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Abstract

SemEval-2024 Task 8 introduces the challenge
of identifying machine-generated texts from
diverse Large Language Models (LLMs) in
various languages and domains. The task
comprises three subtasks: binary classifica-
tion in monolingual and multilingual (Subtask
A), multi-class classification (Subtask B), and
mixed text detection (Subtask C). This paper
focuses on Subtask A & B. To tackle this task,
this paper proposes two methods: 1) using
traditional machine learning (ML) with nat-
ural language preprocessing (NLP) for fea-
ture extraction, and 2) fine-tuning LLMs for
text classification. For fine-tuning, we use the
train datasets provided by the task organizers.
The results show that transformer models like
LoRA-RoBERTa and XLM-RoBERTa outper-
form traditional ML models, particularly in
multilingual subtasks. However, traditional ML
models performed better than transformer mod-
els for the monolingual task, demonstrating
the importance of considering the specific char-
acteristics of each subtask when selecting an
appropriate approach.

1 Introduction

Large Language Models (LLMs) are sophisticated
natural language processing (NLP) models exten-
sively trained on vast textual datasets (Wang et al.,
2023). These models demonstrate an impressive
proficiency in generating human-like text based on
the input they receive. However, using LLMs for
generating texts has raised concerns about potential
misuse, such as disseminating misinformation and
disruptions in the education system (Wang et al.,
2023). Thus, urgent development of automated sys-
tems to detect machine-generated texts is essential
(Mitchell et al., 2023; Wang et al., 2023).

Recently, several LLMs have been developed
such as ChatGPT1 Brown et al. (2020), Cohere2,

1https://chat.openai.com/
2https://cohere.com

Davinci3, BLOOMZ4 (Muennighoff et al., 2022),
and Dolly5 (Conover et al., 2023). The versa-
tility of these models extends across various do-
mains, such as news, social media, educational
platforms, and academic contexts, in multiple lan-
guages not only English (Wang et al., 2023). This
wide application poses a challenge in developing
an automated system capable of detecting machine-
generated texts from various generators, across
multiple domains and languages.

To tackle this challenge, SemEval-2024 Task
8: Multigenerator, Multidomain, and Multilin-
gual Black-Box Machine-Generated Text Detec-
tion (Wang et al., 2024) introduces the task of de-
tecting machine-generated texts obtained from dif-
ferent LLMs, in various domains and languages.
This task consists of three subtasks: Subtasks A, B,
and C. Subtask A involves binary classification of
text as either human-written or machine-generated,
with two tracks: monolingual (English only) and
multilingual. Subtask B focuses on multi-class
classification of machine-generated text, aiming to
identify the source of generation, whether human or
a specific language model. Subtask C addresses the
detection of human-machine mixed text, requiring
the determination of the boundary where the tran-
sition from human-written to machine-generated
occurs in a mixed text. This paper focuses on Sub-
tasks A and B. To tackle these tasks, we propose
two approaches: (1) classical machine learning,
leveraging NLP techniques for feature extraction,
and (2) fine-tuning LLMs for the classification of
human-written and machine-generated texts.

2 Related Work

Researchers have employed a variety of methods
and tools to detect AI-generated texts. Broadly,

3https://platform.openai.com/docs/models/gpt-base
4https://huggingface.co/bigscience/bloomz
5https://huggingface.co/databricks/dolly-v2-12b
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these approaches can be categorized into two main
types: black-box and white-box detection methods
(Tang et al., 2023). Black-box detection relies on
API-level access to LLMs, utilizing textual samples
from both human and machine sources to train clas-
sification models (Dugan et al., 2020). The study
by Guo et al. (2023) integrated existing question-
and-answer datasets and leveraged fine-tuning of
pre-trained models to investigate the characteris-
tics and similarities between human-generated and
AI-generated texts.

As for white-box detection, Kirchenbauer et al.
(2023) introduced a novel approach involving the
embedding of watermarks in the outputs of LLMs
to facilitate the detection of AI-generated text. Ad-
ditionally, a variety of tools and methodologies, in-
cluding XGBoost, decision trees, and transformer-
based models, have been evaluated for their effi-
cacy in detecting texts produced by AI (Zaitsu and
Jin, 2023). These techniques incorporate multi-
ple stylistic measurement features to differentiate
between AI-generated and human-generated texts
(Shijaku and Canhasi, 2023).

