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Abstract

In this paper, we present our team’s submis-
sions for SemEval-2024 Task-6 - SHROOM,
a Shared-task on Hallucinations and Related
Observable Overgeneration Mistakes. The par-
ticipants were asked to perform binary classi-
fication to identify cases of fluent overgener-
ation hallucinations. Our experimentation in-
cluded fine-tuning a pre-trained model on hal-
lucination detection and a Natural Language
Inference (NLI) model. The most successful
strategy involved creating an ensemble of these
models, resulting in accuracy rates of 77.8%
and 79.9% on model-agnostic and model-aware
datasets respectively, outperforming the orga-
nizers’ baseline and achieving notable results
when contrasted with the top-performing re-
sults in the competition, which reported accu-
racies of 84.7% and 81.3% correspondingly.

1 Introduction

In the era that Large Language Models (LLMs)
dominate and shape the trends in the Natural Lan-
guage Processing (NLP) community, ensuring re-
liance and accurate functionality of related systems
becomes a major concern. Hallucinations of lan-
guage models have recently received lots of atten-
tion (Rawte et al., 2023; Ji et al., 2023; Huang
et al., 2023; Ye et al., 2023; Zhang et al., 2023),
questioning the trust that humans can pose in highly
intelligent yet probabilistic models. At the same
time, recent endeavors formally prove that halluci-
nations are inherent to LLMs and thus inevitable in
practice (Xu et al., 2024).

Encompassing the need for detecting and ana-
lyzing hallucinations in Natural Language Genera-
tion (NLG) tasks, and given the scarcity of related
datasets and benchmarks (Li et al., 2023; Cao et al.,
2023; Chen et al., 2023; Muhlgay et al., 2024), the
SemEval-2024 Task 6 (SHROOM: a Shared-task
on Hallucinations and Related Observable Overgen-
eration Mistakes) (Mickus et al., 2024) addresses

the presence of semantically unrelated generations
with respect to a given input, covering challenging
NLP tasks, such as Machine Translation, Definition
Modelling and Paraphrase Generation, which are
tested both when the underlying model is known
or not.

To this end, we explore efficient and widely
adaptable hallucination detection strategies, tai-
lored to the black-box demands of the problem1.
Based on pre-trained models which contain knowl-
edge regarding semantic relationships related to
hallucinations, we achieve ∼80% accuracy in
hallucination detection by fine-tuning on labeled
SHROOM instances, notably higher than the 74.5%
baseline accuracy provided, using an open-source
Mistral instruction-tuned model2. Specifically, we
contribute to the following:

1. We fine-tune models pre-trained on hallucina-
tion detection and Natural Language Inference
(NLI) datasets, which are semantically related
to SHROOM challenges.

2. Tuned models constitute a Voting Classifier,
achieving competitive detection accuracy.

3. All our experimentation is time and computa-
tionally efficient, while entirely black-box.

4. Decomposition of results per task and analy-
sis of failed and accurately detected instances
provide valuable insights into the nature of the
involved hallucinations.

Our code is available on GitHub 3.

1Even in the model-aware setting of SHROOM, we do not
re-generate the outputs using the given models, therefore we
continue operating in a completely black-box setup.

2https://huggingface.co/TheBloke/
Mistral-7B-Instruct-v0.2-GGUF

3https://github.com/ngregoriade/
Semeval2024-Shroom.git
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2 Related Work

NLP hallucinations is a rapidly evolving field,
examining invalid generations from varying per-
spectives. Categorizations of hallucinations may
view hallucinatory outputs as unfaithful to the in-
put, inconsistent with the generated output itself,
or conflicting with real-world knowledge (Zhang
et al., 2023). Factual hallucinations have gathered
the majority of recent breakthroughs, since compar-
ison with existing factual sources (Lin et al., 2022;
Lee et al., 2023; Chen et al., 2023; Min et al., 2023;
Cao et al., 2023; Muhlgay et al., 2024) renders
them accurately detectable and correctable (Chern
et al., 2023; Dhuliawala et al., 2023; Li et al., 2024).
The more subtle characteristics of other hallucina-
tion types constitute the creation of related bench-
marks harder, not to mention techniques for auto-
matic evaluation (Azaria and Mitchell, 2023; Kada-
vath et al., 2022; Manakul et al., 2023; Duan et al.,
2024). A limitation tied with such techniques is
that in most cases at least model probing is needed,
rendering them unusable in cases where the model
that produced the reported hallucinations is com-
pletely unknown or inaccessible. SHROOM comes
to fill this gap, focusing on semantic faithfulness
rather than factuality, while requesting a diverging
suite of proposed detection techniques that should
even cover cases that the model is not given at all.
As a trade-off, implementations on the SHROOM
dataset require the ground-truth output, since the
given input does not contain the necessary semantic
information to drive decisions on whether a sample
is a hallucination or not. Our proposed approach
only considers given inputs and outputs and does
not probe any model, contrary to other black-box
techniques (Manakul et al., 2023).

