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Abstract

In this paper, we describe our submission for
the NLI4CT 2024 shared task on robust Natural
Language Inference over clinical trial reports.
Our system is an ensemble of nine diverse
models which we aggregate via majority vot-
ing. The models use a large spectrum of differ-
ent approaches ranging from a straightforward
Convolutional Neural Network over fine-tuned
Large Language Models to few-shot-prompted
language models using chain-of-thought rea-
soning. Surprisingly, we find that some indi-
vidual ensemble members are not only more
accurate than the final ensemble model but also
more robust.

1 Introduction

In this paper, we describe our submission to
SemEval-2024 Task 2: Safe Biomedical Natural
Language Inference for Clinical Trials (NLI4CT
2024) (Jullien et al., 2024). In NLI4CT 2024, every
model receives as input one or two clinical trial
reports (CTRs) describing a breast cancer study.
Further the model gets a hypothesis which makes
a claim about the study and the section where the
relevant information about the claim can be found
in the CTR. Following a classical NLI setup (Bow-
man et al., 2015), the task of the model is to decide
whether the hypothesis is logically entailed by the
CTR or whether it contradicts the information in
the CTR. NLI4CT 2024 is a continuation of a simi-
lar task that was held in 2023 (Jullien et al., 2023)
and uses the same training and validation datasets.
In contrast to the previous edition, NLI4CT 2024
focuses on the robustness of the submitted mod-
els. Specifically, it evaluates whether a model is
consistent in its predictions and whether it predicts
the correct label for the right reasons via targeted
modifications of the test data; see Section 3 and
Jullien et al. (2024) for more details.

* Equal contribution. The order of the first-authors was
chosen randomly.

We approach this task by building a large en-
semble of diverse models. Our hypothesis is that
ensembling a large variety of strong and weak mod-
els would improve robustness. For that we build
ensembles of up to 25 models derived from 9 dif-
ferent approaches via different ensembling strate-
gies. These approaches were implemented as part
of a Master’s course on biomedical Natural Lan-
guage Processing at LMU Munich. Teams of two
to three students chose a broad initial approach
such as Convolutional Neural Networks (LeCun
and Bengio, 1998; Kim, 2014) or data-centric ma-
chine learning (Swayamdipta et al., 2020). Then,
they developed multiple models in the confines of
the chosen approach while collaborating occasion-
ally with other groups. Finally, evaluated all re-
sulting models individually and as large ensembles
on the test set. We find that ensembling generally
improves robustness but that some individual ap-
proaches achieved even higher performance.

2 Methods

2.1 Approaches

We evaluate an ensemble of nine approaches. When
selecting them, we favoured diversity over accuracy
based on the assumption that even weaker models
could contribute to the ensemble if they were di-
verse enough (Schapire, 1990). If not stated other-
wise for a specific model, we used Adam (Kingma
and Ba, 2015) for optimization. All approaches use
only the section that contains the relevant informa-
tion for inferring the NLI relation as provided by
the task organizers.

Convolutional Neural Networks In the Con-
volutional Neural Networks (CNN, LeCun and
Bengio (1998)) approach, we build on the work
of Kim (2014). We modify this CNN-based
model by replacing the word embeddings with sub-
word embeddings from the embedding layer of
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BioBERT1 (Lee et al., 2019). We train all models
with Adam (Kingma and Ba, 2015), using a learn-
ing rate of 8.26e−6 and maximum sequence length
of 256. CNN_1: static cased BioBERT embeddings
with kernels of size 3, 4, and 5 (100 each), a batch
size of 32 and dropout of 0.5. CNN_2: static un-
cased BioBERT embeddings with kernels of size
3, 5, and 7 (100 each), a batch size of 32, dropout
of 0.21 and weight decay of 0.001. CNN_3: static
and dynamic cased BioBERT embeddings with ker-
nels of size 3, 5, and 7 (100 each), a batch size of
64, dropout of 0.21 and weight decay of 0.001.
CNN_4: static cased BioBERT embeddings, se-
quence length of 128, kernel sizes of 3 and 5 (100
each) and dropout of 0.21, trained for 10 epochs.
CNN_5: static cased BioBERT embeddings, se-
quence length of 128, kernel sizes of 3, 4, 5 (50
each), batch size of 32, dropout of 0.21, trained for
20 epochs.

