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Abstract

This paper presents our system development
for SemEval-2024 Task 3: "The Competition
of Multimodal Emotion Cause Analysis in Con-
versations". Effectively capturing emotions
in human conversations requires integrating
multiple modalities such as text, audio, and
video. However, the complexities of these di-
verse modalities pose challenges for develop-
ing an efficient multimodal emotion cause anal-
ysis (ECA) system. Our proposed approach
addresses these challenges by a two-step frame-
work. We adopt two different approaches
in our implementation. In Approach 1, we
employ instruction-tuning with two separate
Llama 2 models for emotion and cause pre-
diction. In Approach 2, we use GPT-4V for
conversation-level video description and em-
ploy in-context learning with annotated conver-
sation using GPT 3.5. Our system wins rank 4,
and system ablation experiments demonstrate
that our proposed solutions achieve significant
performance gains. All the experimental codes
are available on Github.

1 Introduction

Emotion Cause Analysis (ECA) is centered around
the extraction of potential cause clauses or pairs
of emotion clauses and cause clauses from human
communication, enabling a deeper understanding
of communication dynamics. By incorporating
multimodal cues like visual scenes, facial expres-
sions, and vocal intonation, it facilitates a compre-
hensive and technically robust analysis of the fac-
tors that trigger diverse emotional reactions (Mit-
tal et al., 2021; Zhang and Li, 2023; Zheng et al.,
2023b). Despite the considerable amount of re-
search conducted using diverse audio, visual, and
text modalities (Gui et al., 2018; Xia and Ding,
2019; Fan et al., 2020; Shoumy et al., 2020; Ab-
dullah et al., 2021), there has been a noticeable
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gap in the exploration of multimodal ECA in natu-
ral settings (human conversations). In this context,
Wang et al. (2023a) introduce Multimodal Emotion
Cause Analysis in Conversations (ECAC) task and
provide Emotion-Cause-in-Friends (ECF) dataset,
which incorporates text, audio, and video modali-
ties. This task consists of two sub-tasks: Textual
Emotion-Cause Pair Extraction in Conversations
(Subtask 1) and Multimodal Emotion Cause Anal-
ysis in Conversations (Subtask 2). A detailed de-
scription of these sub-tasks can be found in the task
description paper (Wang et al., 2024a).

In our submission to Subtask 2 of multimodal
ECAC, this paper presents two distinct approaches
to address the ECAC problem, giving competitive
results. Drawing inspiration from the effective-
ness of LLMs in diverse downstream tasks (Wang
et al., 2023b, 2024b; Yang et al., 2024), including
emotion recognition, we propose two LLM-based
approaches that decompose the emotion-cause pair
extraction process into two steps. The first step
involves predicting the emotions of the utterances
in the conversation. In the next step, we utilize
these emotion labels to guide cause extraction. Ap-
proach 1 involves instruction-tuning two separate
Llama 2 models for emotion and cause prediction,
while Approach 2 leverages the in-context learn-
ing (ICL) capabilities (Dong et al., 2023) of the
GPT-3.5 model. Additionally, we introduce an effi-
cient technique using the GPT-4V model to extract
conversation-level descriptions from video modal-
ity.

During the evaluation, our team ranked 4th on
the leaderboard competing against more than 25
teams with a weighted-F1 score of 0.2816.

2 Background

2.1 Task definition

The input for the task, D, comprises N conversa-
tions. As described by Wang et al. (2023a), given a
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conversation Di = {u1, u2, . . . , uM} consisting of
M utterances, where each utterance is represented
by text, audio, and video, i.e. uj = [tj , aj , vj ], the
goal of the task is to extract a set of emotion-cause
pairs P = {. . . , (uek, uck), . . .}, where uek denotes
an emotion utterance and uck corresponds to the
cause utterance.

2.2 Related Work

The detailed Related Work section can be found in
Appendix A.

2.3 Dataset

We use the Emotion-Cause-in-Friends (ECF)
dataset provided by Wang et al. (2023a), which
is summarized in Table 1. This dataset contains
13,509 multimodal utterances that occur in the
American sitcom Friends with 9272 emotion-cause
pairs. Each utterance consists of the text, video,
and audio.

Class-distribution The dataset is imbalanced as
shown in Fig. 1 wherein around 44% of the ut-
terances have neutral emotion. Disgust and Fear
constitute only 3% and 2.7% of the emotions.

