@inproceedings{ghahroodi-asgari-2024-hierarchyeverywhere,
title = "{H}ierarchy{E}verywhere at {S}em{E}val-2024 Task 4: Detection of Persuasion Techniques in Memes Using Hierarchical Text Classifier",
author = "Ghahroodi, Omid and
Asgari, Ehsaneddin",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Tayyar Madabushi, Harish and
Da San Martino, Giovanni and
Rosenthal, Sara and
Ros{\'a}, Aiala},
booktitle = "Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.semeval-1.247",
doi = "10.18653/v1/2024.semeval-1.247",
pages = "1727--1732",
abstract = "Text classification is an important task in natural language processing. Hierarchical Text Classification (HTC) is a subset of text classification task-type. HTC tackles multi-label classification challenges by leveraging tree structures that delineate relationships between classes, thereby striving to enhance classification accuracy through the utilization of inter-class relationships. Memes, as prevalent vehicles of modern communication within social networks, hold immense potential as instruments for propagandistic dissemination due to their profound impact on users. In SemEval-2024 Task 4, the identification of propaganda and its various forms in memes is explored through two sub-tasks: (i) utilizing only the textual component of memes, and (ii) incorporating both textual and pictorial elements. In this study, we address the proposed problem through the lens of HTC, using state-of-the-art hierarchical text classification methodologies to detect propaganda in memes. Our system achieved first place in English Sub-task 2a, underscoring its efficacy in tackling the complexities inherent in propaganda detection within the meme landscape.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ghahroodi-asgari-2024-hierarchyeverywhere">
<titleInfo>
<title>HierarchyEverywhere at SemEval-2024 Task 4: Detection of Persuasion Techniques in Memes Using Hierarchical Text Classifier</title>
</titleInfo>
<name type="personal">
<namePart type="given">Omid</namePart>
<namePart type="family">Ghahroodi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehsaneddin</namePart>
<namePart type="family">Asgari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Text classification is an important task in natural language processing. Hierarchical Text Classification (HTC) is a subset of text classification task-type. HTC tackles multi-label classification challenges by leveraging tree structures that delineate relationships between classes, thereby striving to enhance classification accuracy through the utilization of inter-class relationships. Memes, as prevalent vehicles of modern communication within social networks, hold immense potential as instruments for propagandistic dissemination due to their profound impact on users. In SemEval-2024 Task 4, the identification of propaganda and its various forms in memes is explored through two sub-tasks: (i) utilizing only the textual component of memes, and (ii) incorporating both textual and pictorial elements. In this study, we address the proposed problem through the lens of HTC, using state-of-the-art hierarchical text classification methodologies to detect propaganda in memes. Our system achieved first place in English Sub-task 2a, underscoring its efficacy in tackling the complexities inherent in propaganda detection within the meme landscape.</abstract>
<identifier type="citekey">ghahroodi-asgari-2024-hierarchyeverywhere</identifier>
<identifier type="doi">10.18653/v1/2024.semeval-1.247</identifier>
<location>
<url>https://aclanthology.org/2024.semeval-1.247</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>1727</start>
<end>1732</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HierarchyEverywhere at SemEval-2024 Task 4: Detection of Persuasion Techniques in Memes Using Hierarchical Text Classifier
%A Ghahroodi, Omid
%A Asgari, Ehsaneddin
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Tayyar Madabushi, Harish
%Y Da San Martino, Giovanni
%Y Rosenthal, Sara
%Y Rosá, Aiala
%S Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F ghahroodi-asgari-2024-hierarchyeverywhere
%X Text classification is an important task in natural language processing. Hierarchical Text Classification (HTC) is a subset of text classification task-type. HTC tackles multi-label classification challenges by leveraging tree structures that delineate relationships between classes, thereby striving to enhance classification accuracy through the utilization of inter-class relationships. Memes, as prevalent vehicles of modern communication within social networks, hold immense potential as instruments for propagandistic dissemination due to their profound impact on users. In SemEval-2024 Task 4, the identification of propaganda and its various forms in memes is explored through two sub-tasks: (i) utilizing only the textual component of memes, and (ii) incorporating both textual and pictorial elements. In this study, we address the proposed problem through the lens of HTC, using state-of-the-art hierarchical text classification methodologies to detect propaganda in memes. Our system achieved first place in English Sub-task 2a, underscoring its efficacy in tackling the complexities inherent in propaganda detection within the meme landscape.
%R 10.18653/v1/2024.semeval-1.247
%U https://aclanthology.org/2024.semeval-1.247
%U https://doi.org/10.18653/v1/2024.semeval-1.247
%P 1727-1732
Markdown (Informal)
[HierarchyEverywhere at SemEval-2024 Task 4: Detection of Persuasion Techniques in Memes Using Hierarchical Text Classifier](https://aclanthology.org/2024.semeval-1.247) (Ghahroodi & Asgari, SemEval 2024)
ACL