Specific tools and techniques in this domain
include the GLTR tool developed by Gehrmann
et al. (2019), which analyzes the usage of rare
words in texts to distinguish between those gen-
erated by the GPT-2 model and human writers.
The DetectGPT method posits that minor rewrites
of LLM-generated texts tend to reduce the log
probability under the model, a hypothesis that
has been explored in depth (Mitchell et al., 2023).
Furthermore, intrinsic dimension analysis, includ-
ing methods like the Persistent Homology Dimen-
sion estimator (PHD), has been applied to distin-
guish between authentic texts and those generated
artificially (Tulchinskii et al., 2023). Detectors
specifically designed for certain LLMs, such as
the GROVER detector for the GROVER model
(Zellers et al., 2019) and the RoBERTa detector
using the RoBERTa model (Liu et al., 2019), also
play a significant role in this field.

In summary, the combination of statistical anal-
ysis with advanced language models is being em-
ployed by researchers to more effectively differ-
entiate between content generated by humans and
machines. The continuous evolution and refine-
ment of these techniques reflect the dynamic nature
of the field and the complexities involved in distin-
guishing between the increasingly nuanced outputs
of LLMs and human-authored texts.

3 Methods

To tackle these tasks, we employ two distinct strate-
gies. The first is classical machine learning, tai-
lored for natural language preprocessing (NLP).
The second approach involves transformer-based
LLMs, with an emphasis on LoRA (Low-Rank
Adaptation of Large Language Models) fine-tuning
(Hu et al., 2021). We then enhance our results by
integrating these methods through ensemble tech-
niques.

3.1 Machine Learning Models

Our approach for textual data analysis in machine
learning involves a concise yet comprehensive pre-
processing pipeline. Initially, URLs and excess
whitespace are removed from the text. Next, all
punctuation is eliminated, focusing solely on al-
phanumeric characters. The text is further refined
by excluding common stopwords and numeric char-
acters. Emojis are decoded into text, providing
additional context. Lemmatization standardizes
words to their base forms, ensuring consistent anal-
ysis. Texts are then converted to lowercase for
uniformity.

The final step involves using a Term Frequency-
Inverse Document Frequency (TF-IDF), configured
to handle a maximum of 8000 features and con-
sidering unigrams to trigrams. This vectorizer
excludes terms appearing in less than 10 docu-
ments, balancing feature representation with com-
putational efficiency. Furthermore, we enhance the
feature set for machine learning by incorporating
esteemed readability metrics such as the Gunning
fog index (Scott, 2023) and Flesch reading ease
score (Kincaid et al., 1975) into our text analysis,
which assess the complexity and readability of the
text respectively. This preprocessing strategy trans-
forms raw text into a structured numerical format,
ready for machine learning model analysis.

Expanding our feature extraction capabilities,
we introduce additional dimensions of analysis in-
cluding perplexity measures, sentiment analysis,
document and error analysis, text vector features,
the AI Feedback Query feature, and list lookup
features. Perplexity measures assess text complex-
ity through language models, offering insights into
predictability. Sentiment analysis is deepened to
reveal emotional tones and subjective nuances, pro-
viding a fuller understanding of the text’s emo-
tional landscape and authorial intent. Document
and error analysis afford a detailed look at structure
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and linguistic accuracy, enhancing content qual-
ity assessment. Text vector features, leveraging
Sentence-BERT embeddings, enable sophisticated
semantic content capture, facilitating nuanced the-
matic analysis. The AI Feedback Query feature
is a binary response achieved through a structured
inquiry where the AI model is presented with the
text and asked to determine its generative source.
List lookup features, examining elements like stop
word frequency and special character use, offer
stylistic and structural insights. Collectively, these
advancements enable a comprehensive and detailed
interpretation of textual data, significantly broaden-
ing our analytical capabilities by combining them.