Fine-tuned transformers exploiting annotation
biases With the Bias models, we attempt to ex-
ploit possible annotation biases following (Guru-
rangan et al., 2018) who found that frequently a
simple text classifier can decide the label for an in-
stance based on the hypothesis alone. Specifically,
we fine-tune a pre-trained language model to pre-
dict the NLI label using only the hypothesis as in-
put. We optimze the hyperparameters with optuna
using 10 runs per model. Bias_1 uses BERT-base-
cased2 (Devlin et al., 2019) as model, Bias_2 Clin-
icalBERT3 (Wang et al., 2023), Bias_3 BioBERT-
PubMed200kRCT4 (Deka et al., 2022), and Bias_4
biomed_roberta_base5 (Gururangan et al., 2020).

Diverse fine-tuned transformers For the Di-
verse fine-tuned transformers (DT) models, we fine-
tune different pre-trained language models on the
NLI4CT training data. After preliminary experi-
ments with several transformer models, DeBERTa
v36 (He et al., 2021) and BioLinkBERT7 (Yasunaga

1https://huggingface.co/dmis-lab/biobert-v1.
1 / https://huggingface.co/dmis-lab/
biobert-base-cased-v1.1

2https://huggingface.co/google-bert/
bert-base-cased

3https://huggingface.co/medicalai/ClinicalBERT
4https://huggingface.co/pritamdeka/

BioBert-PubMed200kRCT
5https://huggingface.co/allenai/biomed_

roberta_base
6https://huggingface.co/microsoft/

deberta-v3-base
7https://huggingface.co/michiyasunaga/

BioLinkBERT-base

et al., 2022) emerged as the most promising can-
didates. For both models, we used a maximum
sequence length of 312, 20 epochs, and a learning
rate of 2e−6. For DT_1, we use BioLinkBERT-base
with a batch size of 4, for DT_2, BioLinkBERT-
large with a batch size of 4, for DT_3, DeBERTa-
v3-large with a batch size of 8, and for DT_4,
DeBERTa-v3-base with a batch size of 4.

DeBERTa-v3 For the DeBERTa (DeB_1) model,
we fine-tune DeBERTa-v3-large for 30 epochs, us-
ing a learning rate of 1e-5, a batch size of 8, and a
max length of 312.

Stacking ensemble of two strong models For
the Ens models, we construct an ensemble of two
strong models. To construct this ensemble, we
fine-tune DeBERTa-v3-large using a batch size of
8, a learning rate of 6e-6, a max length of 312,
and 20 epochs. The other model in the ensemble
is Mistral Instruct 7B v0.18 (Jiang et al., 2023),
which we fine-tune on the NLI4CT training set to
generate either "Entailment" or "Contradiction" us-
ing the prompt template proposed by Kanakarajan
and Sankarasubbu (2023). We use a batch size
of 8, a learning rate of 2e-4, and trained for 7.5
epochs. To enhance memory efficiency, we uti-
lize the paged Adam optimizer, employ a sharded
model and leverage QLoRa (Dettmers et al., 2023).
To ensemble both models, we use both models
to generate predictions on the development set of
NLI4CT and then train a logistic regression classi-
fier (James et al., 2013) to predict the correct label
based on the predictions of both models. We exper-
iment with providing additional metadata about the
instance to the logistic regression classifier: the co-
sine distance between the TF-IDF representation of
hypothesis and premise and the number of tokens
in the concatenated hypothesis and premise. Ens_1
is the full ensemble with metadata, Ens_2 the en-
semble without metadata, Ens_3 only the Mistral
model, and Ens_4 only the DeBERTa model.

