
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 1919–1925
June 20-21, 2024 ©2024 Association for Computational Linguistics

Groningen Team F at SemEval-2024 Task 8:
Detecting Machine-Generated Text using Feature-Based Machine Learning

Models

Rina Donker and Björn Overbeek and Dennis van Thulden and Oscar Zwagers
Rijksuniversiteit Groningen

{t.r.donker,b.b.j.overbeek,d.l.van.thulden,o.y.zwagers}
@student.rug.nl

Abstract
Large language models (LLMs) have shown re-
markable capability of creating fluent responses
to a wide variety of user queries. However,
this also comes with concerns regarding the
spread of misinformation and potential mis-
use within educational context. In this paper
we describe our contribution to SemEval-2024
Task 8 (Wang et al., 2024), a shared task cre-
ated around detecting machine-generated text.
We aim to create several feature-based mod-
els that can detect whether a text is machine-
generated or human-written. In the end, we
obtained an accuracy of 0.74 on the binary
human-written vs. machine-generated text clas-
sification task (Subtask A monolingual) and an
accuracy of 0.61 on the multi-way machine-
generated text-classification task (Subtask B).
For future work, more features and models
could be implemented.

1 Introduction

Recent large language models (LLMs), such as
ChatGPT, have shown remarkable capability of cre-
ating fluent responses to a wide variety of user
queries. This, in combination with increased ac-
cessibility to these models, has lead to an increase
of machine-generated content over various chan-
nels. However, these LLMs come with concerns
regarding the potential misuse of such tasks, like
spreading misinformation and misuse within the ed-
ucation system (Wang et al., 2023). Therefore, de-
tecting whether a text is human-written or machine-
generated is extremely important.

Unfortunately, humans perform only slightly bet-
ter than chance at this task, as found by Gehrmann
et al. (2019). This introduces the need for develop-
ing automatic systems that can identify machine-
generated texts, in order to mitigate their potential
misuse (Wang et al., 2023).

While previous work has been done on identify-
ing machine-generated texts, they either focused
on only one or two particular languages, or focused

on detecting machine-generated text for a specific
LLM or a specific domain (Wang et al., 2023).

For instance, Macko et al. (2023) note that most
of the research on machine-generated text detection
uses systems that were trained on English datasets
and that prior works show that detectors fine-tuned
on English data fail to generalize to other languages.
This can be seen in the results from Mitchell et al.
(2023), where a decrease is seen from 0.946 AUC
ROC to 0.537 when working with German data. In
addition, Macko et al. (2023) get similar results.

Meanwhile, Sarvazyan et al. (2023) address the
issue of detection systems not generalizing across
different generation models and domains. They
mention that most previous works often overlook
that detection systems would be applied to a broad
variety of domains, writing styles, and generation
models.

Thus, the goal of Task 8 of SemEval 2024 (Wang
et al., 2024) is to take a first step into creating a
mono- or multilingual system that is able to detect
machine-generated text created by different LLMs
in different domains. The Task is divided into three
subtasks, of which we participate in two. These
subtasks are described in Section 2.

In order to tackle this task, we have created mul-
tiple feature-based models. The features on which
the models have been trained will be described in
Section 3. Our decision for creating these feature-
based models is supported by our beliefs that a
model with carefully crafted features is compu-
tationally less expensive than fine-tuning a LLM,
while it may be able to achieve equal or better per-
formance because of its ability to generalize (Wang
et al., 2023), which is something that LLMs tend
to struggle with (Lasri et al., 2022; Wilson et al.,
2023). We focused on creating monolingual mod-
els for subtask A and B.

Eventually, we created a model that was ranked
95th out of 137 teams for the monolingual track of
subtask A with an accuracy of 0.69. For subtask B,

1919



we ranked 50th out of 77 participating teams with
an accuracy score of 0.61.

All of our code for this project can be found on
our GitHub repository.1

2 Background

The goal of this shared task is to create machine-
learning models that are able to detect machine-
generated text across multiple languages, genera-
tors and domains. The datasets we used to train
and test were provided by the task organizers. We
took part in two subtasks: A and B.

