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† Abstract

This paper explores solutions to the challenges
posed by the widespread use of LLMs, par-
ticularly in the context of identifying human-
written versus machine-generated text. Focus-
ing on Subtask B of SemEval 2024 Task 8,
we compare the performance of RoBERTa and
DeBERTa models. Subtask B involved iden-
tifying not only human or machine text but
also the specific LLM responsible for gener-
ating text, where our DeBERTa model outper-
formed the RoBERTa baseline by over 10%
in leaderboard accuracy. The results highlight
the rapidly growing capabilities of LLMs and
importance of keeping up with the latest ad-
vancements. Additionally, our paper presents
visualizations using PCA and t-SNE that show-
case the DeBERTa model’s ability to cluster
different LLM outputs effectively. These find-
ings contribute to understanding and improving
AI methods for detecting machine-generated
text, allowing us to build more robust and trace-
able AI systems in the language ecosystem.

1 Introduction

We live in a society that currently relies heavily
on the use of LLMs (Large Language Models),
which has followed from the explosive popular-
ity of ChatGPT when it was released in late 2022.
Now, with the introduction of GPT-4 and other
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more powerful LLMs, it has become increasingly
important for us to have the ability to distinguish
human-written text from machine-generated text.
The fluency of recent models, paired with their
tendency to hallucinate, has given rise to a very
natural concern that there could be both accidental
and intentional “bad actors" seeking to spread false
information. Research has indicated that about one
in every five jobs has over half of its tasks incor-
porated into LLMs, and that statistic is positively
correlated with the barrier to entry (Eloundou et al.,
2023). Consequently, these models have the nec-
essary training data to spit out an immense num-
ber of plausibly correct but actually incorrect texts,
which would be extremely detrimental because hu-
mans historically have been unable to distinguish
between them beyond the level of random guessing.
Such results are supported with recent work aim-
ing to distinguish human-written sentences from
AI-generated ones, with the AuTexTification study
additionally demonstrating that cross-domain AI-
generated text detection from Bloomz or GPT is
more difficult in non-English languages (Sarvazyan
et al., 2023). Furthermore, in efforts to facilitate
unbiased dataset generation for related studies, the
framework of TextMachina was created, and it
contains crucial post-processing abilities like re-
moving disclosure patterns and truncation (Sar-
vazyan et al., 2024). SemEval-2024’s Task 8 (Wang
et al., 2024) attempts to provide a working solution
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to the above problems by using standalone, self-
operational means to classify whether a given text
was authentically written by a human or artificially
generated by a machine, in hopes of eventually
building toward a foolproof method of detecting
misinformation.

In subtask A, we were tasked with creating a
binary classification model to determine if a given
text was human-written or machine-generated.
Within this subtask, there are two different tracks:
one for monolingual (only English) and another
for multilingual sources (something about which
track we did or if we ended up doing both). Out
of curiosity, we used base DeBERTa with default
hyperparameters as our submission for this subtask,
but it only performed 5% worse than the RoBERTa
baseline. This specific subtask is important because
LLMs are becoming more powerful and easily ac-
cessible, so there is a larger potential for misuse.
This classification task would help catch the people
who are misusing this technology to harm society.

In Subtask B, we trained a neural network to
identify not only whether a given text was human-
written or machine-written, but also to identify
which large language model was responsible for
generating that text. These language models in-
clude ChatGPT, Cohere, Dolly, and more. This
task is important for many of the same reasons as
subtask A; as LLMs are becoming more capable
and accessible, being able to distinguish between
human and model is crucial. Furthermore, being
able to distinguish between different models allows
for better enforcement of AI-safety laws and ac-
countability.

2 Methods

2.1 RoBERTa

The baseline performances provided for both sub-
tasks A and B revolved around HuggingFace’s
RoBERTa model. RoBERTA was developed to
enhance the usability of post-BERT models, and in-
corporated a variety of techniques including longer
training times, larger batches, more data, the elim-
ination of the next sentence prediction objective,
longer training sequences, and dynamic modifica-
tion of the masking pattern (Liu et al., 2019). For
the monolingual component of subtask A, roberta-
base was used for a baseline of about 0.88, and for
the multilingual component, xlm-roberta was used
(to account for the various other languages) for a
baseline of about 0.81. For subtask B, roberta-base

was used again for a baseline of about 0.75.

