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Abstract

We present the first shared task on Seman-
tic Textual Relatedness (STR). While ear-
lier shared tasks primarily focused on se-
mantic similarity, we instead investigate the
broader phenomenon of semantic relatedness
across 14 languages: Afrikaans, Algerian Ara-
bic, Amharic, English, Hausa, Hindi, Indone-
sian, Kinyarwanda, Marathi, Moroccan Arabic,
Modern Standard Arabic, Punjabi, Spanish,
and Telugu. These languages originate from
five distinct language families and are predom-
inantly spoken in Africa and Asia – regions
characterised by the relatively limited availabil-
ity of NLP resources. Each instance in the
datasets is a sentence pair associated with a
score that represents the degree of semantic
textual relatedness between the two sentences.
Participating systems were asked to rank sen-
tence pairs by their closeness in meaning (i.e.,
their degree of semantic relatedness) in the 14
languages in three main tracks: (a) supervised,
(b) unsupervised, and (c) crosslingual. The
task attracted 163 participants. We received 70
submissions in total (across all tasks) from 51
different teams, and 38 system description pa-
pers. We report on the best-performing systems
as well as the most common and the most effec-
tive approaches for the three different tracks.

1 Introduction

Defining the relationship between two units of text
is an important component of constructing text rep-
resentations. Within this context, semantic textual
relatedness (STR) aims to capture the degree to
which two linguistic units (e.g., words or sentences,
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etc.) are close in meaning (Mohammad and Hirst,
2012). Two units may be related in a variety of
different ways (e.g., by expressing the same view,
originating from the same time period, elaborating
on each other, etc.). On the other hand, semantic
textual similarity (STS) considers only a narrow
view of the relationship that may exist between
texts (such as equivalence or paraphrase) which
does not incorporate other dimensions of related-
ness such as entailment, topic or view similarity,
or temporal relations (Abdalla et al., 2023). For
example, ‘I am feeling sick.’ and ‘Get well soon!’
would receive a low similarity score, despite the
two being very related. In this shared task, we
investigate the broader concept of semantic tex-
tual relatedness. STR is central to understanding
meaning in text (Hasan and Halliday, 1976; Miller
and Charles, 1991; Morris and Hirst, 1991) and its
automation can benefit various downstream tasks
such as evaluating sentence representation methods,
question answering, and summarisation (Abdalla
et al., 2023; Wang et al., 2022).

Prior shared tasks (Agirre et al., 2012, 2013,
2014, 2015, 2016; Cer et al., 2017) have mainly
focused on textual similarity. In this work, we pro-
vide participants with SemRel (Ousidhoum et al.,
2024), a collection of 14 newly curated monolin-
gual STR datasets for Afrikaans (afr), Amharic
(amh), Modern Standard Arabic (arb), Algerian
Arabic (arq), Moroccan Arabic (ary), English
(eng), Spanish (esp), Hausa (hau), Hindi (hin),
Indonesian (ind), Kinyarwanda (kin), Marathi
(mar), Punjabi (pun) and Telugu (tel). The
datasets are composed of sentence pairs, each as-
signed a relatedness score between 0 (completely
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Lang. Family Train Dev Test

afr Indo-European - 375 375
amh Afro-Asiatic 992 95 171
arb Afro-Asiatic - 32 595
arq Afro-Asiatic 1,261 97 583
ary Afro-Asiatic 925 70 427
eng Indo-European 5,500 250 2,600
esp Indo-European 1,562 140 600
hau Afro-Asiatic 1,763 212 603
hin Indo-European - 288 968
ind Austronesian - 144 360
kin Niger-Congo 778 102 222
mar Indo-European 1,200 293 298
pan Indo-European - 638 242
tel Dravidian 1,170 130 297

Table 1: The language families and data split sizes of
the different datasets. Datasets with no traning sets were
only used in tracks B and C.

unrelated) and 1 (maximally related) with a large
range of expected relatedness values. The pairs
of sentences were first selected from pre-existing
datasets covering various topics and formality lev-
els, e.g., news data, Wikipedia, and conversational
data. To generate the relatedness scores, the sen-
tence pairs were then annotated by native speak-
ers who performed comparisons between different
pairs of sentences using Best–Worst Scaling (BWS)
(Louviere and Woodworth, 1991; Kiritchenko and
Mohammad, 2017a). The shared task included
three main tracks: (1) supervised, (2) unsupervised,
and (3) cross-lingual.

Each team could provide submissions for one,
two, or all of the tracks in one or more languages.
Our official evaluation metric was the Spearman
rank correlation coefficient, which captures how
well the system-predicted rankings of test instances
aligned with human judgments. Our task attracted
163 participants, received 70 final submissions
from 51 different teams, and 38 teams submitted
system description papers. Track A (supervised)
received the largest number of submissions: 40, fol-
lowed by 18 submissions for track B (unsupervised)
and 12 for track C (crosslingual). Most teams par-
ticipated in multiple languages (more than eight on
average). All of the task details and resources are
available on the task website.1

2 Related Work

The field of semantic textual relatedness in nat-
ural language processing covers a variety of ap-
proaches and techniques designed to measure the

1https://semantic-textual-relatedness.github.io

closeness in meaning between units of text, specif-
ically words (Miller, 1994) or sentences (Abdalla
et al., 2023).

Most prior shared tasks focus on semantic textual
similarity, a narrower subset of relatedness, and of-
ten only cover high-resource languages such as En-
glish (Agirre et al., 2012, 2013, 2014, 2015, 2016),
Arabic, German, Spanish, and Turkish (Cer et al.,
2017) with few exceptions such as Armendariz
et al. (2020) who also included Slovene, Finnish,
and Croatian.

By comparison, this shared task focuses on
sentence-level STR in various low-resource lan-
guages. To our knowledge, the only corpora spe-
cially designed for semantic textual relatedness be-
tween pairs of sentences was created by Abdalla
et al. (2023) for English. The core of Abdalla et al.
(2023) approach served as the model for data an-
notations added to new ways of data collection–
curation for several less-resourced languages.

