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Abstract

This paper summarizes Team SCaLAR’s work
on SemEval-2024 Task 5: Legal Argument Rea-
soning in Civil Procedure. To address this Bi-
nary Classification task, which was daunting
due to the complexity of the Legal Texts in-
volved, we propose a simple yet novel similar-
ity and distance-based unsupervised approach
to generate labels. Further, we explore the
Multi-level fusion of Legal-Bert embeddings
using ensemble features, including CNN, GRU
and LSTM. To address the lengthy nature of
Legal explanation in the dataset, we introduce
T5-based segment-wise summarization, which
successfully retained crucial information, en-
hancing the model’s performance. Our unsu-
pervised system witnessed a 20-point increase
in macro F1-score on the development set and
a 10-point increase on the test set, which is
promising given its uncomplicated architecture.

1 Introduction

The Domain of Law demands sheer expertise and
experience for a human to master, but it takes much
more to teach a machine the same. Legal NLP
(Zhong et al., 2020) is advancing at a rapid pace,
and the advent of Transformers (Vaswani et al.,
2017) has widened the prospects of research in this
area. However, the intricate nature of Legal Texts
and the underlying complex relationships between
entities make it difficult even for state-of-the-art
Language models like BERT (Devlin et al., 2019)
to capture the details effectively. To advance our
understanding of the reasoning ability of LLMs
in the legal domain (Bongard et al., 2022), task 5
of SemEval-2024 was proposed (Held and Haber-
nal, 2024). The objective of this task is to discern
the accurate responses to legal inquiries in U.S.
Civil Procedure, as posited by the organizers. The
questions and answers adhere to a Multiple-choice
question-answering model, with accompanying ex-
planations provided to facilitate comprehension of

the legal concepts associated with each question.
We have also released the code on GitHub 1

We delve into the foundational paradigms of
machine learning, specifically focusing on Super-
vised and Unsupervised Learning, to introduce in-
novative approaches and present a comprehensive
comparative analysis. The explanation part of our
dataset undergoes a two-level segment-wise sum-
marization generated by T5 (Roberts et al., 2019),
which is consistently utilized throughout our inves-
tigation. Within the framework of the supervised
setup, we leverage a multi-level CNN fusion ap-
proach (Usama et al., 2019), integrating LSTM and
GRU architectures. This amalgamation facilitates
the extraction of ensemble feature representations
from questions, answers, and summaries. Addition-
ally, a one-dimensional CNN model (Jacovi et al.,
2018), is trained. We employ a manual grid search
technique to determine the optimal threshold that
maximizes the macro F1 score, contributing to the
refinement of our model.

In the unsupervised setup, we delve into the
acquisition of diverse word representations such
as word2vec and Glove. The assessment in-
volves computing the similarity between question-
answer pairs and answer-summary pairs, em-
ploying combinations like Glove-cosine, trans-
former embedding-cosine, transformer embedding-
euclidean and word2vec-cosine. Notably, the best-
performing supervised model achieved a macro F1
score of 66 % on the development set and 49.6 %
on the test set. In contrast, the unsupervised ap-
proach yielded scores of 62 % (development) and
52.3 % (test). This outcome highlights a nuanced
challenge related to generalization on the test set,
prompting further exploration into the intricacies
of model adaptability and robustness.

1https://github.com/haricharan189/Semeval_
task5.
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2 Background

The dataset provided by the organizers comprises
three sets: Train Set, Dev Set, and Test Set, con-
taining 666, 84, and 98 data points, respectively.
Within the training and dev sets, each entry in-
cludes fields such as Question, Answer, Explana-
tion, Label (with values of 0 or 1), Analysis, and
Complete-Analysis providing a detailed examina-
tion. The test set, on the other hand, only consists
of Question, Answer, and Explanation. The Label,
when equal to 1, signifies a correct answer, while
0 denotes an incorrect one. The Explanation field
provides context and background details for each
question.

Field Text
Explanation The most basic point to un-

derstand about supplemen-
tal jurisdiction ........ on
this basic purpose of Âr-
ticle 1367(a).

Question This and that. Garabedian,
........... are treated fairly.