Data augmentation using hard instances In
this approach, we follow Swayamdipta et al. (2020)
and detect challenging data points using data maps
with the goal of using this information for data aug-
mentation. For this, we use a DeBERTa-v3 model
that was pre-trained on various NLI datasets9 (Lau-

8https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.1

9https://huggingface.co/MoritzLaurer/
DeBERTa-v3-base-mnli-fever-anli
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rer et al., 2022) and Flan-T5-base10 (Chung et al.,
2022). We fine-tune both models for 10 epochs
on the shared task training data using a learning
rate of 5e-5, a batch size of 16 and weight decay
of 0.01 for DeBERTa and a learning rate of 2e-5,
a batch size of 16, and weight decay of 0.001 for
Flan. Then, we construct data maps from the re-
sulting training dynamics and inspect hard-to-learn
instances (low confidence and low variance) and
ambiguous instances (medium-to-low confidence
and high variance). We find that the models espe-
cially struggle with the following data characteris-
tics: numerical reasoning, understanding synonyms
(e.g. relating "cancer" and "carcinoma"), identify-
ing hyponym/hyperonym relations (e.g. identify-
ing "congestive heart failure" as a hypernym for
"left ventricula systolic dysfunction), understand-
ing abbreviations, and with specific sections in the
CTR. We then use this information to manually
construct 140 more instances that contain these
specific issues which we use as additional training
data. Hard_1 is the DeBERTa-v3 model trained on
the resulting dataset and Hard_2 Flan-T5-base.

Data augmentation with GPTs for fine-tuned
LLMs In this approach, we explore data aug-
mentation with GPT-3.5 (Brown et al., 2020) and
GPT-4 (OpenAI, 2023). We zero-shot prompt these
models to generate 300 new statements and labels
for randomly chosen CTRs. Then, we fine-tune a
Mistral-Instruct-7B model on the training data aug-
mented with these 300 new instances. For memory
efficiency during fine-tuning, we employ QLora.
We use a batch size of 50 and a learning rate of 2e-
4. Aug_1 is the model with the additional 300 new
instances and Aug_2 the same model fine tuned on
the non-augmented data.

Fine-tuned LLMs with reasoning distillation
from GPT-4 For the reasoning (Reas) models,
we follow Wadhwa et al. (2023) and fine-tune a
Mistral-7B model to use the reasoning of GPT-4
in order to generate the NLI label. For this, we
2-shot prompt GPT-4 to generate the label for all
instances in the training data. We add the phrase
You should also show your reasoning process for
your judgment to the instruction and find that with
this, GPT-4 generates texts that illustrate the steps
involved in its reasoning process. Then, we filter
out all 249 instances for which GPT-4 generated
the wrong label and use the remaining 1451 as our

10https://huggingface.co/google/flan-t5-base

new training set. Finally, we fine tune Mistral-7B
for 8 epochs to generate the reasoning text together
with the NLI label using a cosine-scheduled learn-
ing rate of 4e-4 and a batch size of 8. Reas_1 is the
model fine-tuned on the reasoning-augmented data
whereas Reas_2 is the same model fine-tuned on
the original data.

Few-shot-prompted LLMs For the few-shot
prompted LLM model (Few_1), we use Flan-T5-
large11 in a 1-shot prompting setting, where we
show a randomly chosen example and ask it to
generate the NLI label based on the CTR and the
hypothesis.

2.2 Ensembling the approaches

We investigate six different variants to construct
the ensemble which vary along two axes. The first
axis is which models we include, because for most
approaches we have multiple model variants. To
construct our ensemble, we use a set of models
m ∈ M. For each model we have its predictions
ŷm ∈ {−1, 1}n for all n test instances and its F1
score on the development set F1(m). We explore
three heuristics to construct M:

• Choose all available models (all).

• For each approach, choose the model with
the highest F1 score on the development set
(best).

