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Abstract

This paper describes our system developed for
the SemEval-2024 Task 1: Semantic Textual
Relatedness. The challenge is focused on au-
tomatically detecting the degree of relatedness
between pairs of sentences for 14 languages in-
cluding both high and low-resource Asian and
African languages. Our team participated in
two subtasks consisting of Track A: supervised
and Track B: unsupervised. This paper focuses
on a BERT-based contrastive learning and sim-
ilarity metric based approach primarily for the
supervised track while exploring autoencoders
for the unsupervised track. It also aims on the
creation of a bigram relatedness corpus using
negative sampling strategy, thereby producing
refined word embeddings.

1 Introduction

The semantic relatedness between texts in a lan-
guage is fundamental to understanding meaning
(Halliday and Hasan, 2014). Automatically detect-
ing relatedness plays an essential role in evaluating
sentence representations, question answering, and
summarization (Abdalla et al., 2023). The funda-
mental difference between semantic similarity and
relatedness is that semantic similarity only con-
siders paraphrase or entailment relationships. In
contrast, relatedness accounts for all commonali-
ties between two sentences, e.g., topical, temporal,
thematic, contextual, syntactic, etc. (Abdalla et al.,
2023). As highlighted in Table 1, Sentences 1 and
2 are semantically similar, but sentences 2 and 3
would have low semantic similarity but high se-
mantic relatedness.

In Track A (Task 1) of the Semantic Textual Re-
latedness (STR) task (Ousidhoum et al., 2024b),
we are expected to calculate the degree of semantic
relatedness between pairs of sentences in 14 dif-
ferent languages covering both African and Asian

* Equal Contributions

# Sentence

1 The mouse was chased by the cat in the yard.
2 The cat chased the mouse around the garden.
3 The dog barked loudly as the mouse scurried away.

Table 1: Difference between Similarity and Relatedness

languages. Each pair of sentences is assigned a
relatedness score in the range of 0 and 1. The ma-
jor challenge lies in the efficient development of a
metric to facilitate the calculation of the relatedness
score between the sentence pairs and harnessing the
structure of multiple languages to create an efficient
model (Ousidhoum et al., 2024b). Our system is
based on a contrastive learning approach, utilizing
a composite lexical similarity-based measure for
relatedness score calculation in the supervised task.
Additionally, it involved the use of transformer au-
toencoders for the unsupervised task. We employed
Distill-RoBERTa (Sanh et al., 2020) as the model
for this purpose. Several other strategies were also
tested within this framework, such as employing
a Siamese architecture and retraining BERT with
vocabulary expansion to incorporate tokens from
additional low-resource languages. For the unsu-
pervised task, the base model used to construct the
denoising autoencoder was BERT-uncased (Devlin
et al., 2019). The major challenge in this task was
the devising and implementing data pre-processing
schemes for diverse languages and various training
methodologies. A number of experiments were
conducted to come up with a unified metric for
semantic relatedness calculations, which resulted
in relatively better performances in various low-
resource languages.1

2 Background

There have been several attempts to define and dis-
tinguish semantic relatedness from semantic simi-

1The code can be found at https://github.com/Exploration-
Lab/IITK-SemEval-2024-Task-1-Semantic-Relatedness
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larity. The basic metric used in these experiments
is Spearman Rank Correlation. The correlation
coefficient is calculated between the correctly an-
notated scores for the set of pairs of sentences and
the scores returned by the models. Essentially, this
removes the absolute values of the scores and fo-
cuses on the relative values and, hence, the relative
relatedness between the pairs of sentences.

Initial experiments explored frequency measures
such as lexical overlap (Shirude et al., 2021), re-
lated words, and related subjects and objects, lead-
ing to high Spearman correlations of 0.82 and 0.83
for BERTbase (mean) and RoBERTa-base (mean)
on the CompLex dataset (Shardlow et al., 2020).
Despite marginal improvements over a lexical over-
lap baseline, unsupervised models offer limited
enhancement.

Normalized Google Distance(NGD) has been
used as a novel metric for measuring semantic re-
latedness between words or concepts (Lopes and
Moura, 2019), utilizing Google search result counts
to quantify relatedness. NGD (Cilibrasi and Vi-
tanyi, 2007) normalized counts considering the
overall corpus size and the co-occurrence of terms
in web pages.