3 Task and Dataset description

Driven by upcoming challenges in the NLG land-
scape, SHROOM dataset focuses on the prevalent
issues of models generating linguistically fluent
but inaccurate (incorrect or unsupported) outputs.
Participants are tasked with binary classification
to identify instances of fluent overgeneration hal-
lucinations in model-aware and model-agnostic
tracks. The task encompasses three NLG do-
mains—definition modeling (DM), machine trans-
lation (MT), and paraphrase generation (PG)—with
provided checkpoints, inputs, references, and out-
puts for binary classification. The development
set includes annotations from multiple annotators,

establishing a majority vote gold label.

Data details In all cases, data follow a specific
format: src is the input given to a model, hyp is
the output generated by the model, tgt comprises
the ground truth output for this specific model, ref
indicates whether target, source or both of these
fields contain the semantic information necessary
to establish whether a datapoint is a hallucination,
task refers to the task being solved and model to
the model being used (in the model-agnostic case
the model entry remains empty). An example of
the data format is given in Table 7. Initially, 80
labeled trial samples were released, followed by
unlabelled training data which contain 30k model-
agnostic and 30k model-aware instances. Finally,
the labeled validation set contains 499 and 501
samples for model-agnostic and model-aware set-
tings respectively, while the test set comprises
1500 model-agnostic and 1500 model-aware la-
beled samples. Additional information provided in
the labeled splits are labels, which contains a list
of ‘Hallucination’ and ‘Not Hallucination’ labels
as provided by 5 annotators per sample, the final
label occurring via majority voting over the afore-
mentioned list and p(Hallucination), denoting the
probability of hallucination as the percentage of
agreeing annotators on the ‘Hallucination’ label. A
thorough data analysis is provided in the App. C.

Evaluation metrics proposed from the task or-
ganizers for SHROOM are accuracy, regarding the
classification success in ‘Hallucination’/‘Not Hallu-
cination’ classes and Spearman correlation (RHO),
measuring the -positive- correlation between vali-
dation and test p(‘Hallucination’) values.

4 Methods

As the core of our system, we propose a universal
and lightweight methodology that leverages well-
established pre-trained classifiers for hallucination
detection. We propose 3 techniques to approach it.

4.1 Fine-tune hallucination detection model

Our first technique employs fine-tuning a pre-
trained classifier dedicated to hallucination de-
tection to learn distinguishing patterns between
hallucinated/non-hallucinated SHROOM instances.
More specifically, we employed a pre-trained
model based on microsoft/deberta-v3-base pro-
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vided by Hugging Face4, especially designed for
hallucination detection. This model was initially
trained on NLI data to ascertain textual entailment.
Subsequently, it underwent further fine-tuning us-
ing summarization datasets enriched with factual
consistency annotations. The output of our em-
ployed model is a probability score in the [0, 1]
range; a score of 0 indicates the presence of hallu-
cination in the generated content, while a score of
1 signifies factual consistency. This probabilistic
nature enables the evaluation of the model’s confi-
dence in the veracity of the generated hypotheses.

To tailor the model to the specific demands of
our task, we used the provided annotated validation
set of 1000 samples for training purposes. This
adaptation process aimed to enhance the model’s
performance by aligning it with the variation and
complexity present in SHROOM. Moreover, we
applied a thresholding approach to make practical
decisions based on the probabilistic outputs of the
model. By setting a threshold at 0.5, we categorize
predictions with scores above this threshold as in-
dicative of input-output consistency, while the rest
are considered as potential hallucinatory instances.

4.2 Fine-tune NLI models

In the context of detecting hallucinated answers, we
also employed NLI models, an approach that has
witnessed significant advancements, while investi-
gating semantic intricacies close to hallucinations.
NLI models play a crucial role in enabling compre-
hension of the sophisticated connections between
sentences, categorizing the relationship between a
hypothesis and a premise into entailment, neutral,
or contradiction. In terms of our task, we convert
hallucination detection to an NLI problem: given
the input (termed as hypothesis-hyp) to a model and
the premise (named target-tgt) we evaluate whether
tgt entails, contradicts or remains neutral to hyp.

To execute this approach in technical terms, we
select a pre-trained NLI model available through
Hugging Face5. This model, based on mDeBERTa-
v3-base architecture, was originally trained on a
large-scale multilingual dataset, making it well-
suited for handling diverse linguistic details. To
fine-tune the NLI model and tailor it to the specific
intricacies of our task, we employed the annotated
validation set, as in the previous case.

