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Abstract

This work participates in SemEval 2024 Task
1 on Semantic Textural Relatedness (STR) in
Track A (supervised regression) in two lan-
guages, English and Moroccan Arabic. The
task consists of providing a score of how two
sentences relate to each other. The system de-
veloped in this work leveraged a cross-encoder
with a merged fine-tuned Low-Rank Adapter
(LoRA). The system was ranked eighth in En-
glish with a Spearman coefficient of 0.842,
while Moroccan Arabic was ranked seventh
with a score of 0.816. Moreover, various ex-
periments were conducted to see the impact
of different models and adapters on the perfor-
mance and accuracy of the system.

1 Introduction

Semantic Textual Relatedness (STR) is a measure
of how closely related or connected two linguistic
units are in terms of their meanings or concepts
(Abdalla et al., 2023). STR is a valuable concept in
Natural Language Processing (NLP), as it helps us
to understand the connections and similarities be-
tween different pieces of text. By determining the
degree of relatedness between sentences or phrases,
we can improve various NLP tasks such as infor-
mation retrieval, question answering, and text sum-
marisation. This understanding of semantic relat-
edness enables us to create more accurate word em-
beddings and sentence representations, enhancing
the performance of language processing models.
One way to represent STR is a supervised regres-
sion task in which the output is a continuous score
number between 0 and 1.

For the STR task in SemEval 2024 (Ousidhoum
et al., 2024b), the organisers on Track A (super-
vised) provided datasets (Ousidhoum et al., 2024a)
for nine languages or dialects. They provided pairs
of sentences and annotated the degree of related-
ness via a human score between 0 and 1. The
languages considered in this work are English and

Moroccan Arabic. These two were selected be-
cause they are comprehensive for the team.

There are various methods that can be used to
estimate the relatedness of two sentences. One
of the methods is to utilise the Pre-Trained Lan-
guage Models (PLMs). PLMs are currently state-
of-the-art in the field of NLP, and follow the trans-
former architecture introduced in (Vaswani et al.,
2017) with the attention mechanism. Another vari-
ation that uses a mechanism of cross-attention is
the cross encoder (Reimers and Gurevych, 2019),
whichthat of takes two inputs and outputs a score
between 0 and 1 on how related these two inputs
are. They are efficient in determining the correla-
tion between two inputs.

Parameter-efficient fine-tuning (PEFT) aims to
tune the pre-trained model with high accuracy but
with less cost and complexity. One of the PEFT
methods is adapters (Poth et al., 2023), which tune
extra parameters or layers instead of tuning the
whole model while maintaining competitive accu-
racy. They can be considered as few-shot learners
as per (Beck et al., 2022). One type of adapter is
the low-rank adapter (LoRA). Instead of tuning the
whole weight, LoRA adds small matrices in each
layer, and these matrices would be fine-tuned.

Hence, this work applies a tuned LoRA adapter
on a pre-trained cross-encoder to estimate the score
of the relatedness of two sentences. The code is
publicly available1.

The paper is organised as follows: Section 2
presents the background, including related work
and dataset overview; Section 3 covers the system
overview; Section 4 presents the results; Section
4 discusses the error analysis and limitations; and
the paper concludes.

1https://github.com/FahadEbrahim/STR_LoRA
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2 Background

This section will cover the related work, dataset
description and a brief introduction to PEFT.

2.1 Related Work

There have been previously related versions of the
STR datasets, such as (Asaadi et al., 2019) and (Ab-
dalla et al., 2023). Different versions use different
languages, annotations or available datasets.

Another related dataset is Semantic Textual Sim-
ilarity (STS) (Cer et al., 2017). There are differ-
ences between STS and STR. Specifically, STS
tasks aim to assess how similar two text segments
or sentences are, focussing on tasks such as identi-
fying paraphrases or entailment relationships. On
the other hand, STR looks at the overall closeness
in meaning between linguistic units, considering
various factors such as topic-relatedness and stylis-
tic similarities. Thus, STR is more general, and
STS can be treated as a subset of STR. Secondly,
the outputs differ slightly, as the output of the pre-
vious STS tasks is between zero and five, while
in STR, the output is between zero and 1. STS
datasets were beneficial in this task, as can be seen
later in the paper.

The task of STS is a common natural language
understanding task. Several approaches have been
used for STS. One of the popular approaches
utilises the generation of robust contextual em-
beddings and then uses a similarity measurement
like cosine similarity to get the required score.
The embeddings can be extracted with a Univer-
sal Sentence Encoder (USE) (Cer et al., 2018),
Language-agnostic BERT Sentence Embedding
(LabSE) (Feng et al., 2022) or Sentence BERT
(SBERT) (Reimers and Gurevych, 2019). These
are different approaches to get meaningful embed-
dings that can capture the semantics of the input
sentences.