3 Data

3.1 Data Collection

A key step in the data creation process was identi-
fying text sources for each language and selecting
sentence pairs. This was particularly challenging
for low-resource languages such as Hausa, Telugu,
or Algerian Arabic. Since most SemRel languages
are low-resource, the domain, (in)formality, and
diversity of the sentence pairs were highly depen-
dent on the publicly available corpora. We aimed
to collect datasets with average-length sentences,
free of offensive utterances, and as diverse as pos-
sible. Thus, data instances were extracted for each
language using a tailored combination of heuris-
tics such as lexical overlap and paraphrases. We
used further pre-processing, post-processing, and
data analysis methods to avoid incoherence and
unnaturalness.

Since arbitrarily selecting sentences and pairing
them would lead to many unrelated instances, we
relied on the following heuristics to pair sentences
and ensure that the pairs would exhibit relatedness
scores varying from completely unrelated to very
related:

1. Lexical Overlap Select sentences with vari-
ous proportions of lexical overlap, i.e., one or
more words/tokens in common, with or with-
out using TF/IDF normalisation.

2. Contiguity/Entailment Select adjacent pairs
of sentences in a paragraph or a social media
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Language afr amh arb arq ary eng esp hau hin ind kin mar pun tel

#Annotators 2 4 2-3 2 2 2-4 2-4 2-4 4 2 2 2-3 2 4

SHR train/dev 0.85 0.89 0.86 0.64 0.77 0.80 0.70 0.74 0.93 0.68 0.74 0.92 0.65 0.79

SHR test 0.85 0.89 0.86 0.64 0.77 0.80 0.70 0.74 0.93 0.68 0.74 0.92 0.65 0.79

Table 2: SHR (split-half reliability) scores for each of the created dataset splits and numbers of annotators per tuple
(#Annotators).

thread, i.e., sentences that appear one after the
other.

3. Paraphrases or Machine Translation (MT)
Paraphrases Select pairs of sentences from
paraphrase or MT data. For MT, we pivot
across the translation and back to the source
language to generate a new sentence and pair
it with the original.

4. Random selection Random pairs of sentences
are selected.

We elaborate on the detailed data collection and
processing steps in Ousidhoum et al. (2024).

3.2 Data Annotation

As the notions of related and unrelated do not have
clear boundaries with no unanimous definition in
the literature, we use comparative annotations and
rely on the intuitions of fluent speakers for each
language to choose between sentence pairs. There-
fore, instead of relying on vague class definitions,
we capture common perceptions of semantic relat-
edness (i.e., what is believed by the vast majority)
rather than “correct” or “right” rankings.

We used Best–Worst Scaling (BWS) (Louviere
and Woodworth, 1991; Kiritchenko and Moham-
mad, 2017a), a form of comparative annotation that
avoids various biases of traditional rating scales, to
annotate our data instances and generate an ordinal
ranking of instances. In BWS, annotators are given
n items (an n-tuple, where n > 1 and commonly
n = 4). They are asked which item is the best
(highest in terms of the property of interest) and
which is the worst (lowest in terms of the property
of interest). When working on 4-tuples, best–worst
annotations are particularly efficient because each
best and worst annotation will reveal the order of
five of the six-item pairs. Real-valued scores of
association between the items and the property of
interest can be determined using simple arithmetic
on the number of times an item was chosen best
and the number of times it was chosen worst (Orme,
2009; Flynn and Marley, 2014). It has been empir-
ically shown that annotations for 2N 4-tuples are

sufficient for obtaining reliable scores (where N is
the number of items) (Louviere and Woodworth,
1991; Kiritchenko and Mohammad, 2016). Kir-
itchenko and Mohammad (2017b) showed through
empirical experiments that BWS produces more
reliable and discriminating scores than those ob-
tained using rating scales. (See (Kiritchenko and
Mohammad, 2016, 2017b) for further details on
BWS.) We generated tuples using the BWS scripts
provided by Kiritchenko and Mohammad (2017a)2.

We report the number of annotators and the
split-half reliability (SHR) scores (Cronbach, 1951;
Kuder and Richardson, 1937) for each of the
datasets in Table 2. SHR measures the degree to
which repeating the annotations results in similar
relative rankings of the instancesOverall the scores
in Table 2 vary between 0.64 and 0.96, which indi-
cates a high annotation reliability.

4 Task Description

In this task, we aim to predict the semantic textual
relatedness (STR) of sentence pairs. Participants
had to rank sentence pairs by their degree of seman-
tic relatedness which varies between 0 (unrelated)
and 1 (closely related). Each team could provide
submissions for one, two, or all of the tracks pre-
sented below.

4.1 Track A: Supervised

Participants were to submit systems trained on
the labeled training datasets provided. Participat-
ing teams were allowed to use any publicly avail-
able datasets (e.g., other relatedness and similarity
datasets or datasets in any other languages). How-
ever, they had to report on additional data they used,
and ideally report how each resource impacted the
final results.

4.2 Track B: Unsupervised

Participants were to submit systems that were de-
veloped without the use of any labeled datasets

2https://saifmohammad.com/WebPages/BestWorst.html
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Track A (Supervised) Track B (Unsupervised) Track C (Crosslingual)

# Team Score Team Score Team Score

* Lexical Overlap 0.456

* baseline (LaBSE) 0.762 * baseline (XLMR) 0.353 * baseline (LaBSE) 0.579

1 AAdam 0.800 SATLab 0.543 AAdaM 0.650
2 NRK 0.781 MasonTigers 0.514 UAlberta 0.589
3 PEAR 0.758 HW–TSC 0.482 silp_nlp 0.566
4 silp_nlp 0.740 UAlberta 0.481 MaiNLP 0.499
5 NLP_1@SSN 0.740 silp_nlp 0.400 ustcctsu 0.445

Table 3: Top 5 submissions per track. See Appendix for paper information about the different teams. * shows
baseline results using lexical overlap, XLMR and LaBSE reported in the SemRel dataset paper (Ousidhoum et al.,
2024).

pertaining to semantic relatedness or semantic sim-
ilarity between units of text more than two words
long in any language. The use of unigram or bi-
gram relatedness datasets (from any language) was
permitted.