4https://huggingface.co/vectara/hallucination_
evaluation_model

5https://huggingface.co/MoritzLaurer/
mDeBERTa-v3-base-xnli-multilingual-nli-2mil7

4.3 Voting Classifier

In our final approach, we employed an ensemble
technique known as a Voting Classifier. The un-
derlying principle is to aggregate the collective
insights derived from each constituent classifier
(in our case the previously mentioned models), ul-
timately predicting the output class based on the
highest majority of votes. By doing so, the en-
semble not only leverages the individual strengths
of each method but also mitigates potential weak-
nesses, thereby enhancing the overall predictive
performance in a deliberate effort to address the in-
herent complexity and variability within the dataset,
contributing to a more nuanced and accurate under-
standing of the phenomena under investigation.

5 Experiments

5.1 Experimental setup

All our experiments were executed using Google
Colab platform with a single Tesla T4 GPU.

Fine-tune hallucination model Our fine-tuned
model underwent a rigorous training and evalua-
tion process, utilizing SHROOM data provided by
the task organizers. Specifically, the model was
trained with the annotated validation set and eval-
uated against the trial set. In the pre-processing
phase, from each data point, we extracted the hyp
and tgt components to serve as inputs to the model.

To optimize the model’s performance in terms
of both accuracy and p(‘Hallucination’), we im-
plemented a dual-training strategy. The model
was trained twice, employing binary labels (0
for Hallucination and 1 for Not Hallucination)
in one iteration and float labels (representing 1-
p(‘Hallucination’)) in the other. This dual-training
approach allowed us to derive two crucial aspects
from the model: the binary label indicating the
presence or absence of hallucination, and the corre-
sponding probability score indicating the likelihood
of hallucination. The hyperparameters for fine-
tuning are comprehensively detailed in Table 1.

Hyperparameter Value
train dataloader validation set (1,000 samples)
evaluator trial set (80 samples)
epochs 5
evaluation steps 10,000
warm-up steps 10% of train data for warm-up

Table 1: Hyperparameters used for the hallucination
detection model fine-tuning
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Natural Language Inference (NLI) models
This NLI model was already trained with the
multilingual-nli-26lang-2mil7 (Laurer et al., 2022)
dataset and the XNLI validation dataset (Conneau
et al., 2018), both containing three different labels:
‘entailment’, ‘neutral’ and ‘contradiction’. Dur-
ing the training phase, we systematically mapped
the ‘Hallucination’ label to ‘contradiction’ and the
‘Not Hallucination’ label to ‘entailment’, ensuring
a binary representation of the hallucinatory nature
of the content. This transformation facilitated the
training process by providing clear labels for the
model to learn the distinctions between hallucina-
tory and non-hallucinatory instances.

Post-training, the model’s predictions were as-
sessed using the entailment score, and a strategi-
cally chosen threshold was employed to distinguish
between hallucinations and non-hallucinations.
Prior to training, we experimented with a wide
range of threshold values, concluding that a thresh-
old of 0.8 optimized the accuracy of the trial set.
Simultaneously, for the determination of the per-
centage of Hallucination for each data point, we
used the entailment percentage subtracted from 1.

A detailed account of the parameters employed
for training this NLI model is outlined in Table 2.

Hyperparameter Value
train dataset validation set (1,000 samples)
learning rate 2e-05
epochs 5
warm-up ratio 0.06
weight decay 0.01

Table 2: Hyperparameters used for NLI fine-tuning

Voting Classifier In the final leg of our method-
ological exploration, the Voting Classifier in-
tegrates the pre-trained hallucination detection
model, its fine-tuned counterpart from §4.1, and
the fine-tuned NLI model described in §4.2.

The Voting Classifier operates on a dual strat-
egy for hallucination categorization. First, for the
binary labels, we assigned the majority label (‘Hal-
lucination’ or ’Not Hallucination’) among the three
models to each data point. Second, to determine
the percentage of hallucination for each data point,
we provided two methodologies. For the first one,
we implemented a similar methodology to the one
used in the validation and trial sets, i.e. the per-
centage of hallucination derived from the majority
vote of the annotators. By emulating the same pro-
cess, we calculate the percentage of models that

labeled a given data point as ‘Hallucination’. For
the second one, we use the float p(‘Hallucination’)
scores of each of the three models constituting the
ensemble and extract the average value.