2.1 Subtask A

The goal of subtask A is to detect whether the text
is machine-generated or human-written. Every in-
stance in the dataset contains the text generated
by a machine or written by a human and its corre-
sponding label, which is either human or machine.
Besides this, it also includes the model that gener-
ated the data and the source of the text.

There is one monolingual dataset, which is made
up of English texts only, and one multilingual
dataset. We chose to only focus on the monolingual
track of this subtask, since we can make language
specific feature for this dataset. For the monolin-
gual dataset, the source means the domain of the
text, e.g. reddit or wikipedia. The train set
for the monolingual track has 119,757 instances,
while the development set contains 5,000 instances.

2.2 Subtask B

The datasets for subtask B are similar to those of
subtask A, however, as the goal of this subtask is to
detect by which specific text generator the text was
created, there are more labels: human, chatGPT,
cohere, davinci, bloomz and dolly. The
train set consists out of 71,027 instances and the
development set includes 3,000 instances. All in-
stances are from sources in English.

3 System Overview

We experimented with four different kind of su-
pervised models and the features that we created
ourselves. We will describe each model and feature
one by one.

1https://github.com/bbjoverbeek/
SamEval-2024_Task-8_M4

3.1 Models

Support Vector Machine We chose to imple-
ment a Support Vector Machine (SVM; Cortes and
Vapnik, 1995), because this has been one of the
most fundamental models in statistical machine
learning. It has become less popular with the up-
rising of neural networks, but we expect it will
perform well on this task.

Naive Bayes Naive Bayes is a statistical machine
learning model that is easy to implement and works
well on large datasets. It is based on Bayes’ Theo-
rem which calculates the probability of something
happening based on previous encounters.

K-Nearest Neighbors Lastly, we implemented
the K-Nearest Neighbors algorithm (KNN; Fix and
Hodges, 1989). This algorithm is also specialized
in classification and is simple to implement.

Feed Forward Neural Network In an attempt
to find more complex relationship between differ-
ent features, we also implement simple neural net-
works whith several different architectures.

3.2 Features

The following section describes the set of features
that we created and experimented with.

Personal pronouns vs. proper pames The first
feature focuses on the difference in the usage of
personal pronouns, like “he” or “she”, versus the
usage of proper names, like “Michael” or “Karen”
within the text. According to Mitrovic et al. (2023),
humans will usually switch to pronouns to refer to
a person after using a proper name once or twice
in a paragraph, while ChatGPT tends to refer to a
person by their proper name more often. For this
reason, we thought it would be interesting to see if
this effect would be prevalent for other LLMs and
if this would have an impact on the results.

Sentence tense This feature focuses on the tense
that a sentence is written in. The three tenses we
consider are past, present and future. Our goal with
this feature was to discover if there are patterns
in tense usage that are more commonly used in
machine-generated text when compared to human-
written text and vice versa.

Sentence voice For all of the sentences, we col-
lect the voice that the sentence was written in. This
could be either passive or active. Similarly to

1920

https://github.com/bbjoverbeek/SamEval-2024_Task-8_M4
https://github.com/bbjoverbeek/SamEval-2024_Task-8_M4


the sentence tense, we hoped that we could dis-
cover patterns that are distinct to either machine-
generated text or human-written text, since Mitro-
vic et al. (2023) mentioned that ChatGPT writes in
the passive voice more often than active.

Sentence similarity The sentence similarity cal-
culates how similar a sentence is to its previous and
following sentence. In similar fashion to the sen-
tence tense and sentence voice, we want to discover
if there are any distinct patterns.

Sentiment We collect the sentiment on sentence
level from the text to use as a feature. We believed
that there might be a difference between human-
written and machine-generated texts in terms of
sentiment.

Domain The domain of the text in the train and
development data was provided by the task orga-
nizers. However, we suspected that this might not
be included in the final test set. Therefore, we also
included domain as a feature that we could exper-
iment with. We figured that if the domain had a
positive influence on the final score, we could build
our own classifier that predicts the domain of a text,
which can then be used as a feature for our system.