4.3 Track C: Cross-lingual

Participants were to submit systems that were de-
veloped without the use of any labeled semantic
similarity or semantic relatedness datasets in the tar-
get language and with the use of labeled dataset(s)
from at least one other language. Using labeled
data from another track was mandatory for a sub-
mission to this track.

4.4 Official Evaluation Metric

The official evaluation metric for this task is the
Spearman rank correlation coefficient, which cap-
tures how well the system-predicted rankings of
test instances align with human judgments. We
provided the participants with an evaluation script
on GitHub page3.

4.5 Task Organisation

We released some pilot datasets before the start
of the shared task for participants to have a better
understanding of the task (i.e., the datasets, the
languages involved, and the labels) and provided
the participants with a starter kit on GitHub.

5 Evaluation

5.1 Our baselines

In Table 3, we report a simple lexical overlap base-
line which consists of the Dice coefficient between
two sentences A and B: the number of unique un-

3https://github.com/semantic-textual-
relatedness/Semantic_Relatedness_SemEval2024

igrams occurring in both sentences, adjusted by
their lengths (Abdalla et al., 2023):

2× |unigram(A) ∩ unigram(B)|
|unigram(A) + unigram(B)| (1)

In addition, we used LaBSE (Label Agnostic
BERT Sentence Embeddings) (Feng et al., 2020)
which can map 109 languages into a shared vec-
tor space. With the embeddings covering all the
SemRel languages, we report baseline results using
the default hyperparameters set in the sentence-
transformers repository4. We used:

• the predefined setup without further fine-
tuning,

• the LaBSE model further fine-tuned on our
training data using a cosine similarity loss.

For the crosslingual baselines, we fine-tuned
LaBSE on the English training set and tested on
all the other datasets except English while using
the Spanish training set to fine-tune LaBSE when
testing on English. We elaborate on the detailed
baseline experiment in (Ousidhoum et al., 2024)

5.2 Participating Systems and Results

5.3 Participant Overview

During the evaluation phase, 163 people registered
for the competition. Of these, 51 teams made 70
final submissions across tracks 5. Track A received
40 final submissions, track B received 12 submis-
sions, and track C received 18. For track A, most
participants submitted systems for at least eight lan-
guages. We report the top–5 performing systems
in all tracks in Table 3.

4https://github.com/UKPLab/sentence-transformers
5The details can be found in the Appendix.
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Rank Team amh arq ary eng esp hau kin mar tel Average

1 AAdaM (Zhang et al., 2024) 0.867 0.662 0.835 0.848 0.740 0.724 0.779 0.894 0.848 0.800
2 NRK (Nguyen and Thin, 2024) 0.864 0.674 0.827 0.833 0.690 0.672 0.757 0.879 0.834 0.781

* SemRel baseline (LaBSE) 0.789 0.847 0.761 0.830 0.702 0.693 0.725 0.881 0.817 0.762

3 PEAR (Jørgensen, 2024) 0.834 0.463 0.815 0.848 0.710 0.694 0.772 0.856 0.827 0.758
4 silp_nlp (Singh et al., 2024) 0.837 0.594 0.808 0.845 0.658 0.724 0.485 0.863 0.843 0.740
5 NLP_1@SSN (B et al., 2024) - 0.623 0.745 0.835 0.705 0.628 0.723 0.871 0.789 0.740
6 UAlberta (Shi et al., 2024) 0.854 0.464 0.497 0.853 0.705 0.735 0.641 0.890 0.857 0.722
7 MBZUAI-UNAM (Ortiz-Barajas et al., 2024) 0.840 0.541 0.786 0.832 0.697 0.670 0.458 0.867 0.785 0.720
8 INGEOTEC (Moctezuma et al., 2024) 0.702 0.566 0.811 0.809 0.678 0.576 0.630 0.784 0.801 0.706
9 HausaNLP (Salahudeen et al., 2024) 0.353 0.587 0.834 0.794 0.723 0.594 0.633 0.837 0.800 0.684
10 KINLP - 0.471 0.779 0.740 0.581 0.616 0.763 0.749 0.754 0.682
11 BITS Pilani (Venkatesh and Raman, 2024) 0.800 0.510 0.444 0.832 0.656 0.508 0.518 0.842 0.814 0.658
12 OZemi (Takahashi et al., 2024) 0.781 0.371 0.445 0.805 0.620 0.620 0.567 0.862 0.782 0.650
13 Text Mining (Keinan, 2024) 0.713 0.443 0.701 0.720 0.661 0.543 0.413 0.778 0.706 0.631
14 MasonTigers (Goswami et al., 2024) 0.785 0.400 0.376 0.836 0.651 0.477 0.367 0.818 0.802 0.612
15 YSP (Aali et al., 2024) 0.643 0.402 - 0.819 0.635 0.387 0.315 0.689 0.643 0.567
16 IITK (Basak et al., 2024) 0.550 0.339 0.358 0.808 0.591 0.219 0.138 0.666 0.282 0.439
17 YNUNLP2023 (Li et al., 2024b) 0.789 0.235 0.092 0.557 0.404 0.269 0.186 0.544 0.617 0.410
NR PALI 0.889 0.679 0.863 0.860 0.724 0.764 0.813 0.911 0.864 0.819
NR king001 0.888 0.682 0.860 0.843 0.721 0.747 0.817 0.897 0.853 0.812
NR saturn 0.845 0.578 0.798 - - 0.699 0.755 0.873 0.873 0.774
NR UMBCLU (Roy Dipta and Vallurupalli, 2024) - - 0.745 0.838 0.721 0.640 0.681 0.841 0.682 0.733
NR SemanticCUETSync (Hossain et al., 2024) - - - 0.822 0.677 - - 0.870 0.820 0.796
NR NLP-LISAC (Benlahbib et al., 2024) - 0.604 0.789 0.835 0.717 - - - - 0.736
NR Unknown - - - 0.831 - - - 0.882 0.841 0.852
NR BpHigh - - - 0.809 - - - 0.875 0.769 0.819
NR Sharif_STR (Ebrahimi et al., 2024) - 0.380 - 0.827 0.673 - - - - 0.441
NR CAILMD-23 (Sonavane et al., 2024) - - - 0.823 - - - 0.871 - 0.847
NR WarwickNLP (Ebrahim and Joy, 2024) - - 0.816 0.842 - - - - - 0.829
NR GIL-IIMAS UNAM - - - 0.830 0.731 - - - - 0.780
NR msiino - - - 0.809 0.611 - - - - 0.710
NR NLU-STR (Malaysha et al., 2024) - 0.525 0.832 - - - - - - 0.678
NR Tübingen-CL (Zhang and Çöltekin, 2024) - - - 0.850 - - - - - 0.850
NR Pinealai (Eponon and Ramos Perez, 2024) - - - 0.837 - - - - - 0.837
NR gds142 - - - - - - - - 0.826 0.826
NR LuisRamos07 - - - 0.822 - - - - - 0.822
NR VerbaNexAI Lab (Morillo et al., 2024) - - - 0.819 - - - - - 0.819
NR Fired_from_NLP (Shanto et al., 2024) - - - 0.810 - - - - - 0.810
NR Roronoa_Zoro - - - 0.810 - - - - - 0.810
NR NLP_STR_teamS (Su and Zhou, 2024) - - - 0.809 - - - - - 0.809
NR DataJo - 0.356 - - - - - - - 0.356