5.2 Results

Baseline System During the evaluation phase,
we were provided with a baseline system, which
was based on a simple prompt retrieval approach,
derived from SelfCheck-GPT(Manakul et al.,
2023), using an open-source Mistral instruction-
tuned model as its core component (the prompt is
shown in Table 6). If the answer starts with‘Yes’
the sample is classified as ‘Not Hallucination’ with
p(’Hallucination’) equal to the probability that the
token was chosen subtracted from 1, else if the
answer starts with ‘No’ the sample is classified as
‘Hallucination’ with p(‘Hallucination’) equal to the
probability that the token was chosen. If the answer
starts with neither, the label is assigned randomly
and p(‘Hallucination’) equals to 0.5.

Averaged results for all our experiments are pre-
sented in Table 3. The Voting Classifier achieves
top results, with a more notable difference in the
model-agnostic setting. This is an expected be-
havior since the ensembling of models is designed
to boost the performance of its standalone con-
stituents.

Method acc.↑ rho↑
Model-aware

Baseline Model 0.745 0.488
Fine-tune hal-detect model 0.795 0.685
NLI model 0.77 0.591
Voting Classifier-majority vote 0.799 0.691
Voting Classifier-averaged percentage 0.799 0.693

Model-agnostic
Baseline Model 0.697 0.402
Fine-tune hal-detect model 0.778 0.668
NLI model 0.751 0.548
Voting Classifier-majority vote 0.78 0.632
Voting Classifier-averaged percentage 0.78 0.643

Table 3: Final results for model-aware and model-
agnostic variants. Bold denotes best results. The two
Voting Classifiers differentiate from the method applied
to calculate the p(‘Hallucination) as explained in 5.1

We demonstrate the computational efficiency of
our proposed methods regarding the training and
inference time needed in Table 4. The Voting Clas-
sifier sums the times of all three of its model-voters.
Since reported runtimes were achieved using the
T4 GPU of the free Google Colab version, our pro-
posed methods can be replicated and utilized by
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Figure 1: p(‘Hallucination’) for all misclassified samples of model aware dataset.

Figure 2: p(‘Hallucination’) for all misclassified samples of model agnostic dataset.

any user, without any budget or time limitations,
nor the need to access sophisticated hardware.

Method Training↓ Inference↓
pre-trained hal-detect model - 39.00
Fine-tune hal-detect model 91.59 45.66
NLI model 927.14 58.96
Voting Classifier 1,018.73 143.62

Table 4: Training and inference time in seconds.

NLG Model Task aware-acc↑
Hal-detect model fine-tuning

tuner007/pegasus_paraphrase PG 0.856
facebook/nllb-200-distilled-600M MT 0.824
ltg/flan-t5-definition-en-base DM 0.724

NLI model fine-tuning
tuner007/pegasus_paraphrase PG 0.803
facebook/nllb-200-distilled-600M MT 0.789
ltg/flan-t5-definition-en-base DM 0.703

Voting Classifier
tuner007/pegasus_paraphrase PG 0.861
facebook/nllb-200-distilled-600M MT 0.828
ltg/flan-t5-definition-en-base DM 0.73

Table 5: Model-aware accuracy per model and task.

Moreover, per-task and model hallucination de-
tection for the model-aware dataset is presented in
Table 5. The PG task demonstrates superior perfor-
mance compared to the other two tasks, while the
DM task reports significantly lower accuracy. This
disparity in outcomes can be explained by the in-
herent characteristics of each task when formulated

as a paraphrase problem. The PG task exhibits no-
tably higher results owing to its direct alignment
with the paraphrase objective. Similarly, the MT
task, which evaluates translations from the LLM
against ground truth translation, achieves relatively
comparable results. Conversely, the DM task faces
the complexities of articulating precise and con-
textually relevant definitions. Consequently, the
DM task exhibits notably lower accuracy due to
the intricacies of handling more complex sentence
structures. The Voting Classifier remains the top
scorer in each of the tasks, highlighting the power
of ensembling individual predictors.

Finally, we perform some error analysis on the
misclassified samples (Figures 1, 2): we measure
the p(‘Hallucination’) for misclassifications for all
our 3 methods. Ideally, p(‘Hallucination’) val-
ues for misclassifications should lie close to the
discrimination threshold of 0.5, indicating that
their separability is highly uncertain. Indeed,
our best performing Voting Classifier presents a
peak for p(‘Hallucination’)=0.6 for both model-
aware and model-agnostic settings, highlighting
that misclassified samples are in any case hard
to classify in their correct class. Moreover, the
p(‘Hallucination’) values in the range [0.0-0.4] -
corresponding to the ‘Not Hallucination’ label- are
lower for the Voting Classifier in comparison to
the other two models, denoting that ensembling
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reduces misclassifications for non-hallucinatory in-
stances.