Figure 1: Percentage of each of the seven emotion cate-
gories

Relative positions of emotion and causes In-
terestingly, 49.95% of the causes are self-causes
meaning that the same utterance caused itself as
shown in Fig. 2. This is also intuitive, as what
one speaks or expresses often elicits the emotion of
their utterance. Note that the dataset curators have
also annotated utterances coming after the emotion
utterance as its cause. These constitute only about
2.8% of all causes and are one or two utterances
away. 94.95% of the causes are 0-5 utterances

Items Number
Conversations 1344
Utterances 13,509
Emotional Utterances 7,690
Self-Causal Utterances 4,892
Non-Self-Causal Utterances 2,189
No Cause Emotional Utterances 609
Later-Causal Utterances 177

Table 1: Statistics of causes for emotional utterances.

behind the emotion utterance. The fact that what
you speak or other interlocutors in the conversation
speak affects the emotion of subsequent utterances
explains this phenomenon.

Figure 2: Relative position of emotion and causes

3 Methodology

3.1 Overview

We treat the task at hand as a two-step process. In
the first step, we predict the emotion of each ut-
terance in all N conversations. Here, the context
Cj for utterance uj of conversation Di is the en-
tire conversation itself. Given E target emotion
labels and ŷej as the predicted emotion label, the
problem can be formulated as (where θ denotes the
parameters):

ŷej = argmax
e

P(ye|uj , Cj , θ) (1)

In the second step, given these emotion labels,
we predict the causes of each utterance that has an
emotion other than neutral. The causes will be a
subset of all utterances in the conversation Di. Let
the learned function be f : U → 2U , where U is
the set of all utterances in the given conversation. It
predicts the subset ŷcj of cause of emotion utterance
uj where ŷej ̸= neutral as:

ŷcj = arg max
yc∈2U

P(yc|uj , ŷej , Cj , θ) (2)
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3.2 Approach 1: Fine-tuned Llama-2

In our first approach, we perform instruction fine-
tuning of the Llama 2 Large Language Model,
an open-source model developed by GenAI, Meta
(Touvron et al., 2023). From the three variants with
7, 13, and 70 billion parameters, we use the 13 bil-
lion parameter model due to resource constraints,
albeit the performance of this model achieves state-
of-the-art results on various downstream NLP tasks
compared to other models of similar sizes (Tou-
vron et al., 2023). In addition, we use the Llama
2-chat version of the model1, which is optimized
for dialogue use cases as it aligns with our task.
In our approach, we use Llama2 API2 for prompt
engineering. Through zero-shot prompting, we se-
lect optimal prompts for emotion identification and
cause prediction. We observed that treating these
two tasks separately resulted in better model out-
put. This approach involves first identifying the
emotions of all utterances in the conversation. We
then add these emotion labels to the conversation
and prompt the model to predict the causes for
each emotion utterance. Consequently, we perform
supervised fine-tuning of two separate Llama 2
models for these tasks. Although this increases the
inference time, the significant performance gains
outweigh the introduced latency. We treat both
tasks as conditional generation, where the model
generated the emotion label in the first case and
the cause list in the second case, given the prompt.
Detailed explanations of these approaches are pro-
vided in the following sections. The fine-tuning
procedure is shown in Fig.3.

3.2.1 Emotion recognition

To perform emotion recognition, we create a
dataset where each sample includes an utterance
uj from one of the N conversations D for which
the LLM needs to output the emotion label. We
incorporate the entire conversation Di along with
speaker information as context in our prompt. This
contextual information enhances the model’s un-
derstanding of the flow of emotions within the con-
versation, as demonstrated by our ablation studies
in Section 5. The instruction Iej , which gave the
best results, is given in Appendix E.1 along with
detailed prompt examples. The prompt consists of
the instruction Iej and the context Cj for utterance

1https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
2https://www.llama2.ai/

uj :
Promptj = (Cj , I

e
j ) (3)

Using this prompt as the input and the correspond-
ing true emotion label yej , we perform supervised
fine-tuning of a Llama 2-13b model.

ŷej = Llamae(Promptj , θ) (4)

We use a quantized version of the model due to
memory limitations and perform Quantized Low-
Rank Adaptation (QLoRA) (Dettmers et al., 2024)
as a parameter-efficient fine-tuning technique. The
training details are provided in the Section 4.