Table 4: Track A results. The best results are in bold, and NR stands for not ranked. As the methods are highly
language-dependent, we only rank teams that participated in at least 8 sub-tracks, but we highlight in blue the
best results achieved by non-ranked teams. (Non-ranked teams are sorted based on the number of languages they
participated in.)

5.4 Task A: Supervised

5.4.1 Best Performing Systems

AAdaM They opted for data augmentation by
translating the English SemRel dataset and STSB
(semantic similarity) to create and augment data
in other languages. The team explored both fine-
tuning and adapter-based tuning. Given a target
language, they first fine-tuned the cross-encoder-
based AfroXLMR model (Alabi et al., 2022) on
the augmented data as a warm-up or TAPT (Task-
Adaptive-Pre-Training) and then continued the fine-
tuning on the provided SemRel data.

NRK They ensembled various BERT-like models
and used a weighted voting technique to improve
the performance of their model.

PEAR They examined the effect of combining
or using per-language data through 5-fold valida-
tion. They did not conduct any text preprocessing
to maintain fairness across languages. They de-
fined three model configurations: “base” with no
training, “all” trained on all languages, and “lan”
trained on one language. They experimented with
multilingual embeddings, cross-encoders, and aug-
mented data from bi-encoders.
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5.4.2 Popular Methods
The general trend for the methods submitted to
track A was (1) embedding sentence pairs into
text and (2) training a regression model. Some
teams used traditional embeddings and regression
approaches (e.g., word2vec with support vector re-
gressor – team ‘Text Mining’). The majority used
deep learning approaches (e.g., BERT, RoBERTa)
or other large pre-trained transformer models (e.g.,
teams “IITK”, “Fired_from_NLP, HausaNLP”).
When using these models, the teams would often
experiment with different hyperparameters. Some
teams went further and modified the specific learn-
ing approach or representations learned through
methods such as contrastive learning (e.g., team:
IITK).

5.4.3 Most Effective and Original Methods
In track A, the participants used the provided train-
ing sets for each of the 9 languages included in
the track (amh, arq, ary, eng, esp, hau,
kin, mar and tel). Overall, the different teams
explored several approaches to enhance the per-
formance. For instance, the top performing team
PALI, used MT-DNN (Multi-Task Deep Neural
Networks for Natural Language Understanding)
(Liu et al., 2019a) and outperformed all the other
teams across all languages except for Spanish and
Kinyarwanda. For Kinyarwanda, king001 who
used MT for data augmentation and multilingual
mixed training and XLM-R (Conneau et al., 2020)
as a base model achieved the best performance, and
AAdaM who used translation-based data augmen-
tation and adapter-based tuning reported the best
score.

Note. however, that since PALI and king001 did
not submit system description papers, they are not
ranked in Tables 3 and 4.

5.5 Task B: Unsupervised

5.5.1 Best Performing Systems
SATLab Team SATLab used a system based on
a model developed for authorship identification
of source code (Bestgen, 2019). The system pro-
cessed each pair of utterances independently, gen-
erating a distance between them without relying
on additional information. Their pre-processing
involved lower-casing of texts and making use
of character n-grams ranging from 1 to 5 charac-
ters, encompassing all characters including spaces,
punctuation marks, symbols, and characters from

different writing systems. All n-grams were re-
tained without a frequency threshold. The fre-
quency of each feature was weighted by a loga-
rithmic function, and the features of each statement
were weighted by the L2 norm. The semantic simi-
larity between utterances was estimated using the
Euclidean distance between sets of n-grams in each
pair.

MasonTigers In the initial phase, team Mason-
Tigers obtained the embeddings of training data in-
stances and used TF–IDF, PPMI, LaBSE sentence
transformer, and language-specific BERT models
for multiple languages. Cosine similarity scores
were then computed between pairs of embeddings,
followed by the use of ElasticNet and Linear Re-
gression separately to predict sentence pair similar-
ity. Predicted values were clipped to ensure a range
from 0 to 1.