6 Conclusion

In this work, we detect and analyze hallucinations
from the SHROOM dataset introduced in SemEval
2024 Task 6. We propose a computationally ef-
ficient methodology based on fine-tuning models
that present semantic cues close to SHROOM’s hal-
lucinations, while model ensembling further boosts
results in 3 NLG tasks. Our techniques operate in a
fully black-box setting, solely requiring inputs and
outputs obtained from NLG models. Our error anal-
ysis demonstrates that our misclassifications are
samples of high uncertainty in terms of hallucina-
tion probability and, therefore hard to be discerned
overall. In total, we aspire that our simple though
efficient technique will assist future research in the
crucial hallucination detection field.

References
Amos Azaria and Tom Mitchell. 2023. The internal

state of an llm knows when it’s lying.

Zouying Cao, Yifei Yang, and Hai Zhao. 2023. Auto-
hall: Automated hallucination dataset generation for
large language models. ArXiv, abs/2310.00259.

Xiang Chen, Duanzheng Song, Honghao Gui, Chenxi
Wang, Ningyu Zhang, Jiang Yong, Fei Huang,
Chengfei Lv, Dan Zhang, and Huajun Chen. 2023.
Factchd: Benchmarking fact-conflicting hallucina-
tion detection. ArXiv, abs/2310.12086.

I-Chun Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan,
Kehua Feng, Chunting Zhou, Junxian He, Graham
Neubig, and Pengfei Liu. 2023. Factool: Factuality
detection in generative ai – a tool augmented frame-
work for multi-task and multi-domain scenarios.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. 2023. Chain-of-verification reduces
hallucination in large language models.

Hanyu Duan, Yi Yang, and Kar Yan Tam. 2024. Do llms
know about hallucination? an empirical investigation
of llm’s hidden states.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,

Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12).

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
Deep Ganguli, Danny Hernandez, Josh Jacobson,
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-
mal Ndousse, Catherine Olsson, Sam Ringer, Dario
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. 2022. Language models (mostly) know what
they know.

Moritz Laurer, Wouter van Atteveldt, Andreu Salleras
Casas, and Kasper Welbers. 2022. Less Annotat-
ing, More Classifying – Addressing the Data Scarcity
Issue of Supervised Machine Learning with Deep
Transfer Learning and BERT - NLI. Preprint. Pub-
lisher: Open Science Framework.

Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pas-
cale Fung, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023. Factuality enhanced language models for
open-ended text generation.

Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng,
Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen.
2024. The dawn after the dark: An empirical study
on factuality hallucination in large language models.

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and
Ji-Rong Wen. 2023. HaluEval: A large-scale hal-
lucination evaluation benchmark for large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 6449–6464, Singapore. Association for Com-
putational Linguistics.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods.

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models.

Timothee Mickus, Elaine Zosa, Raúl Vázquez, Teemu
Vahtola, Jörg Tiedemann, Vincent Segonne, Alessan-
dro Raganato, and Marianna Apidianaki. 2024.
SemEval-2024 Task 6: SHROOM, a shared-task on
hallucinations and related observable overgeneration
mistakes. In Proceedings of the 18th International
Workshop on Semantic Evaluation (SemEval-2024),

1554

http://arxiv.org/abs/2304.13734
http://arxiv.org/abs/2304.13734
https://api.semanticscholar.org/CorpusID:263334406
https://api.semanticscholar.org/CorpusID:263334406
https://api.semanticscholar.org/CorpusID:263334406
https://api.semanticscholar.org/CorpusID:264289140
https://api.semanticscholar.org/CorpusID:264289140
http://arxiv.org/abs/2307.13528
http://arxiv.org/abs/2307.13528
http://arxiv.org/abs/2307.13528
http://arxiv.org/abs/2309.11495
http://arxiv.org/abs/2309.11495
https://api.semanticscholar.org/CorpusID:267682191
https://api.semanticscholar.org/CorpusID:267682191
https://api.semanticscholar.org/CorpusID:267682191
http://arxiv.org/abs/2311.05232
http://arxiv.org/abs/2311.05232
http://arxiv.org/abs/2311.05232
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
https://osf.io/74b8k
https://osf.io/74b8k
https://osf.io/74b8k
https://osf.io/74b8k
http://arxiv.org/abs/2206.04624
http://arxiv.org/abs/2206.04624
http://arxiv.org/abs/2401.03205
http://arxiv.org/abs/2401.03205
https://doi.org/10.18653/v1/2023.emnlp-main.397
https://doi.org/10.18653/v1/2023.emnlp-main.397
https://doi.org/10.18653/v1/2023.emnlp-main.397
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2303.08896


Mexico City, Mexico. Association for Computational
Linguistics.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike
Lewis, Wen tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023.
Factscore: Fine-grained atomic evaluation of factual
precision in long form text generation.