3.2.2 Cause prediction
To prepare the dataset for cause prediction, we
incorporate the emotion labels obtained for each
utterance. The conversation context now includes
the emotion labels for each utterance uj excluding
those with a predicted emotion label ŷej of neu-
tral. This approach enhances the model’s ability
to analyze causal dependencies and identify which
utterances may have contributed to a specific emo-
tion. The output for cause prediction is a list of
cause utterance IDs. The instruction is provided
in Appendix E.1. The modified prompt for this
step consists of this instruction Icj along with the
conversational context with emotion labels Ce

j :

Promptj = (Ce
j , I

c
j ) (5)

Next, we perform supervised fine-tuning of a new
Llama 2-13b model using this prompt as the input
and the corresponding true list of causes:

ŷcj = Llamac(Promptj , θ) (6)

3.2.3 Adding video captions
To integrate cues from the videos corresponding to
each utterance, we experimented using video cap-
tions generated using GPT-4 Vision as additional
context for the model. However, we observed a
notable decrease in performance since descriptions
for individual utterances were somewhat noisy and
did not effectively guide the predictions. More-
over, the captions often contained multiple emo-
tions causing confusion for the model. As a result,
we do not utilize these during training.

3.3 Approach 2: In-Context-Learning GPT
Our second approach (Fig. 4) tackles subtask 2
by obtaining conversation-level video captions us-
ing the GPT-4V(ision) model by OpenAI (Yang
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Figure 3: Pipeline for fine-tuning Llama (Approach 1)

et al., 2023). For emotion prediction, we retrieve
a semantically similar conversation from the train-
ing set whose emotion annotations are explained
as demonstration examples in the prompt for the
GPT-3.5 model3. For each predicted emotional
utterance, we perform cause prediction within a
context window around the emotional utterance.
Due to the complex nature of the task, we leverage
in-context-learning (Dong et al., 2023) by retriev-
ing similar context windows from the training set
whose cause annotations are explained as demon-
stration examples in the prompt for the GPT-3.5
model. We discuss each step in the subsequent
sections.

3.3.1 Video Captioning
GPT-4V has the capability to process video se-
quences (Yang et al., 2023; Lin et al., 2023). In our
approach, we extract conversation-level captions
from the videos. However, due to rate limits and
the costs considerations, we use a compact image
representation for each video associated with the
utterances of a conversation. Therefore, these im-
age sequences serve as input to the GPT-4V model,
generating a description for the entire conversation.
The prompt is shown in the Fig. 5.

For an utterance, we sample nine equidistant
frames across its video length. These frames aim
to capture the dynamics of the whole video. We
arrange these frames in a 3 × 3 grid, following
a row-major order. Additionally, we include the

3https://platform.openai.com/docs/models/gpt-3-5-turbo

speaker text below the grid to provide further con-
text to GPT-4V. The process is illustrated in Fig. 5.

To accommodate the rate limits of the Vision
API, we batch the utterances of a conversation
and obtain outputs independently from the Vision
model. We stitch all the outputs of a batched con-
versation into a single caption using GPT-3.5 (Ap-
pendix Fig. 16).

3.3.2 Emotion Recognition

GPT tends to be uncontrollable when performing
zero-shot recognition of emotions in conversations
(Qin et al., 2023) outputting emotions that are not
a valid category of labels. To guide and control
the process, we leverage in-context learning (ICL)
by retrieving a conversation from the training set
whose emotions are already annotated. The emo-
tions in these conversations are explained by GPT-
3.5 (Appendix Fig. 17). This retrieved conversation
and its explanation serve as a demonstration for
GPT to learn from, enabling it to recognize emo-
tions in conversations more accurately. In addition,
the prompt template includes the video caption as
part of the input, as shown in Appendix Fig. 18.

To ensure effective ICL, it is important to pro-
vide general and descriptive examples that aid in
solving the current task. In our approach, we
sampled conversations from the training set con-
taining all emotion categories. These conversa-
tions were stored as text-embedding-ada-002 em-
beddings (Neelakantan et al., 2022) in a vector
database. At test time, we compute the embedding
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Figure 4: Pipeline of In-Context-Learning GPT Method (Approach 2)

Figure 5: Video Captioning Pipeline

for a conversation and retrieve the closest matching
embedding from the database based on Euclidean
distance. The retrieved embedding aids ICL in
improving emotion understanding and recognition.