Various approaches have been proposed for the
Arabic language (Al Sulaiman et al., 2022) like
automatic machine translation to translate English
Semantic Textual Similarity (STS) data into Arabic,
interleaving English STS data with Arabic BERT
models, and employing knowledge distillation-
based models to fine-tune them using a trans-
lated dataset. Multilingual knowledge distillation
(Reimers and Gurevych, 2019) techniques have
been proposed where a student model, M̂ , learns
from a teacher model, M , on source language sen-
tences and their translations by minimizing the
mean-squared loss function. Focusing on low-
resource Indian languages, a range of SBERT mod-
els has been introduced for ten popular Indian lan-
guages. IndicSBERT (Deode et al., 2023) utilized a
two-step training method, fine-tuning models using
the NLI dataset followed by Semantic Textual Sim-
ilarity benchmarking (STSb), resulting in substan-
tial improvements in embedding similarity scores
and cross-lingual performance.

3 Dataset Description

The dataset (Ousidhoum et al., 2024a) consists
of a total of 14 languages, namely Afrikaans, Al-
gerian Arabic, Amharic, English, Hausa, Indone-

sian, Hindi, Kinyarwanda, Marathi, Modern Stan-
dard Arabic, Moroccan Arabic, Punjabi, Span-
ish, and Telugu. Every language consists of pairs
of sentences with scores representing the degree
of semantic textual relatedness between 0 and 1.
The scores have been assigned to sentence pairs
through a comparative annotation process (Ousid-
houm et al., 2024a).

At the preliminary level, dataset length is the
only non-semantic variable in these datasets. To
assess semantic relatedness, it is crucial to mit-
igate these biases. Correlation coefficients be-
tween sentence lengths and scores fall in the range
−0.13 < ρ < 0.15; hence, there is no discernible
correlation between sentence lengths and scores,
suggesting a well-distributed dataset suitable for
training.

4 System Overview

Our baseline system of scoring a pair of sentences
uses Jaccard Similarity, a lexical metric that calcu-
lates the number of token intersections over total
tokens in both sentences. Our approach involves
using Contrastive learning for the supervised part
and auto-encoders for the unsupervised part. All
these methods are discussed below, and our model
supervised architecture is shown in Figure 1.

4.1 SimCSE

SimCSE (Gao et al., 2022), or Simple Contrastive
Learning, is helpful in supervised and unsuper-
vised learning, particularly in information retrieval,
text clustering, and semantic tasks. This approach
primarily uses Natural Language Inference (NLI)
to create positive and negative sentence samples.
It works by inducing slight variation in its rep-
resentations through dropouts. The following
step lies in aligning related sentences close in
the embedding space and maximizing distances
to unrelated sentences in each batch of data. For
a supervised setting, it classifies positive sam-
ples as entailment pairs, while negative samples
are derived from contradiction pairs. The train-
ing proceeds via minimizing the loss function:

− log

(
e
sim(h,h+)

τ

e
sim(h,h+)

τ +e
sim(h,h−)

τ

)
, where, h repre-

sents the current sentence and h+ and h− denotes
the positive and negative samples respectively with
τ being the temperature hyperparameter which con-
trols the sensitivity and learning dynamics. The τ
is mainly adjusted based on validation set perfor-
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Figure 1: SIMCSE based approach for Track A

mance.

4.2 TSDAE
TSDAE (Wang et al., 2021) or Transformer Denois-
ing through Auto Encoders is an elegant approach
aimed at improving the quality of sentence em-
beddings through self-supervised learning. This
method mainly uses sentence embeddings with-
out labels, relying solely on the data structure to
initiate learning. The first step lies in corrupting
the existing tokens via methods like deleting ran-
dom tokens, masking tokens, etc., and passing
these modified representations through an encoder
layer. The encoder layer outputs a dense latent
representation, capturing the essence of the data
in high-dimensional space. The encoded repre-
sentations are then passed to a decoder, which at-
tempts to reconstruct the original, uncorrupted sen-
tences from the encoded representations. The de-
coder is typically another transformer model that
has been trained to generate text based on the en-
coded embeddings. The main objective lies in min-
imizing the distance between the corrupted and re-
constructed sentence representations through cross-
entropy loss.

4.3 Training Scheme
For the supervised track, we used Distil-RoBERTa
(Sanh et al., 2020) as the base model, which pro-
duced a vector representation for every word in
the input sentence, resulting in a matrix of token
embeddings. The embeddings were then fed to a
pooling layer for the production of sentence-level
embeddings, which finally proved to be useful for
semantics-relatedness tasks. We used mean pooling
because there were no dedicated [CLS] token rep-
resentations for sequence classification tasks. As
for the metrics, our approach was involved in de-
signing a custom relatedness metric by combining
standard distance-based metrics like cosine simi-
larity, Mahalanobis distance, Euclidean and Man-
hattan distances, and lexical overlap-based met-

rics like Jaccard and Dice coefficients. For each
pair of sentence embeddings in the dataset, we cal-
culated these metrics. Not only did we calculate
these metrics using the original embeddings, but
we also calculated them after transforming the em-
beddings by raising them to higher powers (e.g.,
squaring them). These calculated metrics were then
collected into a dataset, with each column named
according to the metric and the power applied to
the embeddings. For example, the column “Cosine
Distance: 2” depicted the cosine distances between
pairs of sentence embeddings after both embed-
dings in each pair have been squared. The dataset,
therefore, finally had rows where each row was a
42-element vector. This vector encompassed the
calculated metrics across different powers for the
sentence embeddings. These enhanced sentence
embeddings, with metrics covering higher orders,
were then used to train the RoBERTa model. The
goal was to produce scores that indicate how related
different sentences are across various languages.
The libraries used are in Table 5.