POS-tags and dependency tags Finally, we also
included the POS-tags and dependency tags as fea-
tures. These features contain information about
the structure of the text, which we believed could
be helpful in distinguishing between machine-
generated and human-written text.

4 Experimental Setup

In this following section, we will describe how we
created the models and crafted the features.

4.1 Models

Support Vector Machine In order to run the
SVM, we made use of the scikit-learn library (ver-
sion 1.3.2) (Pedregosa et al., 2011).2 In particular,
we used LinearSVC. By using the built-in func-
tions of scikit-learn we could train and test the
model.

Naive Bayes To build the Naive Bayes classifier,
we used the GaussianNB classifier from scikit-
learn. This type of Naive Bayes classifier assumes
that our data is normally distributed.

2https://scikit-learn.org/

K-Nearest Neighbors For the KNN algorithm,
we used KNeighborsClassifier from scikit-
learn. When this model is used for subtask A, the
number of neighbors is 5. In other cases, the num-
ber of neighbors was 15. It is trained and tested in
a similar way to the SVM.

Feed Forward Neural Network With the Keras
library we created a simple feedforward neural net-
work (FFNN).3 We experimented with different
setups for the neural networks, ranging from 1 up
to 4 hidden layers and giving the hidden layers
from 8 up to 1024 nodes. The ones that worked
best had two or three hidden layers. The size of
the layers ranged from 16 up to 256 (depending on
the model). All the models use softmax as their
activation and Adam for optimization.

4.2 Features

4.2.1 Token-level
Pre-processing With the use of spaCy (ver-
sion 3.7, using their trained pipeline called
en_core_web_sm), we could split the full text into
tokens.4 After that, we used the tokens to create
our token-level features which will be described
below in the following two paragraphs.

Personal pronouns vs. proper names For this
feature, we first count how many personal pronouns
and proper names the text contains. In order to find
the amount of personal pronouns in a text, we use
spaCy to find every token that has the POS-tag pron
(pronoun) and count the number of occurrences.

To collect the number of proper names, we use
spaCy’s entity recognizer and count every token
that has the label person.

POS-tags and dependency tags The POS-tags
and dependency tags can be easily extracted with
spaCy. We use their built-in function to retrieve
these tags and then use them as features. For both
of these features, we created a bag-of-trigrams.

4.2.2 Sentence-level
Pre-Processing For the sentence-level features,
we split the full text into sentences with spaCy. We
then use these sentences to extract the features we
describe in the remainder of this subsection.

Sentence tense In order to extract the sentence
tense, we used spaCy’s token-based matching. We

3https://keras.io/
4https://spacy.io/

1921

https://scikit-learn.org/
https://keras.io/
https://spacy.io/


created multiple patterns for each sentence tense by
using GitHub Copilot5. The patterns are made out
of combinations of detailed POS-tags, dependency
tags, and in some cases, words. The sentences are
matched with these patterns and as a result they
either get the label past, present or future.

After we collected all the sentence tense labels,
we have created trigrams out of these labels and
used these in a bag-of-words. We do this by using
the CountVectorizer that can be found in the
skicit-learn library (Pedregosa et al., 2011). The
bag-of-trigrams is the feature we use that represents
the sentence tense.

Sentence voice Collecting the sentence voice is
done in a similar way as the sentence tense. We
again use spaCy’s token-based matching to deter-
mine if a sentence is written in active or passive
voice. The patterns we used were adapted from an
example implementation found on Stack Overflow6.
We then create a bag-of-trigrams in the same way
as for the sentence tense and use this as a feature.

Sentence similarity For the sentence similarity
feature, the first thing that is done is that each sen-
tence is compared to its previous and following sen-
tence using a sentence-transformers model7 from
Hugging Face (Wolf et al., 2020). We then get
two similarity scores per sentence, after which we
check for each sentence whether it is most similar
to the previous or following one and then give it the
value previous or next, depending on which combi-
nation has the highest score. After that, the process
is the same as for the sentence tense and voice: we
create a bag-of-trigrams to use as a feature.