3.3.3 Cause Prediction
Following the prediction of emotions, we predict
the causes for each emotional utterance within a
context window around that utterance. The bounds
of the context window are given in Table 2. The
bounds were informed by the distribution of the ma-
jority of relative positions of causes in the training
set (Figure 2).

For predicting the causes of an utterance with
emotion e within a given context window c, we re-
trieve context windows containing utterances with

Position Previous Next
Beginning 0 2

End 5 0
Middle 5 2

Table 2: Context Window Bounds in each Direction

the same emotion e that exhibit semantic similarity
to c. This retrieval is accomplished through the
Euclidean distance comparison of text-embedding-
ada-002 embeddings derived from the training data.
The retrieved conversation’s causes are explained
by GPT-3.5 (Appendix Fig. 19). Learning from the
explained retrieved-context windows, cause predic-
tion on c can be performed by GPT-3.5. Video
captions are also included in the prompt (Appendix
Fig. 20), since the local window may have lost
some broader context.

3.4 Post-Processing
In both our approaches, after getting the causes,
we perform a post-processing step where we add
the emotional utterance as its own cause which we
call self-causes. This gives significant performance
boosts as a majority of the causes are self-causes
as pointed out in Appendix 2.3.

4 Experimental setup

Training details For approach 1, the data is split
into train, test, and validation sets in the ratio 8:1:1.
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We use peft library 4 for Parameter-Efficient Fine-
Tuning. Due to memory constraints, we fine-tune a
4-bit quantized Llama-2 model using bitsandbytes
library 5. We report the details of the implementa-
tion for both approaches in Appendix B.

Evaluation metrics For evaluating, we report the
precision, recall, F1-score, and weighted F1 which
can be found on the competition website.6

5 Results and Discussion

Main results Both of our approaches gave com-
petitive rankings on the official leaderboard for
subtask 2 as shown in Table 3. In-context-learning
GPT gave better results on the evaluation set com-
pared to Fine-tuned Llama, thus our final position
on the leaderboard was rank 4.

System w-avg F1 F1
1. Samsung Research China-Beijing 0.3774 0.3870
2. NUS-Emo 0.3460 0.3517
3. SZTU-MIPS 0.3435 0.3434
4. GPT-ICL (Ours) 0.2758 0.2816
5. MotoMoto 0.2584 0.2595
6. Fine-tuned Llama (Ours) 0.2558 0.2630

Table 3: Leaderboard Results on Evaluation Data

Ablation study We conduct extensive ablation
studies to measure the importance of the techniques
we employ summarized in Table 4. For these ex-
periments, we use a subset of our test set contain-
ing 528 utterances. It can be seen that the perfor-
mance of zero-shot Llama as well as GPT is the
lowest. Instruction-tuning and ICL clearly improve
the performance on the task, showcasing the sig-
nificance of making LLMs context-aware when
tackling downstream tasks. Adding self-causes im-
proves performance in both zero-shot and context-
aware cases highlighting their importance. The
incorporation of video captions leads to poorer re-
sults in context-learning. The detailed table is in
Appendix C.
Limitations Our approaches are specific to one
dataset and may not generalize well to other
datasets. Due to resource limitations, we fine-tune
a Llama 13b parameter model instead of 70b and
use QLoRA instead of updating all parameters. To
save costs, we used GPT-3.5 model instead of GPT-
4. Even with extensive prompt engineering, GPT

4https://huggingface.co/docs/peft/en/index
5https://github.com/TimDettmers/bitsandbytes
6https://nustm.github.io/SemEval-2024_ECAC/

Approach F1 w-avg F1
Zero-shot Llama

- w/o self-causes 0.117 0.116
- w/ self-causes 0.222 0.215

Instruction-tuned Llama
- w/o self-causes 0.325 0.318
- w/ self-causes 0.364 0.352

Zero-shot GPT
- w/o self-causes 0.100 0.097
- w/ self-causes 0.189 0.184

In-context-learning GPT
- w/o self-causes w/o video 0.286 0.296
- w/o self-causes w/ video 0.235 0.241
-w/ self-causes w/o video 0.336 0.342
-w/ self-causes w/ video 0.329 0.334

Table 4: Results on Validation Set.

models tend to hallucinate or give unstructured out-
puts, requiring retry repeatedly.