2.2 DeBERTa

DeBERTa was designed as an upgrade to BERT
and RoBERTa with the addition of disentangled at-
tention and an enhanced mask decoder, and further-
more, its fine-tuning included adversarial training
(He et al., 2021). As a result, we used the deberta-
base model from HuggingFace with the assumption
that it would outperform RoBERTa, and our best
model did. Regarding hyperparameter tuning, we
wanted to fine-tune the deberta-base model on the
given dataset, so we looped through learning rates
of 1e-5, 5e-5, and 1e-4, batch sizes of 4 and 8,
epoch counts of 2 and 3, and weight decay con-
stants of 1e-3, 5e-3, and 1e-2. By truncating the
input length to a constant 1024 tokens, we estab-
lished that the optimal hyperparameters (at least
from what we tested) that yielded the highest accu-
racy were a learning rate of 1e-5, a batch size of 4,
an epoch count of 3, and a weight decay constant
of 1e-2.

2.3 Model interpretibility

To further analyze the inner working of the De-
BERTa model, we analyzed our trained model’s
pooled outputs that encode the input sentence as
whole prior to the logits. We used two dimen-
sionality reductions algorithms, namely PCA and
t-SNE for 2-D projection. PCA operates by find-
ing orthogonal directions with the highest variance
and projecting to the subspace spanned by the or-
thogonal directions. The t-SNE algorithm (van der
Maaten and Hinton, 2008) works by preserving
pairwise similarities in the data to generate related
clusters. Our t-SNE projections were computed
with a perplexity of 35 and iteration count of 300.
Both algorithms were run on the 18,000 sentences
in the test data for subtask B.

3 Results

The final DeBERTa model had the following results
on the validation set, with a weighted average of
0.98633 precision, 0.98599 recall, and 0.98599 F1-
score.

In comparison, our RoBERTa model performed
worse, with each F1-score being lower than the
corresponding F1-score for the DeBERTa model.

This model had weighted scores of 0.97979
precision, 0.97909 recall, and 0.97909 F1-score.
Although these were high, they were each still a
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Label Source Precision Recall F1-Score
0 Human 0.99916 0.99375 0.99645
1 ChatGPT 0.94944 0.99417 0.97129
2 Cohere 0.98735 0.99824 0.99276
3 Davinci 0.98912 0.94708 0.96765
4 Bloomz 1.0 0.99833 0.99917
5 Dolly 0.99311 0.98610 0.98606

Table 1: DeBERTa results on the Subtask B validation
set

Label Source Precision Recall F1-Score
0 Human 0.99916 0.98792 0.99351
1 ChatGPT 0.93008 0.99250 0.96027
2 Cohere 0.97631 1.0 0.98801
3 Davinci 0.98367 0.92875 0.95542
4 Bloomz 0.99791 0.99667 0.99729
5 Dolly 0.99170 0.96966 0.98055

Table 2: RoBERTa results on the Subtask B validation
set

bit lower than the corresponding metrics for the
DeBERTa model.

We compared our model’s predictions for the
test set with the labels provided. The total accu-
racy was 0.8266666667. Below is the confusion
matrix in table form for the predicted labels versus
actual labels, with the labels corresponding to their
respective sources. For example, the 439 entry has
predicted label 2 and actual label 3, meaning that
there were 439 predictions for the Cohere source
that were actually from the Davinci source.

Actual
Pred 0 1 2 3 4 5

0 2050 3 9 237 541 151
1 0 2823 6 171 0 0
2 11 208 2342 439 0 11
3 27 624 3 2334 12 27
4 0 1 0 1 2997 1
5 77 187 34 626 541 4612

Table 3: Confusion matrix for Subtask B labels

The results on the test set are summarized in the
table below.

Additionally, we analyzed the pooled outputs of
the trained DeBERTa model on subtask B’s data.
To visualize the outputs in 2-D, PCA and t-SNE
projection techniques were applied on the 768-D
pooled outputs. The data points were colored by
their corresponding text source (either human or
LLM model) in Figures 1 and 2 on the test set.