HW–TSC Team HW-TSC’s method included
the N -gram chars utilising tokenizers from XLM-
RoBERTa and m-BERT as key features to compute
similarity scores based on n-gram dictionaries of
sentences. They also used BERTScore to assess
text quality based on the cosine similarity of token-
level representations from the BERT model.

5.5.2 Popular Methods
As the main challenge with track B was the preven-
tion of using any data of more than two words long
related to semantics, many teams such as Hausa–
NLP and Tübingen–CL used pre-trained language
models such as All-MiniLM-L6-v2 (Reimers and
Gurevych, 2019).

Most teams opted for language-specific data and
models, if not trained on similarity data, and com-
pared the performance to monolingual BERT mod-
els. However, none of these methods were used by
the top three performing teams.

5.5.3 Most effective and Original Methods
The most effective methods for the unsupervised
track for all languages were submitted by teams
SATLab, MasonTigers, and HW–TSC (top–3).
SATLab’s approach involved processing pairs inde-
pendently using character n-grams. MasonTigers,
on the other hand, leveraged various embedding
methods and statistical machine learning using sim-
ple features such as TF-IDF and BERT models to
compute the cosine similarity between embeddings,
further refined using ElasticNet. On the other hand,
The HW–TSC team used innovative techniques
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Rank Team afr amh arb arq ary eng esp hau hin ind kin pun Average

1 SATLab (Bestgen, 2024) 0.761 0.764 0.487 0.521 0.599 0.774 0.709 0.513 0.649 0.491 0.458 -0.215 0.543
2 MasonTigers (Goswami et al., 2024) 0.757 0.656 0.405 0.424 0.561 0.766 0.661 0.504 0.571 0.382 0.465 0.020 0.514
3 HW–TSC (Piao et al., 2024) 0.639 0.650 0.402 0.296 0.460 0.758 0.641 0.382 0.613 0.445 0.323 0.173 0.482
4 UAlberta (Shi et al., 2024) 0.789 0.723 0.467 0.368 0.063 0.775 0.680 0.380 0.691 0.484 0.378 -0.027 0.481

* Lexical Overlap 0.706 0.633 0.320 0.400 0.627 0.670 0.670 0.306 0.527 0.553 0.333 -0.274 0.456

5 silp_nlp (Singh et al., 2024) 0.732 0.643 0.314 0.402 0.552 0.317 - 0.387 0.571 0.532 0.350 -0.110 0.400
6 HausaNLP (Salahudeen et al., 2024) 0.716 0.038 0.202 0.334 0.397 0.819 0.618 0.358 0.440 0.407 0.404 -0.084 0.387

* SemRel baseline (XLMR) 0.562 0.573 0.316 0.247 0.174 0.601 0.689 0.041 0.507 0.467 0.132 -0.072 0.353

NR IITK (Basak et al., 2024) - 0.068 - 0.489 0.358 0.808 0.591 0.379 - - - - 0.449
NR YSP (Aali et al., 2024) - - - 0.385 - 0.788 0.598 0.193 - - 0.377 - 0.468
NR Tübingen-CL (Zhang and Çöltekin, 2024) - - - - - 0.837 0.705 - 0.649 - - - 0.730
NR CAILMD-23 (Sonavane et al., 2024) - - - - - 0.819 - - 0.797 - - - 0.808
NR Self-StrAE (Opper and Narayanaswamy, 2024) 0.765 - - - - - 0.635 - - - - - 0.700
NR NLU-STR (Malaysha et al., 2024) - - 0.489 - - - - - - - - - 0.489

Table 5: Track B results. The best results are in bold, and NR stands for not ranked. As the methods are highly
language-dependent, we only rank teams that participated in at least 8 sub-tracks, but we highlight in blue the
best results achieved by non-ranked teams. (Non-ranked teams are sorted based on the number of languages they
participated in.)

such as the N -gram chars method with XLM-R
and m-BERT tokenizers, as well as the BERTScore
to evaluate the text quality.

In Table 5, we also have honorable mentions for
teams that did not participate in all the languages
but achieved remarkable results in one or a few
languages. Notably, team CAILMD–23 achieved
the best results in Hindi by using Hindi-BERT-v2,
and team Tübingen–CL achieved the best results in
English.

5.6 Task C: Crosslingual

5.6.1 Best Performing Systems

AAdaM They experimented with full fine-tuning,
adapter fine-tuning using MAD (Pfeiffer et al.,
2020), and data augmentation using different lan-
guage combinations to augment data in a given
source language.

UAlberta They used an XGBoost regressor-
based (Chen and Guestrin, 2016) ensemble ap-
proach to integrate the predicted relatedness scores
of three distinct regression models, with one op-
tional SBERT model, as input and returned the final
relatedness score as output. They applied the En-
glish version of their method trained for Track A
to the translations of the non-English test sets. The
regression model fine-tuned on MPNet was used
in the XGBoost ensemble only for amh, hau, and
hin, but not for the other languages such as esp,
ary, kin, ind, arb, arq, and afr. The pre-
trained English language models that were used
include RoBERTa Large, T5 Base, and GPT2 Base,
as well as MPNet only for languages amh, hau,
and hin.

silp_nlp They used the provided datasets and
cross-lingual transferability with all the provided
datasets, except data in the target language, as a
source. Their cross-lingual transfer approach made
use of MuRIL (Khanuja et al., 2021) which led to
the best results for Hindi and XLM-R (Conneau
et al., 2020) led to the best ones for all the other
languages.

5.6.2 Popular Methods
For the crosslingual track, many teams including
best-performing ones such as UAlberta chose ap-
proaches similar to the ones used for supervised
sub-tracks (e.g., using an XGBoost regressor (Chen
and Guestrin, 2016) ). As the main challenge was
to determine how to leverage data in languages
other than the target, many teams combined the
provided SemRel datasets in all possible languages
(e.g., king001, AAdaM). Some used the training
datasets without any modifications (e.g., team Hau-
saNLP) and others experimented with different lan-
guage combinations to use those that would lead to
the best results (e.g., MasonTigers). Finally, some
teams applied advanced techniques to modify the
vector embedding space (e.g., by adjusting for the
anisotropic nature of vector spaces – team: USTC-
CTSU).