6 Conclusion

We tackled the Multimodal ECAC task with a
two-step framework of recognizing emotions first
and then predicting their causes using LLMs. We
implemented two approaches: a Llama-2 model
which has been fine-tuned with instructions and a
GPT model which solves the task by learning from
demonstration examples in context. Conversation-
level video captions were extracted to provide more
context to LLMs. Our second approach was our
best submission for the task, placing us at rank 4
with our first approach being placed at rank 6. Our
results were under cost constraints and further in-
vestigation with larger Llama-2 models and GPT-4
with more sophisticated ICL approaches are a clear
follow-up of our work.
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A Related Work

Our system is designed to prioritize Subtask 2
which is directly related to text-based and mul-
timodal ECA. In the following sections, we will
present relevant research that addresses both uni-
modal (text-based) and multimodal ECA.

Text-based ECA

Advancements in text-based ECA (Xia and Ding,
2019; Hsu et al., 2018; Peng et al., 2022; Pereira
et al., 2022) have made significant strides within
the field of sentiment analysis. The task on emotion
cause extraction (ECE) was initially proposed by
Chen et al. (2010) on a Chinese corpus. Several
studies (Li and Xu, 2014; Ghazi et al., 2015; Yada
et al., 2017) have explored ECE task, using both
rule-based and machine learning approaches that
operate at the phrase or word level of the text data.
Furthermore, (Gui et al., 2018) reformulated the
ECE task as a clause-level classification problem
and constructed a Chinese emotion-cause corpus
based on the news data. Considering the effec-
tiveness of clause-level units in indicating emo-
tions, Xia and Ding (2019) introduced the task of
Emotion-Cause Pair Extraction (ECPE) for extract-
ing potential emotion-cause pairs from texts. Nu-
merous deep learning models (Zhong et al., 2019;
Wei et al., 2020; Chen et al., 2020; Singh et al.,
2021; Li et al., 2021; Wang et al., 2023c) have been
developed to address ECPE tasks. Additionally,
graph-based approaches (Zheng et al., 2023a; Hu
et al., 2021; Zhao et al., 2023) that utilize graphs
to model dialog context and capture interactions
between speakers and utterances hold significant
potential. The focus on transformer models and
the rapid progress in LLMs such as ChatGPT7

and Llama (Touvron et al., 2023), have signifi-
cantly boosted the performance of various NLP
tasks (Imran et al., 2023) including ECPE (Wang
et al., 2023d; Imran et al., 2023; Wu et al., 2024;
Zheng et al., 2022).

7https://chat.openai.com/
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Multimodal ECA
Given the strong association between facial cues
and emotion, integrating modalities to improve
emotion recognition has attracted a lot of atten-
tion (Sebe et al., 2005; Li et al., 2023; Zhang et al.,
2023; Fu et al., 2023). Several key multimodal
datasets (Wöllmer et al., 2013; Zadeh et al., 2016;
Chou et al., 2017; Barros et al., 2018; Poria et al.,
2019; Yu et al., 2020) have emerged to support
and advance research. The availability of open
conversation data has facilitated the expansion of
multimodal conversation datasets, which includes
various types of conversations such as dyadic inter-
actions (Busso et al., 2008), and multi-participant
communications (Hsu et al., 2018; Poria et al.,
2019; Firdaus et al., 2020; Zheng et al., 2023b).

Large Language Models
The emergence of Large Language Models such
as GPT-4 (Achiam et al., 2023), Llama (Touvron
et al., 2023), PaLM (Anil et al., 2023), etc. has
transformed the research landscape. Recently, there
has been a surge in the application of LLMs to a
multitude of domains. Zhang et al. (2024) extend
their capabilities to the task of emotion recognition
where they fine-tune a Llama 2-7 billion parameter
model for emotion prediction. Lei et al. (2023)
introduce a retrieval template module along with
speaker identification and emotion-impact predic-
tion tasks to improve the performance of LLM. In
our work, as part of approach 1, we develop two
distinct LLM-based experts separately for emotion
and cause prediction.