In our study, we employed four distinct ma-
chine learning algorithms for both binary and multi-
class classification tasks: Logistic Regression (LR),
Multinomial Naive Bayes Classifier (Multinomi-
alNB), eXtreme Gradient Boosting (XGBoost)
(Chen and Guestrin, 2016) and Random Forest
(RM).

• LR: A linear model used for classification
tasks. It models the probability that a given in-
put belongs to a certain class. Logistic Regres-
sion is particularly effective for binary classi-
fication due to its simplicity and efficiency in
estimating probabilities.

• MultinomialNB: This algorithm is based on
the Bayes theorem and is particularly suited
for classification with discrete features (like
word counts for text classification). It as-
sumes independence between predictors and
is highly scalable to large datasets.

• XGBoost: This is an efficient and scalable
implementation of gradient-boosted decision
trees. It is known for its performance and
speed, especially in structured or tabular data,
and can handle both binary and multi-class
classification problems effectively.

• RF: A versatile ensemble learning method that
builds multiple decision trees for classifica-
tion or regression tasks. It improves accuracy
by averaging or taking the mode of predic-
tions from all trees, effectively reducing over-
fitting. Suitable for both binary and multi-
class problems, it excels in handling large,
high-dimensional datasets.

By integrating these algorithms, our approach
leverages the strengths of linear modeling, proba-

bilistic classification, and ensemble learning, aim-
ing to enhance predictive accuracy and robustness
across diverse classification scenarios.

3.2 XLM-RoBERTa
In our approach, we established XLM-RoBERTa6

(Conneau et al., 2019) as the baseline model among
transformer-based architectures. XLM-RoBERTa
represents a multilingual adaptation of the original
RoBERTa (Liu et al., 2019) model, specifically de-
signed to understand and process a diverse range of
languages. XLM-RoBERTa is pre-trained on a sub-
stantial dataset: 2.5TB of filtered CommonCrawl
data (Zhang et al., 2020), encompassing text in 100
different languages. This extensive pre-training
enables the model to capture nuanced language
features and patterns across a broad linguistic spec-
trum, making it highly effective for tasks involving
multiple languages. The use of such a diverse train-
ing dataset aids in achieving a robust understanding
of various linguistic structures and vocabularies,
which is crucial for accurate language processing
and analysis in a multilingual context.

3.3 LoRA-RoBERTa
To improve the predictive performance of LLMs,
we use LoRA for fine-tuning RoBERTa7 model.
LoRA is a technique enhancing the efficiency of
fine-tuning large models with reduced memory con-
sumption. It modifies the weight updates in neu-
ral networks using two smaller matrices derived
through low-rank decomposition. These matrices
adapt to new data while the original weights remain
unchanged. The final output combines the original
and adapted weights. In transformer models, LoRA
is often applied to attention blocks for efficiency.
The number of trainable parameters depends on the
low-rank matrices’ size, influenced by the rank and
the original weight matrix’s shape (Hu et al., 2021),
as shown in Figure 1.

3.4 Majority Voting
The Majority Voting ensemble in this study com-
bines the predictions of two transformer-based
models: XLM-RoBERTa and LoRA-RoBERTa.
The final prediction is determined by the major-
ity vote of these two models, offers several ad-
vantages over a single-model approach. This
technique, applicable in scenarios with N classi-
fiers (C1, C2, . . . , CN ), determines the final out-

6https://huggingface.co/xlm-roberta-base
7https://huggingface.co/roberta-base
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Figure 1: LoRA-based fine-tuning streamlines the pro-
cess by freezing the original weights of LLMs and train-
ing a minimal number of parameters.

put V (x) as the class receiving the most votes:
V (x) = mode{C1(x), C2(x), . . . , CN (x)}. This
method effectively reduces variance by balancing
out individual model errors, leading to more sta-
ble predictions. Furthermore, it generally achieves
higher accuracy due to the diverse perspectives of
different models. Its robustness against overfit-
ting is enhanced, as it combines various models’
strengths, making it suitable for a wider range of
data scenarios. The flexibility in model selection
allows for a blend of different algorithms, each
capturing unique data patterns, which contributes
to better generalization on unseen data. Thus, ma-
jority voting stands out as a robust, accurate, and
flexible approach in machine learning.