Answer has constitutional author-
ity ............... under Ârticle
1367(a).

Label 0
Analysis Here, the Ârticle 1983

claim ............ Amend-
ment claim.

Complete analysis This is pretty straightfor-
ward ............ D is the best
choice here.

Table 1: Sample data-point from Train Set.

3 Related Works

Legal texts pose a unique challenge for pre-trained
transformers (Vaswani et al., 2017) due to the in-
clusion of specialized terminology not commonly
used in everyday language . As a result, leveraging
pre-trained models like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and others becomes
essential by training them on legal corpora to en-
hance their understanding of legal terminologies.
Notable examples of transformers tailored for legal
contexts include InLegalBERT (Paul et al., 2023),
Legal-RoBERTa (Geng et al., 2021), and similar
models.

Fine-tuning transformers, such as Legal-BERT
(Chalkidis et al., 2020), on available legal data has

been proposed as an effective strategy to improve
performance on test sets, as suggested by Bongard
et al. (2022) (Bongard et al., 2022). This approach
capitalizes on domain-specific knowledge encoded
during pre-training, enhancing the model’s profi-
ciency in handling legal language nuances.

In the domain of Legal Question Answering
(LQA), recent works have extensively discussed
significant advancements and challenges. The com-
prehensive review by Martinez-Gil provides in-
sights into the key works in LQA, outlining chal-
lenges and proposing future research directions.
Louis et al. (2023) (Louis et al., 2023) shed light on
the limitations of existing Large Language Models
(LLMs) in Legal Question Answering, emphasiz-
ing the need for interpretability.

4 System Overview

Transformers like T5, as demonstrated in the work
of (Roberts et al., 2019), exhibit high efficiency in
producing summaries for lengthy paragraphs. In
this study, T5 was employed to generate segment-
level summaries on explanation column using a
two-step approach. The initial summary was cre-
ated from the original text, with a segment length
of 1000 tokens. These segment-wise summaries
were then concatenated with spaces in between to
form the first summary. Subsequently, the second
summary was generated from the first summary,
employing a segment length of 300 tokens, and
similarly concatenated to provide a comprehensive
summary of the input text. These summaries were
used for further applications in place of explanation.
Segment wise summary approach can be visualized
as follows:

Figure 1: Segment wise summary
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4.1 Supervised Models

4.1.1 Multi-Level Approach

Following the generation of summaries, we em-
ployed the Legal-Bert transformer to extract em-
beddings from the question, answer, and summary
columns. Each Legal-Bert output consists of a 768-
dimensional vector, resulting in tensors of shape
(number of data points, 768) for each dataset. Sub-
sequently, we executed the following steps:

1.The tensor underwent a series of transfor-
mations through three consecutive 1-dimensional
CNN layers, with ReLU activation functions (Nair
and Hinton, 2010), and Adaptive max-pooling ap-
plied at each step. At each pooling layer, the output
was reduced to 100 dimensions. The kernel size
and padding were linearly increased, as depicted in
the Figure 2.

2.The outputs from the first and second pooling
layers were concatenated, yielding a first-level con-
catenated feature embedding of 200 dimensions.

3.This first-level output was then merged with
the output from the third pooling layer to obtain
a second-level concatenated embedding with 300
features.

4. Concurrently, the Legal-Bert embeddings
were fed into Bi-GRU (Chung et al., 2014) and Bi-
LSTM (Hochreiter and Schmidhuber, 1997) mod-
els, resulting in 100 features from each. These
features were concatenated.

5. The final multi-level feature representation
was achieved by concatenating the second-level
features with those from the GRU-LSTM models,
resulting in a 500-dimensional vector. This process
was applied to the question, answer, and summary,
culminating in an exhaustive 1500-dimensional rep-
resentation of the training data.

Figure 2: Multi Level fusion

4.1.2 Multi-Feature Approach
In this approach, the output of the first pooling layer
was directly concatenated with the GRU-LSTM fea-
tures, resulting in 300 features per entity, and hence,
a 900-dimensional representation of the training
data.