5.6.3 Most Effective and and Original
Methods

Overall, applying methods that are similar to the
ones used in the supervised track using data in dif-
ferent languages can indeed lead to good results
(e.g., king001, AAdaM, UAlberta). In addition,
combining data in different languages and testing
on another could boost the performance of crosslin-
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Rank Team afr amh arb arq ary eng esp hau hin ind kin pun Average

1 AAdaM (Zhang et al., 2024) 0.814 0.863 0.653 0.551 0.600 0.794 0.621 0.729 0.839 0.528 0.650 0.155 0.650
2 UAlberta (Shi et al., 2024) 0.806 0.816 0.671 0.441 0.602 - 0.572 0.678 0.828 0.449 0.636 -0.017 0.589

* SemRel baseline (LaBSE) 0.786 0.838 0.615 0.463 0.404 0.800 0.623 0.625 0.760 0.472 0.571 -0.049 0.579

3 silp_nlp (Singh et al., 2024) 0.747 0.805 0.427 0.387 0.673 0.737 0.569 0.643 0.801 0.472 - -0.037 0.566
4 MaiNLP (Zhou et al., 2024) 0.738 0.728 0.399 0.274 0.568 - - - 0.695 0.319 0.681 0.087 0.499
5 USTCCTSU (Li et al., 2024a) 0.603 0.656 0.469 0.420 0.402 0.700 0.689 0.111 0.596 0.476 0.302 -0.084 0.445
6 umbclu (Roy Dipta and Vallurupalli, 2024) 0.822 0.043 0.035 0.126 -0.038 0.788 0.609 0.457 0.155 0.515 0.484 -0.078 0.326
7 HausaNLP (Salahudeen et al., 2024) 0.737 -0.031 0.184 0.074 0.276 0.360 0.604 0.177 0.346 0.472 0.319 0.114 0.303
8 MasonTigers (Goswami et al., 2024) 0.385 0.131 0.213 0.221 0.203 0.310 0.557 0.099 0.511 0.133 0.079 0.020 0.239

NR USTC_NLP 0.749 0.709 0.517 0.414 0.613 0.784 0.685 0.476 0.658 0.460 0.454 -0.248 0.523
NR king001 0.810 0.878 0.657 0.614 0.820 - 0.708 0.733 0.844 0.376 0.630 -0.050 0.641
NR saturn 0.818 0.814 - - - - - 0.569 - - 0.604 -0.103 0.540
NR YSP (Aali et al., 2024) - - - 0.225 - 0.819 0.657 0.212 - - 0.256 - 0.434
NR CAILMD-23 (Sonavane et al., 2024) - - - - - 0.786 - - 0.810 - - - 0.798
NR PALI - - - - 0.842 - - - - - - - 0.842
NR faridlazuarda - - - - - - - - - - 0.600 0.058 0.329
NR ETMS@IITKGP - - - - - - 0.549 - - - - - 0.549
NR Silp_nlp - - - - - - - - - 0.472 - - 0.472
NR lukmanaj - - - - - - - 0.177 - - - - 0.177

Table 6: Track C results. The best results are in bold, and NR stands for not ranked. As the methods are highly
language-dependent, we only rank teams that participated in at least 8 sub-tracks, but we highlight in blue the
best results achieved by non-ranked teams. (Non-ranked teams are sorted based on the number of languages they
participated in.)

gual models for STR as shown by team sil_nlp
who achieved the best results in Amharic and Mo-
roccan Arabic. Further, we note that leveraging
advanced features such as (1) linguistic features
(e.g., language family) as performed by MaiNLP,
who achieved the best results for Kinyarwanda, and
(2) embedding features by adjusting the distribution
of the similarity scores as experimented by USTC-
CTSU could also help boost the performance.

Besides reporting on the best-performing teams
only, in Table 6, we also mention teams that did not
participate in many sub-tracks but achieved good
results such as team YSP, which outperforms all
the other teams in English.

6 Discussion

We observe that in general, teams opt out of pre-
trained models, and in most cases, the methods do
not perform equally well across languages. Hence,
for a given track, performing well in a language
does not mean performing equally well in another
language.

Further, the results show that good scores are
not only related to low vs. high-resourcedness. For
instance, In tracks B and C, results for Modern
Standard Arabic (arb), which is considered high
resource, are sometimes worse than those for low
resource languages such as Amharic (amh) and Kin-
yarwanda (kin).

Interestingly, although the participating teams
rarely use language-specific features, such ap-
proaches lead to good and interpretable results,

as reported by e.g., team MaiNLP, who leveraged
information about language families in Track C.
We also note that for Track C, using a simple
LaBSE baseline can achieve results that are bet-
ter or comparable to more sophisticated techniques
(see Ousidhoum et al. (2024) for language-specific
baseline results).

7 Conclusion

We presented the first shared task on semantic re-
latedness, covering three tracks and 14 languages
in total. The submitted systems were ranked based
on the ranking of their predicted relatedness scores
compared to the gold labels.

We summarised the reported results, the best-
performing methods, and the most effective,
promising, and original ones. Overall, our findings
on sentence representation techniques vary across
the different languages and show that determining
semantic textual relatedness is not a trivial task.

8 Limitations

As stated in Ousidhoum et al. (2024), we acknowl-
edge that there is no formal definition of what con-
stitutes semantic relatedness and that our annota-
tions may be subjective. To mitigate the issue, we
share our guidelines and annotated instances so
researchers in the community can expand on our
work, replicate it, and study the disagreements in
our data. We are also aware of the limited num-
ber of data sources and data variety in some low-
resource languages involved. We do not claim
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that the datasets released represent all variations
of these languages. However, they remain a good
starting point as they were carefully picked, labeled,
and processed by native speakers.