Qin et al. (2023) investigated the task of zero-
shot emotion cause prediction using ChatGPT with
limited success. Recently, a new paradigm of in-
context learning (ICL) (Dong et al., 2023) has
emerged for LLMs that involves learning from a
few examples to solve a variety of complex reason-
ing tasks (Wei et al., 2022b), (Wei et al., 2022a).
Wu et al. (2024) proposed a Chain of Thought
(CoT) (Wei et al., 2022b) approach for emotion
cause pair extraction. Our approach 2 extends the
idea of ICL towards solving the task of multimodal
emotion cause pair extraction in two steps.

B Implementation details

B.1 Training details for Llama
Both emotion and cause prediction training used
one Nvidia A100 40GB GPU for training (Avail-
able on Google Colab Pro priced at $11.8/month).

Figure 6: Distribution of token counts for Llama tok-
enizer

We train for one epoch due to constraints on Co-
lab usage with gradient accumulation steps as 8
with an effective batch size of 8. A cosine learning
rate scheduler and Adam optimizer are used. Infer-
ence is performed using two Tesla T4 16GB GPUs
(Available on Kaggle for free (30 hrs/month)).

The long context length of 4096 tokens of the
Llama 2 models, allows us to include the entire
conversation as context and input that to the model.
We perform experiments to analyze the maximum
token counts in the dataset and observe that they
do not exceed 1600 as shown in Figure 6. In case
the token count exceeds the limit for the LLM we
can use a window of utterances around the given
utterance as context for predicting its emotion.

Hyperparameter Value
Lora alpha 16

Lora dropout 0.1
Attention heads 16
Learning rate 1e-3

Epochs 1
LR scheduler cosine
Warmup ratio 0.03
Weight decay 0.001

Table 5: Hyperparameters for fine-tuning

B.2 Details for in-context learning GPT
We use the LangChain8 library to implement our
three pipelines: video captioning, emotion recog-
nition, and cause prediction. We use the interface
provided by LangChain to communicate with Ope-
nAI’s API models detailed in Table 6.

Model API Name
GPT-4V gpt-4-vision-preview
GPT-3.5 gpt-3.5-turbo-1106

Embeddings text-embedding-ada-002

Table 6: OpenAI API Model Names

Vector databases For creating vector databases,
we use the FAISS Library (Douze et al., 2024). We

8https://github.com/langchain-ai/langchain
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created a FAISS index containing embeddings of
12 conversations from the training set which con-
tains all emotion categories. For cause prediction,
we created a FAISS index for each of the 6 emotion
categories and 3 possible positions of emotional
utterance giving us a total of 18 indices. Each of
these indices contained embeddings of context win-
dows (bounds defined in Table 2) from the training
set corresponding to each emotion and position.

C Detailed results

The detailed results on precision, recall, and F1-
scores are given in Table 7.

D Error Analysis

We conduct error analysis for the output of emotion
recognition using the two approaches. The perfor-
mance of zero-shot Llama is extremely poor where
the model predicts the label joy for almost all utter-
ances (Fig. 7). On adding the conversational con-
text, the model can identify the emotional nuances
better, yet often predicts joy or surprise for neutral
(Fig. 8). Instruction fine-tuning significantly boosts
performance where the model can now differenti-
ate distinct emotions (Fig. 9). The performance on
disgust and fear is low due to the class-imbalance
problem. In our test subset, the support of disgust
and fear is only 13, as shown in Table 8. We
observed similar trends in the case of our second
approach. Zero-shot GPT (Fig. 10) tends to only
identify the neutral utterances accurately and fails
in other categories. The incorporation of in-context
learning (Fig. 11) improves the accuracy in identi-
fying different emotion categories but there is little
to no improvement in identifying disgust or anger
utterances.

E Prompt details

E.1 Fine-tuned Llama 2
The general prompt for the Llama chat version is
given in Figure 14. The prompts for emotion and
cause prediction are given in Fig. 12 and Fig. 13.
We provide a specific format for the output so as to
ease the post-processing where we extract the first
emotion label occurring after the "::" sequence of
characters.