Dor Muhlgay, Ori Ram, Inbal Magar, Yoav Levine,
Nir Ratner, Yonatan Belinkov, Omri Abend, Kevin
Leyton-Brown, Amnon Shashua, and Yoav Shoham.
2024. Generating benchmarks for factuality evalua-
tion of language models.

Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A
survey of hallucination in large foundation models.

Ziwei Xu, Sanjay Jain, and Mohan S. Kankanhalli. 2024.
Hallucination is inevitable: An innate limitation of
large language models. ArXiv, abs/2401.11817.

Hongbin Ye, Tong Liu, Aijia Zhang, Wei Hua, and
Weiqiang Jia. 2023. Cognitive mirage: A review of
hallucinations in large language models.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song
in the ai ocean: A survey on hallucination in large
language models. ArXiv, abs/2309.01219.

A Organizers’ baseline

The prompt used by the organizers to construct the
baseline Mistral instruction-tuned model is demon-
strated in Table 6.

Prompt
Context {tgt}
Sentence: {hyp}
Is the sentence supported by the context above?
Answer Yes or No:

Table 6: Prompt used in the Baselined System

B Data format

In Table 7 we present some examples from the un-
labelled training dataset containing model-agnostic
and model-aware instances. Regarding the ma-
chine translation (MT) task, we could detect a vari-
ety of languages, including Russian, Arabic, Chi-
nese, Yorùbá, Telugu, Tsonga, Uzbek, Sinhalese,
Quechuan, Mizo and others. Language information
was not provided, so we manually explored the src
samples in terms of linguistic variability.

Model-agnostic definition modeling (DM) hy-
potheses contain some ‘qualifiers’, which may

guide a model under usage to return a more suit-
able definition. For example, in the context of the
hypothesis containing the definition "(obsolete) An
odour," the term "obsolete" indicates that the pro-
vided definition is no longer in common use or is
outdated. The word "obsolete" is used as a qualifier
to convey that the term or concept being defined,
in this case, "An odour," was once used to repre-
sent a specific meaning but is no longer considered
current or applicable in contemporary language.

Another notable observation is that model-aware
paraphrase-generation (PG) does not contain any
information in tgt.

C Exploratory data analysis

Trial set We explore the frequency of each task
occurring within samples from different dataset
splits, commencing from the initially released trial
set. In Figure 3 we present the task distribution of
the first 80 trial samples.

Unlabelled data (training set) Figure 4 repre-
sents the distribution in the training set. In both
model-agnostic and model-aware settings each task
contains an equal number of samples (10k samples
per task in each setting). In our methodologies,
we abstained from utilizing the provided unlabeled
training dataset as it did not align with our main
approaches.

Figure 3: Distribution of per task samples in the initially
released trial set.

Validation set Moving on to labeled data, we
commence with the validation (dev) set, for which
we present per task distributions in Figure 5. We
observe a difference in the distribution of labels
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Model-agnostic
Machine Translation ’hyp’: "Don’t worry, it’s only temporary.", ’tgt’: "Don’t worry. It’s only temporary.", ’src’: ’Не

волнуйся. Это только временно.’, ’ref’: ’either’, ’task’: ’MT’, ’model’: ”
Definition modelling ’hyp’: ’(uncountable) The quality of being oronymy; the state of being oronymy.’, ’tgt’: ’The

nomenclature of mountains, hills and other geographic rises.’, ’src’: ’An ancient survival in
Turkish <define> oronymy </define> is quite possible , but I have not found Nihan Dag on the
relevant sheets of the 1 : 200,000 map of Turkey , which are very detailed in matters of oronymy
;’, ’ref’: ’tgt’, ’task’: ’DM’, ’model’: ”

Definition modelling ’hyp’: ’(intransitive, obsolete) To make a magazin of; to compose a magazin.’, ’tgt’: ’(colloquial)
The act of editing or writing for a magazine.’, ’src’: "Thus , though Byron is gone after his
Don Juan — Scott and Southey out of the rhyme department — Wordsworth stamp - mastering
— Coleridge ’s poetry in abeyance — Crabbe mute as a fish - Campbell and Wilsont merely
<define> magazining </define>", ’ref’: ’tgt’, ’task’: ’DM’, ’model’: ”

Paraphrase Generation ’hyp’: ’You got something for me, huh?’, ’tgt’: ”, ’src’: ’Got something for me?’, ’ref’: ’src’,
’task’: ’PG’, ’model’: ”