Sentiment In order to determine the sentiment
of a sentence, we used a RoBERTa model from
Hugging Face (Liu et al., 2019).8 Each sentence
was assigned one of the following labels: positive,
neutral or negative. Afterwards, we again created
a bag-of-trigrams so that we could actually use it
as a feature.

4.2.3 Document-level
Domain Since domain was already given with
the train and test data, we initially used this to ex-
periment with this feature. We trained the models

5https://github.com/features/copilot
6https://stackoverflow.com/a/74594808
7https://huggingface.co/

sentence-transformers/all-MiniLM-L6-v2
8https://huggingface.co/cardiffnlp/

twitter-roberta-base-sentiment-latest

with and without domain to get an insight in the
influence of this feature on the final scores. In
some cases, the inclusion of domain as a feature
improved the score, however, it was only very lit-
tle. Therefore, we did not find it fruitful to build
our own classifier that could predict the domain,
especially considering that this classifier may not
have been 100% accurate, which would increase
the risk of wrong predictions negatively influencing
the results.

Evaluation measures In order to evaluate the
performance of the model, we calculate precision
and recall, the f1-score, and the accuracy. Since
the official metric used for subtask A and B is
the accuracy, we considered the models with the
highest accuracy our best performing models.

We train our different models with every possible
combination of features on the training data and
evaluate their performance on the development data
given by the task organizers. The models with the
highest accuracy are the ones we submitted to the
shared task.

5 Results

5.1 Subtask A

For subtask A, we handed in three SVMs and three
neural networks, since these models received the
highest scores on the development set. We achieved
the highest accuracy (0.74) on the final test set with
a neural network using the sentence tense, sentence
voice, sentence similarity and ratio of pronouns
and named entities as features. The final rank-
ing released by the task organizers however was
not based on the submitted model with the highest
score but on the last submitted model, which in
our case was the SVM model using the sentence
tense, sentence voice and ratio pronouns/named
entities as features. This model ranked 95th out of
137 teams. The results of the models we handed
in, including our best performing model, can be
seen in Table 1. Even though our best perform-
ing model obtained an accuracy of 0.74, it is still
lower than the RoBERTa baseline, which achieved
an accuracy of 0.88.

5.2 Subtask B

For subtask B, we handed in three models, namely
one SVM and two neural networks. Our best scor-
ing model was the SVM with an accuracy of 0.61.
This model used the sentence tense, sentence voice,

1922

https://github.com/features/copilot
https://stackoverflow.com/a/74594808
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest


Model Features Precision Recall F1-score Accuracy
RoBERTa (baseline) - - - - 0.88
SVM Tense, Voice 0.73 0.64 0.68 0.69
SVM Tense, Voice, Ratio PRON/NE 0.73 0.66 0.69 0.69
SVM Tense, Voice, Similarity, Ratio PRON/NE 0.77 0.64 0.70 0.71
NN 12e-b64-l0.0001 Tense, Voice, Ratio PRON/NE 0.72 0.64 0.68 0.68
NN 8e-b32-l0.0001 Tense, Voice, Similarity, Ratio PRON/NE 0.79 0.68 0.73 0.74
NN 10e-b64-l0.0001 Tense, Voice, Similarity 0.83 0.57 0.68 0.72

Table 1: The results of our best models on the monolingual test data of subtask A. The numbers behind the neural
networks (NN) stand for the number of epochs (e), the batch size (b) and the learning rate (l) respectively. All the
other hyperparameters were the same. The highest scoring model is the neural network with four different features.
It is only outscored by another neural network model on precision.