E.2 ICL-GPT
We devise prompt templates to be used in the
LangChain framework. {} represent placehold-
ers to be replaced when making a prompt. Video

Figure 7: Confusion matrix for zero-shot emotion recog-
nition without context using Llama

Figure 8: Confusion matrix for zero-shot emotion recog-
nition with context using Llama

captioning prompt is given in Fig. 15. Due to rate
limits, we had to batch the utterances, thus we
may have multiple disjoint descriptions of a con-
versation. We prompt GPT-3.5 using the prompt in
Fig. 16 to stitch the descriptions into a single cap-
tion. For explaining the retrieved conversation with
emotion annotated, we use the prompt in Fig. 17.
The retrieved conversation and explanation are now
used as demonstration examples for the emotion
recognition prompt in Fig. 18. For an explanation
of causes in the retrieved-context window, we use
the prompt in Fig. 19. The explanations of the
retrieved windows are used as demonstration ex-
amples in the prompt for cause prediction within a
context window as shown in the prompt in Fig. 20.

1571



Approach P R F1 w-P w-R w-avg F1
Zero-shot Llama w/o self-causes 0.089 0.168 0.117 0.090 0.168 0.116
Zero-shot Llama w/ self-causes 0.157 0.372 0.222 0.152 0.372 0.215
Instruction-tuned Llama w/o self-causes 0.351 0.304 0.325 0.335 0.304 0.318
Instruction-tuned Llama w/ self-causes 0.360 0.367 0.364 0.342 0.367 0.352
Zero-shot GPT w/o self-causes 0.081 0.130 0.100 0.087 0.130 0.097
Zero-shot GPT w/ self-causes 0.140 0.290 0.189 0.149 0.290 0.184
In-context-learning GPT w/o video captions w/o self-causes 0.259 0.319 0.286 0.283 0.319 0.296
In-context-learning GPT w/o video captions w/ self-causes 0.270 0.445 0.336 0.287 0.445 0.342
In-context-learning GPT w/o self-causes 0.216 0.256 0.235 0.241 0.256 0.241
In-context-learning GPT w/ self-causes 0.261 0.445 0.329 0.280 0.445 0.334

Table 7: Results on Validation Set. P: precision, R: recall, w: weighted.

Approach Metric Anger Disgust Fear Joy Sadness Surprise Neutral
Supp 71 13 13 101 54 77 209

Zero-shot Llama w/o context
P 0.0000 0.0000 0.0000 0.1881 0.0000 0.0000 0.0000
R 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
F1 0.0000 0.0000 0.0000 0.3166 0.0000 0.0000 0.0000

Zero-shot Llama with context
P 0.7500 0.2857 0.0000 0.3798 0.4583 0.3200 0.5663
R 0.0845 0.1538 0.0000 0.7822 0.2037 0.5195 0.4498
F1 0.1519 0.2000 0.0000 0.5113 0.2821 0.3960 0.5013

Fine-tuned Llama with context
P 0.5641 0.0 0.3333 0.6210 0.625 0.6103 0.6666
R 0.6197 0.0 0.1538 0.5842 0.3704 0.6104 0.7943
F1 0.5906 0.0 0.2105 0.6020 0.4651 0.6104 0.7249

Zero-Shot GPT
P 0.5652 0.2500 0.2727 0.4265 0.5385 0.5200 0.5906
R 0.3333 0.4000 0.4286 0.5370 0.1842 0.3023 0.7426
F1 0.4194 0.3077 0.3333 0.4754 0.2745 0.3824 0.6580

In-Context-Learning GPT
P 0.6667 0.2222 0.2222 0.4595 0.7000 0.5610 0.6957
R 0.4615 0.4000 0.2857 0.6296 0.3684 0.5349 0.7059
F1 0.5455 0.2857 0.2500 0.5312 0.4828 0.5476 0.7007

Table 8: Emotion Recognition Results for Seven Emotion Categories. P: precision, R: recall, F1: F1 score, and
Supp: support.

Figure 9: Confusion matrix for emotion recognition
with context using fine-tuned Llama

Figure 10: Confusion matrix for emotion recognition
using Zero-shot GPT-3.5
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Figure 11: Confusion matrix for emotion recognition
using GPT-ICL

Figure 12: Example Prompt for emotion prediction us-
ing Llama
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Figure 13: Example Prompt for cause prediction using
Llama

Figure 14: General Prompt Template for Llama

Figure 15: Video Captioning Prompt Template

Figure 16: Batched Video Caption Stitching Prompt
Template
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Figure 17: Emotion Label Explanation Prompt Template

Figure 18: Emotion Recognition with Context Learning
Prompt Template
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Figure 19: Cause Explanations Prompt Template

Figure 20: Cause Prediction with Context Learning
Prompt Template
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