Training and custom sigmoid layer: To con-
duct a comparative analysis, we trained separate
models using both multi-level and multi-feature
representations. In each case, we employed a
1-dimensional CNN architecture implemented in
TensorFlow, featuring a kernel size of 3 and 32
filters. Following max pooling, the resulting output
was flattened and fed into a dense layer comprising
128 neurons. Finally, to enhance the variability
of the probability distribution in the predictions,
we introduced a custom Lambda layer. This layer
subtracts the mean of the input tensor from each
element and subsequently applies the sigmoid
activation function.

f(x) = y = sigmoid(x− µ) (1)

where µ is the mean of x
Grid search and predictions: Following the gen-
eration of probability vectors for the development
set, we utilized manual grid search to determine the
optimal threshold for classifying correct answers,
aiming to maximize the macro-F1 score. Subse-
quently, the threshold associated with the highest
F1 score on the development set was applied to
make predictions on the test set

4.2 Unsupervised Models
4.2.1 Word2Vec-Cosine system
Word2Vec embeddings, as described in (Mikolov
et al., 2013), were extracted for the question, an-
swer, and summary columns. A window size of
7 and a vector size of 5 were utilized for each
word. Cosine similarities were computed between
question-answer pairs and answer-summary pairs.
The prediction was based on the mean of these
similarities.

During evaluation, it was observed that in cases
where the difference between the highest and
second-highest similarity scores for a question was
minimal, the answer with the second-highest sim-
ilarity often turned out to be the correct answer.
Consequently, a refinement was implemented: if
the disparity between the highest and second-
highest similarity scores was small, the answer
with the second-highest similarity was labeled as
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1, while the remaining answers were labeled as 0.
This adjustment yielded improved results in such
scenarios. A threshold of 0.0005 was used in this
case after optimization on train and dev set.

Algorithm 1: Word2Vec Similarity-based
Labeling
Data: Word2Vec embeddings for question,

answer, and summary columns
Result: Labels for answers based on

similarity scores
for each question do

max_id= highest similarity score;
second_max_id = second-highest

similarity score;
if |similarity[max_id]−

similarity[second_max_id]| ≤
0.0005 then

Label[second_max_id] = 1;
Label the remaining answers as 0;

end
else

Label[max_id] = 1;
Label the remaining answers as 0;

end
end

4.2.2 GloVE-Cosine system
In contrast to the Word2Vec-Cosine approach, the
methodology now incorporates GloVE embeddings
as opposed to Word2Vec embeddings, leveraging
the GloVE model proposed by Pennington et al.
in 2014 (Pennington et al., 2014). Despite this
shift, the overarching algorithm for label assign-
ment remains unaltered, ensuring continuity and
comparability with the Word2Vec-Cosine approach
discussed in the preceding section.

4.2.3 Transformer embeddings-Cosine system
and Transformer embeddings-Euclidean
system

We utilized the Deberta model (He et al., 2021)
trained on legal texts, specifically "LambdaX-
AI/legal-deberta-v1," accessible on Hugging Face
(Wolf et al., 2020). This model provided embed-
dings of questions, answers, and summaries, each
represented by vectors of size 1536. We employed
both cosine similarity and Euclidean distance met-
rics for label assignment.

For cosine similarity, the algorithm remained

straightforward: answers with higher cosine simi-
larity scores were assigned labels accordingly.

However, in the case of Euclidean distance, a
slightly different approach was employed. The
answer with the minimum distance was initially as-
signed a label of 1. Subsequently, if the difference
between the minimum distance and the second min-
imum distance was less than a predefined threshold
which is 0.8 in this case, the answer associated
with the second minimum distance was labeled 1
instead, replacing the initial assignment.

5 Experimental Setup

We utilized Google Colab for training and testing
our models, taking advantage of the T4 GPU pro-
vided by the platform.

5.1 Supervised Models

The Multi-feature concatenation method involved
the integration of 900 features, while the Multi-
level approach incorporated 1500 features. Both
methodologies underwent training for 15 epochs
with a batch size of 32. The optimization algo-
rithm chosen was "Adam" (Kingma and Ba, 2017),
employing a learning rate set to 0.001.

