulted in strictly negative results. Scores on
the test set, including top scores and the LaBSE
baseline, are shown in Table 4. Despite the lack-
luster improvement from augmentation and data
expansion, the modeling scheme is still promising,
outperforming the baseline (in official submissions)
for 6/9 languages and 8/9 for the rerun without any
changes to optimization configurations.

7 Conclusion

After testing the capabilities of commonly used
models for masked language modeling and sen-
tence embeddings, we find MLMs efficient at dis-
tinguishing relatedness with little training data. Al-
though attempts at optimizing parameters for in-
distribution data resulted in little to no performance
gains, there are likely better-suited augmentation
strategies for further improving performance with
as little source data as possible. As a closing re-
mark, we hope that the provided system may serve
as a valuable tool for future developments in se-
mantic textual relatedness.
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arq amh eng hau kin mar ary esp tel
XLM init -2.64 (5.07) -10.75 (7.67) -15.49 (3.33) -4.18 (6.07) 1.03 (3.90) -7.65 (7.49) -18.98 (4.88) 0.80 (4.94) -11.98 (9.32)
XLM all 58.23 (5.30) 84.56 (1.53) 83.63 (1.36) 72.25 (0.66) 59.70 (4.09) 83.44 (2.56) 82.01 (3.04) 64.73 (3.23) 77.96 (3.87)
XLM lang 39.03 (4.49) 73.22 (3.02) 83.27 (0.89) 63.57 (1.96) 31.40 (7.34) 74.31 (3.02) 69.14 (4.16) 58.72 (8.00) 71.40 (3.99)
e5 init 50.41 (2.82) 75.86 (1.88) 80.72 (0.87) 52.38 (1.93) 46.20 (5.30) 77.00 (1.33) 36.03 (1.59) 60.30 (1.40) 75.28 (1.49)
e5 all 59.45 (2.34) 84.52 (0.88) 86.43 (0.55) 69.01 (0.19) 69.08 (3.43) 84.62 (1.35) 81.20 (1.44) 67.16 (2.44) 80.14 (0.97)
e5 lang 59.50 (3.25) 82.27 (2.35) 86.72 (1.02) 68.43 (2.10) 63.04 (3.56) 82.89 (0.32) 75.73 (1.02) 67.21 (0.39) 77.94 (1.23)

Table 3: 5-fold validation from training datasets using multilingual-e5-base (bi-encoder) and XLM-Roberta base
(cross-encoder). Scores are the average correlation with standard deviations. Bold: best scores per language.

Model/Language Multiling k arq amh eng hau kin mar ary esp tel

Baseline (LaBSE) y 0 60.00 85.00 83.00 69.00 72.00 88.00 77.00 70.00 82.00
Best result - - 68.23 88.86 85.96 76.43 81.69 91.09 86.26 74.04 87.34

e5 init (multiling) y 0 45.32 72.56 80.39 51.23 51.38 77.37 40.14 58.75 77.43
e5 all (multiling) y 0 59.28 82.06 83.53 68.36 71.61 87.27 78.27 69.16 83.25
e5 lang (multiling) y 0 60.68 81.46 83.55 69.97 71.87 87.91 77.75 69.02 82.24
e5 init n 0 43.94 9.02 82.69 40.79 48.23 52.76 15.41 65.22 28.69
e5 all n 0 59.32 14.48 82.88 61.87 68.15 69.59 77.30 71.26 43.64
e5 lang n 0 55.30 13.70 83.54 63.63 63.60 67.88 36.11 70.86 34.21
xlm-r init y 0 -1.10 12.45 -4.23 -0.75 1.93 -10.24 -28.12 1.73 -14.68
xlm-r all y 0 59.88 83.42 83.69 70.74 67.48 85.99 83.04 71.39 85.75
xlm-r lang y 0 47.66 81.90 83.46 70.17 56.76 85.84 82.23 69.73 80.78
custom init n 0 -10.97 20.40 10.09 9.52 14.35 -3.35 -1.91 -3.35 8.40
custom lang n 0 40.04 83.86 83.31 68.79 72.09 86.10 81.15 72.05 83.46
custom lang n 1 44.56 81.99 83.42 66.56 72.75 85.83 80.74 71.95 84.42
custom lang n 2 43.75 81.89 83.27 65.66 70.27 85.72 80.49 71.79 85.05
custom lang n 3 42.28 81.13 83.39 64.67 71.47 85.36 80.37 72.29 84.73

