@inproceedings{gu-meng-2024-aispace,
title = "{AISPACE} at {S}em{E}val-2024 task 8: A Class-balanced Soft-voting System for Detecting Multi-generator Machine-generated Text",
author = "Gu, Renhua and
Meng, Xiangfeng",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Tayyar Madabushi, Harish and
Da San Martino, Giovanni and
Rosenthal, Sara and
Ros{\'a}, Aiala},
booktitle = "Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.semeval-1.212",
doi = "10.18653/v1/2024.semeval-1.212",
pages = "1476--1481",
abstract = "SemEval-2024 Task 8 provides a challenge to detect human-written and machine-generated text. There are 3 subtasks for different detection scenarios. This paper proposes a system that mainly deals with Subtask B. It aims to detect if given full text is written by human or is generated by a specific Large Language Model (LLM), which is actually a multi-class text classification task. Our team AISPACE conducted a systematic study of fine-tuning transformer-based models, including encoder-only, decoder-only and encoder-decoder models. We compared their performance on this task and identified that encoder-only models performed exceptionally well. We also applied a weighted Cross Entropy loss function to address the issue of data imbalance of different class samples. Additionally, we employed soft-voting strategy over multi-models ensemble to enhance the reliability of our predictions. Our system ranked top 1 in Subtask B, which sets a state-of-the-art benchmark for this new challenge.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gu-meng-2024-aispace">
<titleInfo>
<title>AISPACE at SemEval-2024 task 8: A Class-balanced Soft-voting System for Detecting Multi-generator Machine-generated Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Renhua</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangfeng</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>SemEval-2024 Task 8 provides a challenge to detect human-written and machine-generated text. There are 3 subtasks for different detection scenarios. This paper proposes a system that mainly deals with Subtask B. It aims to detect if given full text is written by human or is generated by a specific Large Language Model (LLM), which is actually a multi-class text classification task. Our team AISPACE conducted a systematic study of fine-tuning transformer-based models, including encoder-only, decoder-only and encoder-decoder models. We compared their performance on this task and identified that encoder-only models performed exceptionally well. We also applied a weighted Cross Entropy loss function to address the issue of data imbalance of different class samples. Additionally, we employed soft-voting strategy over multi-models ensemble to enhance the reliability of our predictions. Our system ranked top 1 in Subtask B, which sets a state-of-the-art benchmark for this new challenge.</abstract>
<identifier type="citekey">gu-meng-2024-aispace</identifier>
<identifier type="doi">10.18653/v1/2024.semeval-1.212</identifier>
<location>
<url>https://aclanthology.org/2024.semeval-1.212</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>1476</start>
<end>1481</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AISPACE at SemEval-2024 task 8: A Class-balanced Soft-voting System for Detecting Multi-generator Machine-generated Text
%A Gu, Renhua
%A Meng, Xiangfeng
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Tayyar Madabushi, Harish
%Y Da San Martino, Giovanni
%Y Rosenthal, Sara
%Y Rosá, Aiala
%S Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F gu-meng-2024-aispace
%X SemEval-2024 Task 8 provides a challenge to detect human-written and machine-generated text. There are 3 subtasks for different detection scenarios. This paper proposes a system that mainly deals with Subtask B. It aims to detect if given full text is written by human or is generated by a specific Large Language Model (LLM), which is actually a multi-class text classification task. Our team AISPACE conducted a systematic study of fine-tuning transformer-based models, including encoder-only, decoder-only and encoder-decoder models. We compared their performance on this task and identified that encoder-only models performed exceptionally well. We also applied a weighted Cross Entropy loss function to address the issue of data imbalance of different class samples. Additionally, we employed soft-voting strategy over multi-models ensemble to enhance the reliability of our predictions. Our system ranked top 1 in Subtask B, which sets a state-of-the-art benchmark for this new challenge.
%R 10.18653/v1/2024.semeval-1.212
%U https://aclanthology.org/2024.semeval-1.212
%U https://doi.org/10.18653/v1/2024.semeval-1.212
%P 1476-1481
Markdown (Informal)
[AISPACE at SemEval-2024 task 8: A Class-balanced Soft-voting System for Detecting Multi-generator Machine-generated Text](https://aclanthology.org/2024.semeval-1.212) (Gu & Meng, SemEval 2024)
ACL