• Choose the five models with the highest F1
score on the development set (top-5). Note
that multiple models can be based on the same
approach.

The second axis is whether we use a simple ma-
jority vote or whether we weight models by their
F1 score on the development set. Formally:

ŷ = sign[
∑

m∈M
ŷ ] (majority) (1)

ŷ = sign[
∑

m∈M
F1(m) · ŷ ] (weighted) (2)

We explore all possible combinations along
these two axes leading to a total of six submitted
ensemble models.

11https://huggingface.co/google/flan-t5-large
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3 Evaluation protocol

NLI4CT 2024 uses three metrics to evaluate ap-
proaches. F1 score measured on the test set of
NLI4CT 2023, consistency and faithfulness. Con-
sistency measures whether the model always pro-
duces the same label for a set of instances that
share the same meaning and thus the same gold
label. Formally,

Consistency =
1

N ′
∑

x′
i

1−
∣∣f(xi)− f(x′i)

∣∣ ,

(3)
where both xi, x

′
i share the same meaning and label

and N ′ is the number of available x′is. Faithfulness
on the other hand scores whether the model is right
for the right reasons. This metric considers correct
predictions of the model and scores whether the
model flips its prediction for instances in which
semantic alterations lead to a flipped gold label:

Faithfulness =
1

Ñ

∑

x̃i

|f(xi)− f(x̃i)| ,

(4)
where the prediction for the original instance f(xi)
is correct and x̃i is a semantic alteration of xi that
flips the gold label and Ñ is the number of available
semantic alterations.

We evaluate all approaches on the hidden test
set of NLI4CT 2024. We chose this approach even
though frequent test set evaluation has severe down-
sides (van der Goot, 2021) because consistency and
faithfulness could not be computed on the develop-
ment set.

4 Results

Table 1 displays the results for all evaluated ap-
proaches. When considering the average of Test-
F1, consistency, and faithfulness, the best perform-
ing model is Reas_1 which fine-tunes Mistral-7b to
following reasoning structures of GPT-4 before out-
putting the label. Its high average score is mainly
due to a very high faithfulness score (85.8) paired
with moderately high Test-F1 (76.0) and consis-
tency (68.8) values. Its faithfulness is the 8th high-
est on the official leaderboard12 whereas it ranks
13th/18th in terms of Test-F1/consistency. Notably,
there is no clear winner across all metrics among
the evaluated approaches. Reas_2 achieves the best
Dev-F1 score (82.0), Ens_3 the best Test-F1 (76.8),
and Ens_4 the best consistency (72.0).

12https://codalab.lisn.upsaclay.fr/
competitions/16190#results

name Dev Test Cons Faith Avg

CNN_1 60.0 47.7 57.7 63.0 56.1
CNN_2 56.0 55.5 51.4 39.4 48.7
CNN_3 61.0 49.2 55.9 57.2 54.1
CNN_4 52.0 53.0 54.1 53.2 53.5
CNN_5 58.0 43.5 57.2 71.5 57.4

Bias_1 63.0 45.1 58.8 71.9 58.6
Bias_2 58.0 54.3 51.6 45.6 50.5
Bias_3 61.0 48.2 57.6 65.3 57.0
Bias_4 66.0 53.5 57.2 56.1 55.6

DT_1 67.0 55.7 59.8 63.5 59.7
DT_2 67.0 55.4 51.2 40.7 49.1
DT_3 76.0 71.9 64.8 66.2 67.6
DT_4 76.0 71.9 64.8 66.2 67.6

DeB_1 77.0 72.4 64.7 54.1 63.7

Ens_1 76.0 74.1 70.1 72.9 72.4
Ens_2 76.0 73.2 71.0 83.3 75.9
Ens_3 76.0 76.8 67.4 65.2 69.8
Ens_4 78.0 73.4 72.0 74.0 73.1