PEARtest n + 46.33 83.42 84.79 69.41 77.22 85.60 81.53 71.01 82.75
PEARrerun n + 48.58 85.72 83.95 70.68 73.92 88.81 81.68 72.52 86.82

Table 4: Performance on the test set, ordered by languages as presented on the task website. Multiling indicates
whether the model was pre-trained on multilingual data. k indicates the k-NN resamples used (+: different k per
language). custom: monolingual models as listed in Table 1. Bold: best score (from all submissions to Track A).
Underline: second best from the experiments.

lang lr k E Eweak G score ∆

arq 9.80e-5 1 4 2 0.82 48.58 +8.54
amh 8.42e-5 3 5 2 0.80 85.72 +1.86
eng 3.34e-5 2 2 2 0.12 83.95 +0.64
hau 4.87e-5 0 3 2 0.65 70.68 +1.89
kin 2.47e-5 0 5 1 0.67 73.92 +1.83
mar 5.32e-5 3 2 2 0.42 88.81 +2.71
ary 9.01e-5 1 4 2 0.99 81.68 +0.53
esp 2.40e-5 1 5 2 0.85 72.52 +0.47
tel 3.66e-5 3 3 1 0.66 86.82 +3.36

Table 5: Parameters found from the search space in
Table 2. ∆ indicates change vs. default parameters.

8 Limitations

Few models were tested per language for the com-
petition. Alternative multi- and monolingual mod-
els could provide much better results, especially for
Algerian Arabic. This limitation is also influenced

by the lack of understanding of most involved lan-
guages, e.g., to inspect the source datasets used for
pretraining. Finally, grouping specific languages
for training, such as merging Indo-European and
Afro-Asiatic languages, was not explored.

9 Ethical Considerations

The final system performs predictions of input
texts. Predictions may impose ethical concerns,
e.g., when used for public-facing applications. Fur-
thermore, automating relatedness has possible side
effects in bias and fairness towards specific na-
tionalities. For further details about the data and
annotation, refer to Ousidhoum et al. (2024a).
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A Adversarial Validation

Figures 5 and 6 show the ROC curve for a selection
of languages where the AUC value deviated from
the norm. English was an outlier here, where the
test set is seemingly out-of-distribution. An XLM-
Roberta base model set up as a cross-encoder was
used for classification. 5 epochs, learning rate 2×
10−5. All languages not shown in the figures have
an expected ROC-AUC close to 0.5.
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Figure 5: Adversarial validation for Train vs Test. En-
glish (eng), Marathi (mar), Telugu (tel) and Moroccan
Arabic (ary).

B Development Set Results

Table 6 shows the results on dev sets for
multilingual-e5-base, XLM-Roberta-base, and
language-specific masked language models (as de-
fined in Table 1). Modeling configurations are the
same as listed in Section 5 – repeated below:
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Figure 6: Adversarial validation for Train vs Dev. En-
glish (eng), Marathi (mar), Telugu (tel) and Moroccan
Arabic (ary).

• init: no training, only initial weights
• all: trained on all languages combined
• lang: trained on one language

Lang e5 multilingual XLM-Roberta MLM
init all lang init all lang init lang

arq 39.70 54.26 59.71 -11.11 59.22 57.32 4.76 38.90
amh 61.82 78.47 77.79 -5.30 86.57 83.38 19.65 85.90
eng 78.31 81.44 82.10 -12.06 80.88 81.05 10.98 82.79
hau 45.01 73.27 72.91 -9.19 76.39 75.41 12.95 75.99
kin 27.80 62.55 65.63 -18.13 59.90 48.67 7.09 64.73
mar 72.48 81.56 80.56 -15.13 84.24 82.86 -9.91 84.73
ary 44.21 78.84 73.79 -28.55 83.96 82.61 -19.75 81.43
esp 62.63 68.54 63.16 22.38 71.24 65.01 12.80 68.23
tel 77.35 82.27 79.75 -16.67 80.34 80.57 18.36 80.74

Table 6: Results on the development sets. Bold: best
score per language.
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