Model-aware
Machine Translation ’hyp’: "It’s like pushing a heavy wheel up a mountain. It splits the nucleus again and releases

some energy.", ’tgt’: ’Sort of like rolling a heavy cart up a hill. Splitting the nucleus up again
then releases some of that energy.’, ’src’: ’有像把沉重的手推推上山。再次分裂核子然後放
一些能量’, ’ref’: ’either’, ’task’: ’MT’, ’model’: ’facebook/nllb-200-distilled-600M’

Machine Translation ’hyp’: ’Our Mailoamiris of the System of Treatment of Ulilaes have created a place for these little
ones.’, ’tgt’: ’We perceive the Foster Care System to be a safety zone for these children.’, ’src’:
’Maamiris tayo a ti Sistema iti Panangtaripato kadagiti Ulila ket natalged a lugar para kadagitoy
nga ubbing.’, ’ref’: ’either’, ’task’: ’MT’, ’model’: ’facebook/nllb-200-distilled-600M’

Definition modeling ’hyp’: ’To be obsequiously interested in .’, ’tgt’: ’( usually followed by over or after ) To fuss
over something adoringly ; to be infatuated with someone .’, ’src’: "Sarah mooned over sam ’s
photograph for months . What is the meaning of moon ?", ’ref’: ’tgt’, ’task’: ’DM’, ’model’:
’ltg/flan-t5-definition-en-base’

Paraphrase Generation ’hyp’: "Mr Barros Moura’s report looks to the future in my opinion.", ’tgt’: ”, ’src’: ’In my
opinion, the most important element of the report by Mr Barros Moura is that it looks to the
future.’, ’ref’: ’src’, ’task’: ’PG’, ’model’: ’tuner007/pegasus_paraphrase’

Table 7: Examples from the unlabelled training set.

(a) Model-agnostic sample distribution in the training set. (b) Model-aware sample distribution in the training set.

Figure 4: Distribution of unlabelled training samples per task in both model-agnostic and model-aware settings.

in comparison to the balanced training set distri-
bution of Figure 4; nevertheless, since we do not
exploit any unlabelled instance, this does not pose
a limitation for us at this point.

We proceed with studying the validation set label
distribution. Related results are presented in Figure
6, denoting label imbalance in both model-agnostic
and model-aware settings.

The distribution of hallucination probability
is presented in Figure 7. As expected, low
p(’Hallucination’) values are more common (indi-
cating that fewer annotations voted for the presence
of a hallucinatory instance), since ’Not Hallucina-
tion’ is the majority label in both settings. Ideally,
we wish borderline probabilities to be low: The
highest the disagreement for a certain sample, the
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(a) Model-agnostic sample distribution in the validation set. (b) Model-aware sample distribution in the validation set.

Figure 5: Distribution of labeled validation samples per task in both model-agnostic and model-aware settings.

(a) Model-agnostic label distribution in the validation set. (b) Model-aware label distribution in the validation set.

Figure 6: Distribution of validation labels in both model-agnostic and model-aware settings.

(a) Model-agnostic hallucination probability distribution in
the validation set.

(b) Model-aware hallucination probability distribution in the
validation set.

Figure 7: Distribution of hallucination probability (majority voting among human annotators’ labeling) in both
model-agnostic and model-aware settings in the validation set.
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(a) Hallucination probability per label (Model-agnostic). (b) Hallucination probability per label (Model aware).

Figure 8: Distribution of hallucination probability in each validation label (’Hallucination’ vs ’Not Hallucination’).
Annotators significantly agree on whether a sample contains a hallucination or not.

(a) Model-agnostic sample distribution in the test set. (b) Model-aware sample distribution in the test set.

Figure 9: Distribution of labeled test samples per task in both model-agnostic and model-aware settings.

(a) Model-agnostic label distribution in the test set. (b) Model-aware label distribution in the test set.

Figure 10: Distribution of test labels in both model-agnostic and model-aware settings.
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(a) Model-agnostic hallucination probability distribution in
the test set.

(b) Model-aware hallucination probability distribution in the
test set.

Figure 11: Distribution of hallucination probability (majority voting among human annotators’ labeling) in both
model-agnostic and model-aware settings in the test set.

(a) Hallucination probability per label (Model-agnostic). (b) Hallucination probability per label (Model aware).

Figure 12: Distribution of hallucination probability in each test label (’Hallucination’ vs ’Not Hallucination).
Annotators significantly agree on whether a sample contains a hallucination or not.

closest to the 0.5 threshold the hallucination prob-
ability will be (a p(’Hallucination’)=0.4 denotes
that 3/5 annotators voted for ’Not Hallucination’,
while the rest 2/5 voted for the opposite; on the
other hand, a p(’Hallucination’)=0.6 denotes that
3/5 annotators voted for ’Hallucination’, while the
rest 2/5 voted for ’Not Hallucination’. Therefore,
the highest uncertainty is observed close to the 0.5
boundary). This requirement is adequately satisfied
especially in the model-agnostic case (left plot of
Figure 7), where p(’Hallucination’)=0.6 is the least
frequent.