Hard_1 72.0 18.1 48.3 71.6 46.0
Hard_2 59.0 61.5 54.7 49.0 55.1

Aug_1 69.0 64.6 62.5 71.2 66.1
Aug_2 74.0 68.8 64.7 75.9 69.8

Reas_1 76.0 74.7 68.8 85.8 76.4
Reas_2 82.0 75.9 67.1 76.7 73.3

Few_1 42.0 28.6 60.7 86.5 58.6

all_maj - 70.1 68.6 76.0 71.6
all_wei - 72.3 69.9 73.1 71.8
best_maj - 70.4 69.4 81.6 73.8
best_wei - 74.2 70.3 72.8 72.4
top5_maj - 70.1 68.6 76.0 71.6
top5_wei - 72.3 69.9 73.1 71.8

Table 1: NLI4CT 2024 test set results for all our evalu-
ated approaches in percent. Cons. is consistency, Faith.
is faithfulness and Avg. is the average over all three. In-
dividual approaches are the top part of the table whereas
the six diverse ensemble approaches are at the bottom.
Models included in best ensembles are in bold and mod-
els included in top5 are additionally in italics. The
highest score per column is in bold.
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Large ensemble results Interestingly, Reas_1
achieves an even better average score (76.4) than
the best large ensemble model best_majority (73.8).
Generally, in terms of average performance, the
best large ensemble outperforms all but two sin-
gle approaches, Ens_2 and Reas_1, where Ens_2
itself is an ensemble of two strong models and
Reas_1 combines two models via distillation. Fur-
thermore, neither Reas_1 nor Ens_2 were included
in the best_majority ensemble because their Dev-F1
scores were lower than those of other models from
the same approach. Based on these observations,
we can confirm our initial hypothesis that building a
large ensemble improves the average performance.
However, for consistency and faithfulness other in-
dividual approaches perform better than the large
ensembles. In terms of average scores, taking the
best model per approach performs clearly better
than taking all or only the top5.

Dev-F1 as model selection criterion Unsurpris-
ingly, using only Dev-F1 as the criterion for model
selection and hyperparameter tuning is not suffi-
cient for maximizing the average performance over
Test-F1 consistency, and faithfulness. In five out of
nine approaches, the model that achieves the best
Dev-F1 score does not achieve the best average
score. This also has consequences for our best-
performing ensembling approach best because it
implies that in five out of nine cases we include a
suboptimal model in our ensemble. This suggests
that using a development set that allows for mea-
suring consistency and faithfulness for model selec-
tion, hyperparameter tuning or ensemble construc-
tion could improve these properties at test time.

Overlap between approaches We analyze how
similar the predicions of different approaches are.
For that, we compute the pairwise Cohen’s kappa
scores between all evaluated models. A heatmap
of the results can be found in Figure 1. As ex-
pected, models stemming from the same approach
produce similar results, as can be seen from the
bright squares around the diagonal of the heatmap.
Additionally, the predictions of the CNN models
correlate with those of the Bias models, suggest-
ing that the CNNs might also mainly consider the
hypothesis and disregard context information. An-
other notable group of correlations is that between
the large ensemble and some of the DT, the DeB,
the Ens, and the Reas models. This could indi-
cate that most of the large ensemble models mainly
rely on the predictions of these strongly performing

Figure 1: Pairwise Cohen’s kappa scores between all
evaluated methods.

models.

5 Conclusion

This paper describes our contribution to the
SemEval-2024 NLI4CT shared task on robust NLI
for clinical trial reports. We investigate whether
a large diverse ensemble can improve robustness.
Our results largely confirm this hypothesis, but we
find that some individual approaches perform even
better and more robust than our best ensemble.

In this work, we investigated only ensembling
based on voting procedures and completely dis-
regarded the confidences of the individual mod-
els. Further, we did not use more sophisticated
approaches such as stacking. Finally, we used data-
centric approaches only to augment the training
data of individual models, but did not use it to eval-
uate the robustness of models. We believe that all
of these could potenetially improve the accuracy
and robustnes of NLI models for clinical trial re-
ports.
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