5.2 Unsupervised Models

Word2Vec and GloVe embeddings were both gener-
ated with an embedding size of 5. However, there
were differences in the window length used dur-
ing training: for Word2Vec embeddings, a window
length of 7 was utilized, while GloVe embeddings
were trained with a window length of 10. In the
case of GloVe, the training process spanned 30
epochs, employing a learning rate of 0.05 to opti-
mize the model parameters. These values of hyper-
parameters were arrived after experimentation with
several other values.

6 Results

The performance metrics of our models on the test
set and development set are presented in Table 2,
where "Acc" represents accuracy and "F1" denotes
the macro F1 score. Notably, our model demon-
strated strong performance on the development set.
However, it is worth mentioning that the perfor-
mance on the test set was comparatively lower. It
is important to highlight that our top-performing
model utilizes an unsupervised approach leverag-
ing Word2Vec embeddings and cosine similarity.
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Despite the varying performance, most of our mod-
els consistently outperformed the baseline.

Model Performance on Dev and Test set

Model
Dev Set Test set

Acc F1 Acc F1
Baseline 0.798 0.444 0.7449 0.4269
Multi-level
approach

0.74 0.65 0.4898 0.4102

Multi-
Feature
approach

0.81 0.66 0.6224 0.4966

Word2vec-
cosine

0.71 0.62 0.6429 0.5238

Word2vec-
cosine
without
replacement

0.62 0.56 0.6020 0.5072

GloVE-
cosine

0.64 0.56 0.6020 0.4694

Transformer-
cosine

0.60 0.46 0.5612 0.4150

Transformer-
euclidean

0.60 0.46 0.5816 0.4421

Transformer-
manhattan

0.62 0.49 0.5612 0.4149

Table 2: Performance comparison of all our models

Analysis from Table 2 reveals a notable enhance-
ment in model performance with the replacement
of the second-best answer. The subsequent com-
parison, illustrated in Tables 3 and 4, highlights
the impact of this replacement on the Wav2Vec-
cosine model’s results on both the training and
development sets, considering the influence of two
distinct similarity scores. Specifically, ’Q’ signifies
instances where the Question-Answer similarity
surpasses the Summary-Answer similarity, while
’S’ denotes the reverse scenario. The predictions of
models in italics were submitted in Post-evaluation
period.

Observing Tables 3 and 4, it becomes evident
that the number of accurate predictions substan-
tially increases in the development set, relative
to its total size. In the Codalab leader-board we
ranked 16 out of 21 teams, and in the overall laeder-
board we ranked 15 out 21 teams.

7 Conclusion and Future scope

The dataset presents challenges for models to grasp
the intricate legal context, resulting in subpar per-

Training Set Counts:
Higher score R/W Count

Q R 143
Q W 81
S R 284
S W 158

Development Set Counts:
Higher score R/W Count

Q R 11
Q W 14
S R 41
S W 18

Table 3: Distribution of right (R) and wrong (W) predic-
tions before replacement

Training Set Counts:
Higher score R/W Count

Q R 144
Q W 80
S R 286
S W 156

Development Set Counts:
Higher score R/W Count

Q R 14
Q W 11
S R 46
S W 13

Table 4: Distribution of right (R) and wrong (W) predic-
tions after replacement

formance of regular supervised models. Unsuper-
vised models heavily rely on embeddings, but avail-
able transformers inadequately capture the dataset’s
nuances. These models operate under the assump-
tion of at least one correct answer per question;
however, instances where all answers were labeled
as incorrect hindered unsupervised model perfor-
mance.

Future endeavors entail amalgamating these
models into a unified super model. This super
model would aggregate predictions from various
models to yield a singular final prediction, enhanc-
ing overall performance and addressing the limi-
tations of individual approaches. An alternative
strategy involves leveraging Siamese networks to
learn similarity, addressing challenges encountered
by unsupervised models when all answers for a
particular question are labeled as incorrect (0). By
employing Siamese networks, we believe that the
model can effectively capture nuanced similarities
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between question-answer pairs, and provide better
predictions. Exploring other kind of summarizers
and using other transformers for summarization
such BART (Lewis et al., 2020) may also increase
the overall performance of all the systems used in
this paper. Data augmentation (Feng et al., 2021)
can also be implemented to get better Word2Vec
and GloVE embeddings.
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