Further insights can be obtained by looking at
Figure 8: when smaller dots are assigned to prob-
abilities close to the 0.5 threshold, the annotators’

disagreement is lower, therefore classifying a sam-
ple as ’Hallucination’ or ’Not hallucination’ is less
uncertain. Indeed, the less frequently appearing
p(’Hallucination’)=0.4 and p(’Hallucination’)=0.6
values in the model-agnostic case denote high sepa-
rability between hallucinated and non-hallucinated
samples. However, highly certain values, such as
p(’Hallucination’)=0.0 and p(’Hallucination’)=1.0
only rank in the middle, therefore even if samples
are separable with low uncertainty, some minor
disagreement persists (1/5 annotators frequently
disagrees with the rest). Overall, annotators are
almost equally confident in classifying ’Hallucina-
tion’ and ’Not Hallucination’ samples, as indicated
by the matching pattern regarding label uncertainty
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for both labels. The model-aware case is more
confusing, with p(’Hallucination’)=0.6 scoring the
highest; therefore, classifying a sample as ’Halluci-
nation’ is often accompanied by high uncertainty.
On the contrary, uncertainty is lower for the ’Not
Hallucination’ label, with p(’Hallucination’)=0.0
ranking as the second most frequent probability.
We can conclude that in the model-aware setting
of the validation set, annotators are more confi-
dent in recognizing the ’Not Hallucination’ class
in comparison to the ’Hallucination’ one.

Test set As for the test set, Figure 9 represents
the number of samples per task for both settings.
Note that the test task distribution is similar to the
validation distribution of Figure 5with PG being a
minority label in all cases.

In terms of ground-truth label (Hallucination vs
Not Hallucination), Figure 10 highlights some la-
bel imbalance, rendering the prediction of ’Not
Hallucination’ more possible in a random setup
for both model-agnostic and model-aware settings.
This label distribution matches the validation set
label distribution (Figure 6), for which ’Not Hallu-
cination’ was the majority class as well.

Hallucination probability per setting is depicted
in Figure 11, with lower hallucination values in
the range [0, 0.2) being more common. This is
again somehow expected since ’Not Hallucina-
tion’ is the majority class in test labels. More in-
sights can be obtained by looking at Figure 12,
which relates the hallucination probability with
the label. Especially in the model-agnostic set-
ting (Figure 12 - left), the p(’Hallucination’)=0.4
and p(’Hallucination’)=0.6 values are the lowest
(smaller dots), while p(’Hallucination’)=0.0 is the
highest, denoting that annotators are often cer-
tain regarding non-hallucinated samples. Certainty
for hallucinated samples is somehow lower, as
p(’Hallucination’)=1.0 lies somewhere in the mid-
dle. Nevertheless, p(’Hallucination’)=0.8 is the
second more frequent value denoting that 4/5 anno-
tators frequently annotate a sample as ’Hallucina-
tion’. By observing the right plot of Figure 12, we
conclude that certainty is lower in the model-aware
setting. Even though p(’Hallucination’)=0.0 re-
mains the most frequent probability, indicating high
agreement regarding non-hallucinated samples, the
p(’Hallucination’)=0.6 value stands in the second
place. Therefore, many samples classified as ’Hal-
lucination’ achieved this label with low agreement
(3/5 annotators). Also, the p(’Hallucination’)=0.2

and p(’Hallucination’)=0.8 are the lowest, denot-
ing that higher agreement (4/5 annotators agreeing)
is rare for both ’Hallucination’ and ’Not Halluci-
nation’ labels. We can assume that model-aware
samples are harder by nature to be classified in any
of the labels.

D NLI-Hyperparameters

The hyperparameters utilized for the NLI model
fine-tuning mirrored those employed during the
training of the initial model. The selection of hy-
perparameters followed a series of experiments,
which yielded significantly lower levels of accu-
racy. Some of the experiments are displayed in the
Table 8

epochs lr warmup ratio weight decay accuracy
5 2e-05 0.06 0.01 0.83

10 2e-06 0.1 0.01 0.75
5 2e-04 0.01 0.05 0.53
5 2e-05 0.05 0.001 0.8
5 2e-06 0.08 0.1 0.79

Table 8: Accuracy on trial-set from experiments with
hyperparameters. The first row displays the hyperpa-
rameters chosen for finetuning
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