9 Ethics Statement

As stated in Ousidhoum et al. (2024), we acknowl-
edge all the possible socio-cultural biases that can
come with our data due to the data sources or the
annotation process. When building our datasets,
we did avoid instances with inappropriate or offen-
sive utterances, but we might have missed some.
Our goal was to identify common perceptions of
semantic relatedness by native speakers, and our la-
bels are not meant to be standardised for any given
language as these are not fully representative of its
usage.
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A Appendix: Track A–Best Performing
Teams

PALI and king001 Both teams PALI and
king001 did not submit a task description paper.
king001 chose to use translation for data augmen-
tation and multilingual mixed training. The team
used XLM–R as their base model and DeBERTa–
v3 (He et al., 2021).

AAdaM Team AAdaM opted for translation-
based data augmentation to increase the training
data size for better performance. The English STR
training data and STSB (semantic similarity) data

were translated to create augmented datasets in
other languages. The team explored both fine-
tuning and adapter-based tuning, aiming to ex-
amine and compare their effectiveness on STR
across the different languages. Given a target lan-
guage, they first fine-tuned the cross-encoder-based
AfroXLMR model on the augmented data as a
warm-up or TAPT (Task-Adaptive-Pre-Training)
and then continued the fine-tuning on the provided
STR data.

NRK They used ensembling and various BERT-
like models.

PEAR They examined the effect of combining vs.
using language-specific data through 5-fold valida-
tion. No text preprocessing was conducted to main-
tain fairness across languages. Three model config-
urations were defined: “base” with no training, “all”
trained on all languages, and “lang” trained on one
language. They experimented with multilingual
embeddings, cross-encoders, and data augmenta-
tion with bi-encoders. Parameter optimization was
conducted using Optuna.

silp_nlp Team silp_nlp’s methodology for track
A was a two-stage training. In the initial stage,
they trained a model using all 9 languages cov-
ered in track A with MuRIL (Khanuja et al., 2021).
They experimented with different hyperparameters
on five epochs and selected the best multilingual
checkpoint based on the average validation data
loss. They fine-tuned the resulting model using
the training data for each language in track A and
ended up with monolingual models.

Each monolingual model was trained using dif-
ferent hyperparameters and they selected their final
model based on the validation data loss of the cor-
responding language track.

NLP_1@SSN They used SBERT fine-tuned on
multilingual and monolingual pre-trained language
models Overall, they observed that the usage of
monolingual PLMs did not guarantee better perfor-
mance.

UAlberta They used an ensemble approach with
an XGBoost regression (Chen and Guestrin, 2016)
to integrate the predicted relatedness scores of
three distinct regression models, with one optional
SBERT model, as input and returned the final re-
latedness scores as output. Each of these models
used a different pre-trained language model as its
backbone, specifically RoBERTa Large (Liu et al.,
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2019b), T5 Base, GPT-2 Base, and the optional
SBERT (MPNet). They merged the English train-
ing and development sets with the translated train-
ing set of the target language. Then, they split
them again via uniform random sampling accord-
ing to their original sizes to establish new train-
ing and development splits. The did not use the
data provided for arq, ary, and kin, and applied
the English-trained version of their method to the
English translations of the arq, ary, and kin test sets
instead.

MBZUAI-UNAM They fine-tuned a paraphrase
model architecture to train language-specific mod-
els, using a separate pre-trained model to embed
each language. They also experimented with com-
bined training sets based on the language families.

INGEOTEC For English and Spanish, they
used embeddings (microsoft/mpnet-base, bert-base-
multilingual-cased) to train an SVM classifier.
For the other languages, they used prior work
EvoMSA.

HausaNLP They used different base pre-trained
models.

B Appendix: Track B

SATLab They proposed a system based on a
model developed for the authorship identification
of source code (Bestgen, 2019). It processed each
pair of utterances independently, generating a dis-
tance between them without relying on additional
information. Pre-processing involved lower-casing
of texts. Character n-grams ranging from 1 to 5
characters are used, encompassing all characters
including spaces, punctuation marks, symbols, and
characters from different writing systems, all n-
grams are retained without a frequency threshold.
The frequency of each feature was weighted by a
logarithmic function, and the features of each state-
ment were weighted by the L2 norm. Semantic
similarity between utterances was estimated using
Euclidean distance between sets of n-grams in each
pair.

MasonTigers In the initial phase, team Ma-
sonTigers obtained embeddings of training data
and used various methods including TF-IDF,
PPMI, LaBSE sentence transformer, and language-
specific BERT models for multiple languages. Co-
sine similarity was then computed between pairs of
embeddings, followed by applying ElasticNet and

Linear Regression separately to predict sentence
pair similarity in the development phase. Predicted
values were clipped to ensure a range from 0 to 1.

HW–TSC The key features used by team HW-
TSC’s method included the N -gram chars method
using XLM-RoBERTa and m-BERT tokenizers to
compute similarity scores based on n-gram sen-
tence dictionaries. They also used the BERTScore
method to assess text quality based on the cosine
similarity of token-level representations from the
BERT model.

UAlberta They used a linear combination of two
sets of normalized results, each derived from the
cosine similarity measurements of sentence embed-
dings obtained from the hidden sentence represen-
tations processed by BERT Large and RoBERTa
Large. They calculated the final relatedness scores
by averaging the cosine similarity scores of sen-
tence embeddings obtained from each set.

silp_nlp They converted the sentences into uni-
gram and bigram representations and used Support
Vector Regression (SVR).

Sentences were combined and transformed into
a vector, and each sentence was indexed based
on a value that represented the count of uni-
grams/bigrams present in it. The resulting vector
was fed into the SVR model along with label values
for training.

HausaNLP Team HausaNLP used a standard all-
MiniLM-L6-v2 model to train a model for Track
B.