5 Experiments

5.1 Supervised Task

Static Approaches: The baseline models, Jaccard
Coefficient, Dice Coefficient, and similar coeffi-
cients after removing stopwords were calculated to
arrive at reliable baseline metrics to build upon.
Multilingual BERT: Since the best-performing
model for English involved BERT, an attempt was
made to train multilingual BERT: mBERT (Pires
et al., 2019), by extending the vocabulary to allo-
cate the tokens of various low-resource languages
like Amharic, Hausa, Algerian Arabic, Afrikaans,
Indonesian etc. The approach included genera-
tion of the vocabulary of each of the languages
from the training data and then calling the pre-
trained mBERT model and tokenizer. The trained
tokenizer was extended to include the new tokens
generated from the vocab of the corresponding low
resource languages. A trainable feed-forward net-
work was added with the corresponding dropout.
The loss metric used was mean squared error loss
on both the training validation data and the Spear-
man rank correlation were calculated at the end of
each validation epoch. Finally, finetuning multi-
lingual BERT yielded considerably good results
and this avenue was found suitable for exploration,
especially for the cross-lingual task.

The relatedness metric was approximated using a
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1.tokens = Tokenize(text)

2.clean = Remove Stopwords(tokens)

3.pos_tagged_text[ ] = POS Tagging(clean)

NGD_scores[ ] = CalculateNGD(pos1, pos2)

Min-max normalized NGD_scores

MeanNGD

text1

pos_tagged_text1

pos1

text2

pos_tagged_text2

pos2

Figure 2: NGD Calculation flowchart

trainable feed forward layer by experimenting with
the number of hidden layers and activations. It was
observed that having 3 hidden layers resulted in
fairly good relatedness scores between pairs of sen-
tences in almost all the languages. It was observed
that GeLU performed better than ReLU activation
primarily due to its steep curve around 0 which
helps to model complex functions better. The com-
bination of learning rate and weight decay also
resulted in a stable training curve, avoiding sub-
optimal loss convergence. Thus these specific hy-
perparameters were optimal for mBERT retraining
in terms of resource constraints and performance.
The corresponding hyperparameters of the best per-
forming model is presented in App. Table 4.

Contrastive Learning: The details of the system
are described in §4.1. Experiments were run on the
number of epochs during training.

Combined Similarity Metric: Normalized
Google Distance (Cilibrasi and Vitanyi, 2007) cal-
culates a relatedness metric for two input sentences.
It was proposed as a strong metric for relatedness
by Lopes and Moura (2019). It starts by tokeniz-
ing and removing stop words from both sentences,
followed by part-of-speech tagging. Then, it calcu-
lates NGD values for pairs of words with the same
part of speech in both sentences. The NGD scores
are normalized and averaged to compute the overall
NGD score, representing the degree of relatedness
between the two sentences. The flowchart for the
process is shown in Figure 2. Cosine similarity is
the standard metric used to find similarity between
two sentence embeddings, which gives a 0.81-0.82
baseline score for this problem.However, similar
or better results can be seen when other distance

Figure 3: Covariance Matrix between all 42 metrics

metrics like Mahalanobis Distance(0.82) and Eu-
clidean Distance(0.83) are observed between the
embeddings. Further, augmenting this with more
direct relatedness metrics like NGD is promising
for better results. A simple supervised determinis-
tic regression model can be implemented to com-
bine these metrics. Furthermore, to explore the
importance of each of these metrics, a simple co-
variance matrix (Figure 3) can show how the vector
metrics on higher element-wise-powered vectors
hold information not caught directly at the lower
powers of the vectors.