Figure 1: PCA projection of pooled outputs
on the subtask B test data

Figure 2: t-SNE projection of pooled outputs
on the subtask B test data
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Label Source Precision Recall F1-Score
0 Human 0.95 0.69 0.80
1 ChatGPT 0.73 0.94 0.82
2 Cohere 0.98 0.78 0.87
3 Davinci 0.65 0.78 0.71
4 Bloomz 0.84 1.00 0.91
5 Dolly 0.93 0.78 0.85

Table 4: DeBERTa test results on Subtask B

4 Discussion

4.1 Validation and Test Set Results

For both the RoBERTa statistics and the DeBERTa
statistics in their validation results, the top two en-
tries for precision and F1-score were Bloomz and
Human in some order, which indicates a greater de-
gree of identifiability from these sources. Bloomz
was trained on multilingual tasks and fine-tuned on
English prompts (Muennighoff et al., 2023), and
many online texts are written by humans who are
at least bilingual, so there could be a mannerism of
text generation tied to multilingualism that makes
it easier to pinpoint and distinguish these sources
from the others.

Another observation is that Davinci performed
reasonably well across the board for the validation
sets, but had abysmal scores for the DeBERTa test
set. Considering that DeBERTa is a more recent
model, it is entirely possible that it has more dif-
ficulty with older data, which may explain why
Davinci did as poorly as it did. However, besides
Davinci and Bloomz being outliers on either end
of the spectrum for F1-score, the rest of the values
fell within a generally stable range, indicating that
DeBERTa had a balanced evaluation of texts.

Additionally, interestingly enough, ChatGPT
ranks last or near last in precision and F1-score
in all the tables, but makes up for that with its high
recall values. This could mean that the text was
detected to be AI-generated with relative ease, but
was then often misclassified as being from another
AI source. Given that GPT-4 has greatly enhanced
abilities compared to its predecessor, swapping out
ChatGPT for GPT-4 could yield radically different
results (for a potential future direction).

4.2 Visualizations of Pooled Outputs

It is clear from both the PCA and t-SNE visualiza-
tions that the DeBERTa model is successfully able
to distinguish between different LLMs and human
output in distinct clusters. Of note, however, are the

blue points corresponding to Davinci text located
in clusters of different colors. This phenomenon
follows from recent research and shows that hu-
man writing tasks can still be quite susceptible to
LLM influence due to their positive association
with exposure (Eloundou et al., 2023). We specu-
late that Davinci being one of the earliest models
influenced the training data of the other models
that came on later, causing them to write similarly
to Davinci. This supports our earlier hypothesis
from the raw results, but seemingly contradicts find-
ings that Davinci exhibits fewer confusions and is
thus easily distinguishable from other models (Sar-
vazyan et al., 2023). One possible explanation for
this is that our visualizations used parameters that
clearly confined the other sources to their regions;
it is entirely possible that a different configuration
of parameters would yield a graph that displays an
obvious Davinci scatter area while having a jumble
of colors elsewhere for the other models.

5 Conclusion

For SemEval 2024 Task 8, Multigenerator, Mul-
tidomain, and Multilingual Black-Box Machine-
Generated Text Detection, Team MLab submitted
models for subtasks A and B. Specifically for sub-
task B, we used a base DeBERTa model and sig-
nificantly outperformed the provided baseline set
by a base RoBERTa model, with our model’s fi-
nal accuracy coming out to 0.827. In analyzing
the precision, recall, and F1-score statistics, we
discovered trends in the recorded values that seem
to indicate that the method of training models, as
well as the timeline of their training, have profound
effects on the detectability of machine-generated
text. Finally, by creating and interpreting PCA and
t-SNE graphs, we present visual evidence that De-
BERTa’s internal reasoning groups various LLM
results in separate clusters, even though Davinci
acted as an exception with its colored points scat-
tered in the general vicinity of other models. There-
fore, visualizing AI thought processes can provide
us with useful insights regarding how we can un-
derstand and improve the language ecosystem that
they share with us.
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