IITK Team IITK uses SimCSE (Gao et al., 2021),
or Simple Contrastive Learning of Sentence Em-
beddings that induced slight variations in its rep-
resentation through dropout. TSDAE(Wang et al.,
2021), a denoising autoencoder, was used to gen-
erate sentence embeddings by reconstructing origi-
nal sentences in the presence of noise. They used
BERT to construct the denoising autoencoder and
TSDAE optimized the likelihood of reconstructing
sentences during training, which led to compact
embeddings.

Tübingen-CL Team Tübingen-CL opted for ex-
ploring features like cosine distance of average
word embeddings and word overlap ratios, to poten-
tially enhance performance. For English, they used
two models: multi-qa-MiniLM-L6-cos-v1 trained
on QA pairs and trained for semantic search and e5-
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base-unsupervised trained on various pairs includ-
ing question-answer and post-comment pairs, both
refined with unsupervised transformation (PCA).
Two additional features, PCA-transformed GloVe
embeddings, and content word overlap ratios were
incorporated into the unsupervised ensemble sys-
tem. Similar methods were applied for Spanish
and Hind using multilingual BERT embeddings
and various feature combinations to predict relat-
edness.

CAILMD-23 Team CAILMD-23 participated in
the English and Hindi sub-tracks of the unsuper-
vised task. They experimented with a few models
such as BERT-based and Hindi-Bert v2. The lat-
ter is trained on Hindi text comprehension with a
training corpus of roughly 1.8 billion tokens.

C Appendix: Track C

AAdaM hey experimented with full fine-tuning,
adapter fine-tuning using MAD (Pfeiffer et al.,
2020), and data augmentation using different lan-
guage combinations to augment data in a given
source language.

king001 They did not submit a system descrip-
tion paper but they reported combining the training
datasets provided for track A, and if one of them
was in the target language, they translated it into
English. Then, they run multi-task learning for 15
epochs.

UAlberta They used an ensemble approach with
an XGBoost regressor (Chen and Guestrin, 2016)
to integrate the predicted relatedness scores of
three distinct regression models, with one optional
SBERT model, as input. Each of their models
used a different pre-trained language model as its
backbone, specifically RoBERTa Large, T5 Base,
GPT-2 Base, and the optional SBERT (MPNet).

They applied the English version of their method
reported for Track A to the translations of the non-
English test sets. The regression model fine-tuned
on MPNet was used in the XGBoost ensembling
method for amh, hau, and hin and not for esp, ary,
kin, ind, arb, arq, and afr.

silp_nlp They used cross-lingual transferability
on all the provided datasets except for the target
language (e.g., when they test on Telugu, they use
all languages except Telugu). In their cross-lingual
transfer approach, MuRIL (Khanuja et al., 2021)
led to the best results for Hindi and XLM-R (Con-

neau et al., 2020) for all the other languages.

USTCCTSU They used XLM-R (Conneau et al.,
2020) trained on a combination of language inputs
(chosen by trying different combinations with the
best one including all the languages). They ranked
in the top 5 for ind,arq, and esp.

They adjusted the similarity scores for the XLM-
R base models by applying a technique called
whitening that allowed them to change the non-
uniform score distribution into multiple distribu-
tions, and eventually, into a uniform one.

MaiNLP They finetuned multilingual LLMs
(XLM-R and Furina) using an upscaled version
of the data from Track A. They assessed the lin-
guistic similarity of the available Track A data
to determine the most useful datasets and exper-
imented with different language families. For
pre-processing, they used tokenization, segmen-
tation, and translation. They also experimented
with transliteration to change the scripts into Latin.
Translations helped them upscale the English,
Hausa, and Spanish training data and then eval-
uate on the Track C data. They achieved the best
results for Kinyarwanda.

umbclu They pre-trained T5 models with Sem-
Rel data. They used the English fine-tuned models
for inference on all language test sets except En-
glish. On the other hand, they used Spanish models
for inference on English.

HausaNLP They used a BERT-based model fine-
tuned on the datasets in other languages. E.g.,
they trained on English data and tested on Spanish,
trained on Kinyarwanda and tested on Hausa. They
ranked in the top 5 in Task C for ind, pan.

MasonTigers They used statistical machine
learning (Linear Regression, ElasticNet with TF-
IDF and PPMI features) along with language-
specific BERT-based models to predict the re-
latedness scores. The models were trained on
dataset combinations of 5 languages other than
the target language and used BERT-based mod-
els’s similarity prediction on the target test data
(e.g., they trained on amh, eng, esp, arq, ary
and tested on afr). For language-specific BERT-
like models, they used African language BERT-
base models, Arabic BERT-based models, African-
BERTa, and for eng, hin, ind, pun, esp, they
used spanBERTa, BanglaBERT, RoBERTa-tagalog-
base-BERT, HindiBERT, and RoBERTa.
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NLP–LISAC Benlahbib et al. (2024)
NLP_STR_teamS Su and Zhou (2024)
NLP_Team1SSN B et al. (2024)
NLU–STR Malaysha et al. (2024)
NRK Nguyen and Thin (2024)
OZemi Takahashi et al. (2024)
PEAR Jørgensen (2024)
Pinealai Eponon and Ramos Perez (2024)
SATLab Bestgen (2024)
scaLAR M and M (2024)
Self–StrAE Opper and Narayanaswamy (2024)
SemanticCUETSync Hossain et al. (2024)
Sharif_STR Ebrahimi et al. (2024)
silp_nlp Singh et al. (2024)
TECHSSN G et al. (2024)
Text Mining Keinan (2024)
Tübingen–CL Zhang and Çöltekin (2024)
UAlberta Shi et al. (2024)
UMBCLU Roy Dipta and Vallurupalli (2024)
USTCCTSU Li et al. (2024a)
VerbaNexAI Morillo et al. (2024)
WarwickNLP Ebrahim and Joy (2024)
YNU–HPCC Li et al. (2024b)
YSP Aali et al. (2024)

Table 7: The participating teams (alphabetically ordered) that submitted system description papers.
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