To implement this supervised regression model,
a simple 3-layered feed-forward neural network
(with neurons [25]+[50]+[25]) is trained with. The
layers are chosen to construct a lightweight net-
work. Each data feature x was composed as:

xi = {S(vi,1, vi,2), S(v2i,1, v2i,2), . . . ,
S(v10i,1, v

10
i,2), J(vi,1, vi,2), D(vi,1, vi,2)}

where vi = (vi1, v
i
2, . . . v

i
n)

S(a, b) = {C(a, b), E(a, b),M1(a, b),M2(a, b)}
C(a, b) = Cosine Similarity between a and b

E(a, b) = Euclidean Distance between a and b

M1(a, b) = Manhattan Distance between a and b

M2(a, b) = Mahalanobis Distance between a and b

J(a, b) = Jaccard similarity between a and b

D(a, b) = Dice similarity between a and b

Even though this metric did not show promise
in English, this was helpful in some low-resource
languages, and hence was part of our system design
for some languages.

5.2 Unsupervised Task
Bigram Corpus Creation and Training Process:
We developed a pipeline to generate a bigram
dataset from any language corpus. A three-part tu-
ple was created for every bigram found to note how
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Figure 4: Bigram Corpus Creation Flowchart

often it appeared within the same sentence, para-
graph, and entire document. This process aimed to
quantify the connections between words by track-
ing their repeated sentence occurrences. Our main
objective was to use these co-occurrence frequen-
cies to produce word embeddings. We planned to
enhance our method by applying hierarchical clus-
tering, which helps identify word similarities and
relationships. Moreover, we decided to use a 1:1
negative sampling strategy to refine the embed-
dings further. These embeddings were intended for
computing relatedness scores, leveraging bigrams
derived from sentence pairs and their lexical over-
laps. Figure 4 presents a diagram illustrating this
process.

TSDAE: A pipeline was developed to implement
TSDAE (refer §4.2) on the languages. The number
of epochs was changed and experimented on for
various languages. Overall, around 20-25 epochs
resulted in good results. No weight decay was
implemented, and a learning rate of 3e-5 was used.

6 Results

The results for the supervised and unsupervised
are mentioned in Table 2 and Table 3. The leader-
board highlights that the chosen contrastive learn-
ing approach did not perform well, especially for
some languages where it fell significantly below
the baseline scores provided by their system, such
as Hausa, Moroccan Arabic, Telugu, etc. Some
possible shortcomings of this approach might be
that the negative samples were not distinguishable
enough from the positive samples, which might
also be attributed to the poor performance of the
transformer models on languages, especially with
complex lexical structures. The other issue might
be the traditional loss function, which might not
be good enough to capture the degree of semantic
relationships between sentences. For the unsuper-
vised track, our approach is performing reasonably
well for most languages, which is indicated by the
correlation score being more significant than the

Language Rank Score Baseline Score

Amharic 17 0.55 0.85
Hausa 21 0.22 0.69
Kinyarwanda 21 0.14 0.72
Moroccan Arabic 22 0.36 0.77
Spanish 23 0.59 0.7
Algerian Arabic 23 0.34 0.6
Marathi 24 0.67 0.88
Telugu 25 0.28 0.82
English 31 0.81 0.83

Table 2: Evaluation Phase Results in Codalab Leader-
board for Track A

Language Rank Score Baseline Score

Algerian Arabic 2 0.49 0.43
English 4 0.81 0.68
Amharic 6 0.07 0.72
Hausa 6 0.38 0.16
Moroccan Arabic 6 0.36 0.27
Spanish 9 0.59 0.69

Table 3: Evaluation Phase Results in Codalab Leader-
board for Track B

baseline provided.

7 Error Analysis

After the evaluation phase, we were provided with
the labels for the evaluation data. On experiment-
ing with the semantic relatedness scores for some
languages, mainly Hausa and Kinyarwanda, we
found out that our system was not performing well
enough on these languages even after subsequent
training and hyperparameter optimizations. The
issue would be primarily attributed to the complex
lexical variations and grammar rules of these lan-
guages. As for the unsupervised track, generating
a bigram corpus for the case of Amharic seemed
difficult due to its language structure.

8 Conclusion

By utilizing various approaches like contrastive
learning, autoencoders, a custom relatedness met-
ric incorporating all of the available lexical similar-
ity metrics, we have developed a system capable
of evaluating the degree of semantic relatedness
between pairs of sentences in diverse high and low
resource languages. In future, we will study the
properties of each low resource language to find out
where the models are performing poorly than rely-
ing too much on pre-trained models. This would
give much clearer insights into semantics of each
language thus improving the overall efficiency and
performance of our system.
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A Appendix

Hyperparameters Values

Learning Rate 2e-5
Dropout 0.1
Weight Decay 0.01
Number of Linear Layers 3
Activation GELU
Max Length 512

Table 4: Hyperparameters for mBERT retraining

Libraries Version

numpy 1.25.2
PyTorch 2.0.1+cu117
transformers 4.36.2
sentence_transformers 2.2.2
scikit-learn 1.3.2
pandas 2.1.4

Table 5: Libraries used in our system
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