Model Features Precision Recall F1-score Accuracy
RoBERTa (baseline) - - - - 0.75
SVM Tense, Voice, Sentiment, POS

DEP, Similarity, Ratio PRON/NE 0.60 0.61 0.58 0.61
NN 48e-b32-l0.0005 Tense, Voice, POS, DEP,

Ratio PRON/NE 0.54 0.56 0.50 0.56
NN 48e-b32-l0.0005 Tense, Voice, POS, DEP, Similarity,

Ratio PRON/NE 0.56 0.56 0.51 0.56

Table 2: The results of our best models on the test data of subtask B provided by the creators of the Shared Task.
The numbers behind the neural networks (NN) stand for the number of epochs (e), the batch size (b) and the learning
rate (l) respectively. The highest scoring model is the SVM with seven different features.

sentiment, POS-tags, dependency tags, sentence
similarity and the pronoun/named entity ratio as
features. This model scored the 50th place out of
77 models in total. The results of our best models
can be seen in Table 2. Again, our best performing
model scores lower than the RoBERTa baseline
that has an accuracy of 0.75.

5.3 Discussion

We found that the SVMs and the feedforward neu-
ral networks gave the best results on the develop-
ment set, while the KNN and Naive Bayes algo-
rithms did not perform well. This can be seen
in Table 3 in Appendix A, which shows the best
results of the different models on subtask A mono-
lingual. Because of these results we decided to
focus our attention on feedforward neural networks
and SVMs, for both subtask A as well as subtask
B.

Our submissions for both subtasks ended up be-
ing in the bottom 50% of the total submissions.
However, we used older techniques for this task, as
we believed that carefully crafting our own features
and training these on simpler models would still re-
turn good results while being less computationally
expensive.

For both subtask A and B we can conclude that
a simple FFNN or SVM performs well, but it does

not outperform the current state-of-the-art models.
Overall, some features contribute more to the

detection of machine-generated text than others.
The features that perform well are the sentence
tense, sentence voice, sentence similarity and the
ratio of personal pronouns and proper names. The
tense and the voice of the sentences even appear in
all of our best scoring models.

We think that the reason of the effect of ratio of
personal pronouns and proper names on the per-
formance is due to the fact that machines tend to
use named entities more often than humans, as we
described in Section 3.2.

The feature that did not seem effective was senti-
ment, which only occurs in one of our top models.
One of the reasons we think that the sentiment fea-
ture did not seem helpful is due to the fact that
most of the texts come from sources that are natu-
rally written in neutral tone, such as Wikipedia and
arXiv.

6 Conclusion

To conclude, while we still gained quite good re-
sults, our models do not outperform the state-of-
the-art models. We achieved an accuracy of 0.74
on subtask A and an accuracy of 0.61 on subtask B.
Both scores are lower than the RoBERTa baseline.

We discovered that sentence tense, sentence

1923



voice and the ratio between pronouns and named
entities seemed to be effective for the classifica-
tion task, while sentiment did not have that much
influence.

In future research, there could be more experi-
mentation with different kinds of machine learning
models and more features could be created to fur-
ther improve the models.

Acknowledgements

This submission has been carried out as a part of the
2023-2024 edition of the master course Shared Task
Information Science (LIX026M05) at the Univer-
sity of Groningen. We want to thank Antonio Toral
and Lukas Edman for teaching the course. As An-
tonio Toral was the teacher assigned to our group,
we want to thank him especially for supervising
our progress, steering us in the right direction and
answering all of our questions.

References
C. Cortes and V. Vapnik. 1995. Support vector networks.

Machine Learning, 20:273–297.

Evelyn Fix and J. L. Hodges. 1989. Discriminatory
analysis. nonparametric discrimination: Consistency
properties. International Statistical Review / Revue
Internationale de Statistique, 57(3):238–247.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander
Rush. 2019. GLTR: Statistical detection and visual-
ization of generated text. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 111–116,
Florence, Italy. Association for Computational Lin-
guistics.

Karim Lasri, Alessandro Lenci, and Thierry Poibeau.
2022. Does BERT really agree ? fine-grained anal-
ysis of lexical dependence on a syntactic task. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 2309–2315, Dublin, Ire-
land. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Dominik Macko, Robert Moro, Adaku Uchendu, Ja-
son Lucas, Michiharu Yamashita, Matúš Pikuliak,
Ivan Srba, Thai Le, Dongwon Lee, Jakub Simko, and
Maria Bielikova. 2023. MULTITuDE: Large-scale
multilingual machine-generated text detection bench-
mark. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9960–9987, Singapore. Association for Com-
putational Linguistics.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D. Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature.