3.5 DistilmBERT

RoBERTa and XLM-RoBERTa are both power-
ful but computationally expensive. Therefore, we
investigate an alternative model that is more com-
putationally efficient, aiming to compare its per-
formance against these models. We adopted Dis-
tilBERT base multilingual cased8 (DistilmBERT)
(Sanh et al., 2019), a distilled version of the BERT
base multilingual model. It was pretrained on the
concatenation of Wikipedia in 104 different lan-
guages. DistilmBERT consists of 6 layers, each
with 768 dimensions and 12 attention heads, to-
taling 134 million parameters. This configuration
balances model efficiency while retaining signifi-
cant representational power Sanh et al. (2019).

8https://huggingface.co/distilbert-base-multilingual-
cased

4 Experiments

In our study, subtask A focuses on distinguish-
ing between human-written (label 0) and machine-
generated text (label 1), offered in both monolin-
gual (119,757 train, 5,000 dev, 34,272 test) and
multilingual versions (172,417 train, 4,000 dev,
42,378 test), across various sources and languages
are given in Table 1. Subtask B, with 71,027 train,
3,000 dev, and 18,000 test, goes further by identify-
ing the specific model (including ChatGPT, Cohere,
DaVinci, BloomZ, and Dolly) that generated the
text, or if it’s human-generated. Both tasks uti-
lize datasets with an identifier, label, text content,
model name, and source, focusing on the nuanced
classification of texts.

Subtask #Train #Dev #Test
A - Monolingual 119,757 5,000 34,272
A - Multilingual 172,417 4,000 42,378
B 71,027 3,000 18,000

Table 1: Dataset for text classification subtasks

4.1 Parameter Settings

In our experimentation, hyperparameter settings
varied between classical machine learning models
and LLMs. For the classical machine learning mod-
els, we adhered to default parameter settings during
training. This approach simplifies the process and
relies on the general applicability of these preset
parameters.

In contrast, for LLMs, specific hyperparameters
were carefully chosen. When training the XLM-
RoBERTa baseline model, we set the batch size
to 16 and the learning rate to 2.0e − 5 with the
model being trained for 3 epochs. This configu-
ration ensures efficient handling of data and op-
timal learning speed. For fine-tuning the LoRA-
RoBERTa base model, the learning rate was ad-
justed to 1.0e−3 over 5 epochs, a setting conducive
to the specific demands of fine-tuning.

Furthermore, we employed configuration for the
LoRA fine-tuning, defined with the following pa-
rameters: task_type set to SEQ_CLS indicating a
sequence classification task, r (rank of the low-rank
matrices) set to 4, lora_alpha (scaling factor for
learning rate) at 32, lora_dropout to manage over-
fitting set at 0.01, and target_modules focused on
the query module. These configurations are critical
in guiding the fine-tuning process, ensuring that the

166



Method
Subtask A - Monolingual Subtask A - Multilingual Subtask B

Dev Test Dev Test Dev Test

LR 0.673 0.764 0.473 0.721 0.251 0.393
MultinomialNB 0.555 0.832 0.483 0.717 0.435 0.511
XGBoost 0.692 0.800 0.515 0.738 0.540 0.545
RF 0.650 0.825 - - 0.471 0.524

XLM-RoBERTa 0.783 0.717 0.679 0.875 0.735 0.600
LoRA-RoBERTa 0.783 0.811 0.726 0.672 0.735 0.699
Majority voting 0.735 0.828 0.728 0.862 0.717 0.602
DistilmBERT 0.702 0.730 0.670 0.810 0.629 0.619

Table 2: Performance comparison of ML and transformer models on text classification subtasks

adjustments to the model are precisely tailored to
enhance performance on the specified task.

As for DistilmBERT, the maximum length of
input sequences was set to 512. The AdamW op-
timizer was employed for training with a learning
rate set to 1.0e − 4 and a batch size of 20. This
model was trained for 5 epochs.