Sandra Mitrovic, Davide Andreoletti, and Omran Ay-
oub. 2023. Chatgpt or human? detect and explain.
explaining decisions of machine learning model for
detecting short chatgpt-generated text.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Areg Mikael Sarvazyan, José Ángel González, Marc
Franco-Salvador, Francisco Rangel, Berta Chulvi,
and Paolo Rosso. 2023. Overview of autextification
at iberlef 2023: Detection and attribution of machine-
generated text in multiple domains.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, jinyan
su, Artem Shelmanov, Akim Tsvigun, Osama Mo-
hammed Afzal, Tarek Mahmoud, Giovanni Puccetti,
Thomas Arnold, Chenxi Whitehouse, Alham Fikri
Aji, Nizar Habash, Iryna Gurevych, and Preslav
Nakov. 2024. Semeval-2024 task 8: Multidomain,
multimodel and multilingual machine-generated text
detection. In Proceedings of the 18th International
Workshop on Semantic Evaluation (SemEval-2024),
pages 2041–2063, Mexico City, Mexico. Association
for Computational Linguistics.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi
Whitehouse, Osama Mohammed Afzal, Tarek Mah-
moud, Alham Fikri Aji, and Preslav Nakov. 2023.
M4: Multi-generator, multi-domain, and multi-
lingual black-box machine-generated text detection.
arXiv:2305.14902.

Michael Wilson, Jackson Petty, and Robert Frank. 2023.
How Abstract Is Linguistic Generalization in Large
Language Models? Experiments with Argument
Structure. Transactions of the Association for Com-
putational Linguistics, 11:1377–1395.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

1924

http://www.jstor.org/stable/1403797
http://www.jstor.org/stable/1403797
http://www.jstor.org/stable/1403797
https://doi.org/10.18653/v1/P19-3019
https://doi.org/10.18653/v1/P19-3019
https://doi.org/10.18653/v1/2022.findings-acl.181
https://doi.org/10.18653/v1/2022.findings-acl.181
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2023.emnlp-main.616
https://doi.org/10.18653/v1/2023.emnlp-main.616
https://doi.org/10.18653/v1/2023.emnlp-main.616
http://arxiv.org/abs/2301.11305
http://arxiv.org/abs/2301.11305
https://doi.org/10.48550/arXiv.2301.13852
https://doi.org/10.48550/arXiv.2301.13852
https://doi.org/10.48550/arXiv.2301.13852
http://arxiv.org/abs/2309.11285
http://arxiv.org/abs/2309.11285
http://arxiv.org/abs/2309.11285
https://aclanthology.org/2024.semeval2024-1.275
https://aclanthology.org/2024.semeval2024-1.275
https://aclanthology.org/2024.semeval2024-1.275
https://doi.org/10.1162/tacl_a_00608
https://doi.org/10.1162/tacl_a_00608
https://doi.org/10.1162/tacl_a_00608
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771


A Results on Development Set of Subtask A Monolingual

Model Features Precision Recall F1-score Accuracy
RoBERTa (baseline) - - - - 0.74
KNN Tense, Voice, Named Entities 0.637 0.639 0.638 0.637
NB Tense, Named Entities, Sentiment 0.575 0.981 0.725 0.627
SVM Tense, Voice, Named Entities 0.644 0.888 0.746 0.698
NN 4e-b12-l0.0001 Tense, Voice, Named Entities 0.687 0.835 0.754 0.727

Table 3: This table shows the best performance of each model on the development set of subtask A during our
initial experiments. For the NN, we experimented with the number of epochs, batch size and learning rate. We also
focused on optimizing the pronouns/named entity feature by using the ratio of pronouns and named entities instead
of using absolute values.

1925