4.2 Results and Discussions

In our experiments, we evaluated various models
on three distinct subtasks: Subtask A - Monolin-
gual, Subtask A - Multilingual, and Subtask B.
Each subtask involved both development (Dev)
and test phases. The models tested included tradi-
tional machine learning algorithms - LR, Multino-
mialNB, XGBoost and RF - as well as advanced
transformer-based models like XLM-RoBERTa,
LoRA-RoBERTa, and DistilmBERT. However, due
to the complexity of RF and time constraints, exper-
iments on this approach for Subtask A - Multilin-
gual are still ongoing, we plan to report the results
in future work. Additionally, we employed a ma-
jority voting ensemble method combining XLM-
RoBERTa and LoRA-RoBERTa.

The results, detailed in Table 2, reveal significant
variations in model performance across the sub-
tasks, highlighting the strengths and weaknesses of
each model. One notable observation is the large
performance gap between the dev and test sets for
some ML approaches. This discrepancy could be
attributed to several factors, such as overfitting, dif-
ferences in data distribution between the dev and
test sets, or the limited complexity of some ML
models in capturing the intricacies of the task. Fur-
ther investigation and error analysis are necessary
to fully understand and address these issues.

Subtask A - Monolingual In the monolingual
Subtask A, MultinomialNB emerged as a strong
performer with the highest test score of 0.832. RF
and XGBoost also showed robust performance with
test scores of 0.825 and 0.800, respectively. The
success of these ML models in the monolingual
setting suggests that they can effectively capture
relevant features and patterns when dealing with
a single language. However, their performance on
the dev set was notably lower, indicating potential
overfitting or limitations in generalizing to unseen
data. Among the transformers, LoRA-RoBERTa
was notable with a test score of 0.811, outperform-
ing XLM-RoBERTa, which scored 0.717. Distilm-
BERT, while not leading, still demonstrated a com-
mendable test score of 0.730, indicating its effec-
tiveness in monolingual contexts. The performance
of transformer models in this subtask highlights
their ability to capture complex language represen-
tations and generalize well to new data.

Subtask A - Multilingual In the challenging
multilingual Subtask A, XLM-RoBERTa excelled
with the highest test score of 0.875. The Majority
Voting ensemble was also highly effective, achiev-
ing a test score of 0.862. These results demonstrate
the strength of transformer models in handling di-
verse language inputs and their ability to learn
language-agnostic representations. DistilmBERT,
with a test score of 0.810, also showed notable
effectiveness in multilingual text classification, out-
performing traditional models and reflecting its
potential in handling complex, diverse language
data.

Subtask B In Subtask B, LoRA-RoBERTa led
with a Test score of 0.699, follwed by Distilm-
BERT, achieving a test score of 0.619 and XLM-
RoBERTa with 0.600. The strong performance
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of transformer models in this subtask underscores
their versatility and adaptability across different
text classification scenarios. Among the traditional
models, XGBoost was the most effective, with a
test score of 0.545. However, the performance gap
between ML models and transformers in Subtask
B suggests that the latter are better equipped to
handle the specific challenges and complexities of
this task.

At the model level, we observed that ML mod-
els often struggled with handling rare or out-of-
vocabulary words, leading to misclassifications.
Transformer models, on the other hand, showed
better resilience to such challenges, likely due to
their subword tokenization and ability to capture
broader context. However, transformers sometimes
struggled with very short or noisy inputs, indicating
room for improvement in their robustness.

5 Conclusions

The results showed that transformer models, par-
ticularly LoRA-RoBERTa and XLM-RoBERTa,
performed exceptionally well in most text classi-
fication tasks. DistilmBERT represented a more
streamlined transformer approach and was also
proven to be efficient, especially in multilingual
task. Contrary to popular belief, traditional ML
models such as MultinomialNB and XGBoost
can outperform transformers in monolingual tasks.
These findings highlight the importance of care-
fully considering the characteristics of the task and
the trade-offs between model complexity and per-
formance when selecting an appropriate approach.

Our results contribute to the understanding of
model selection strategies for text classification and
emphasize the need for a nuanced approach that
takes into account the specific demands of each
subtask. Future research could explore the develop-
ment of hybrid models that combine the strengths
of traditional ML techniques and transformer ar-
chitectures, as well as the design of more efficient
and lightweight transformer models for resource-
constrained environments. These findings reflected
the dynamic nature of NLP tools and the impor-
tance of selecting models based on the specific
requirements of the task.
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