2.2 Dataset

The datasets (Ousidhoum et al., 2024a) provided
for training consist of two sentences and a score
of how related they are between 0 and 1. Sample
instances of the English training dataset can be seen
in Table 1. The first example shows two sentences
with the same meaning, and therefore the score
is 1. The second example shows partially related
sentences with a score of 0.5. The last example
includes two unrelated sentences with a score of
around 0.

Sentences Score
Actor Gazzara dead at 81
Actor Ben Gazzara dies at 81

1.0

yeah and so is bubbles lol
Bubbles used to reside next door

0.5

A child wielding a snow shovel.
A cat bites a human’s nose.

0.03

Table 1: Dataset training sample instances.

The datasets are split into 3 sets: training, de-
velopment, and testing. The number of instances
in each set in the English and Moroccan Arabic
languages can be seen in Table 2. The main reason
for injecting adapters directly is that there are few
training samples in Moroccan Arabic. So, few-shot
learning is a better approach for this language and,
therefore, for the overall task.

Set/Language English Moroccan Arabic
Train 5500 925
Evaluation 250 70
Testing 2500 427

Table 2: STR Dataset split.

2.3 Parameter Efficient Fine-Tuning

PLMs follow the Encoder/Decoder architecture in-
troduced by Transformer (Vaswani et al., 2017).
Models such as BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2019), T5 (Raffel et al., 2020), and DeBERTa (He
et al., 2020) are other variations of the transformer
architecture.

Another variation that uses cross-attention is
the cross-encoder (Reimers and Gurevych, 2019),
which takes two inputs and outputs a score between
zero and one. A cross-encoder trained on the STS-
B benchmark (Cer et al., 2017) would result in an
output score between 0 and 1 instead of 0 to 5.

One of the PEFT techniques is the use of
adapters, which are efficient few-shot learners as
per (Poth et al., 2023). There are various adapter
architectures. Instead of tuning the entire model
weights, the adapters would tune additional param-
eters, layers or weight matrices. The three types
of adapters investigated in this work are Houlsby
(Houlsby et al., 2019), Pfeiffer (Pfeiffer et al.,
2021), and LoRA (Hu et al., 2021). The Houlsby
adapter adds two additional layers before and after
the feed-forward (FF) layer in each encoder, while
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Pfeiffer adds only a single layer after the FF layer.
The LoRA adapter adds small weight matrices in
each layer of the transformer layers.

This work tunes several adapters on different
pre-trained models and checks which combination
performs best. The best architecture will be ex-
plained in the next section.

3 System Development

This section covers the cross-encoder, LoRA
adapter, the developed system architecture, and
the evaluation metric.

3.1 Cross-Encoder
The cross-encoder takes two inputs simultaneously
and uses the concept of cross-attention allowing the
model to capture interactions between the two sen-
tences. The cross-encoder would generate a score
between 0 and 1 indicating how similar the two
inputs are. The technical architecture of the cross-
encoder can be seen in Figure 1. The cross-encoder
adds two special tokens: SEP to separate the two
sentences and CLS. The CLS token gets added at
the beginning of the concatenated sentences along
with the SEP token and represents a classification
vector. The initial CLS token identifies the repre-
sentation of two sentences. The final CLS token
captures the cross-attention between all previous
CLS tokens and produces one final semantic vector.
A classification head maps the final CLS vector to a
score between 0 and 1 based on the chosen model.

Figure 1: Cross-Encoder Architecture.

3.2 LoRA Adapter
The LoRA adapter (Hu et al., 2021) adds two addi-
tional low-rank matrices that are trainable instead
of training the whole model. To explain LoRA

mathematically, assume the input to a neural net-
work to be X and the output to a single hidden
layer is h(x), then the output with full fine-tuning
would equal the input multiplied by a weight ma-
trix W0 as per Equation 1. The weight matrix W0

belongs to the dimension of (d ∗ k).

h(x) = W0X W0 ∈ Rd×k (1)

In LoRA, an additional weight matrix ∆W0 is
added into the input and initial weight matrices
to get the hidden layer output as per equation 2.
It belongs to the same dimension as the original
matrix.

h(x) = W0X +∆W0X W0,∆W0 ∈ Rd×k

(2)
The new matrix is decomposed into two train-

able matrices, B and A, with dimensions (d ∗ r)
and (r ∗ k), respectively. The value of r (rank) is
much smaller than d and k (r ≪ d, r ≪ k), so the
new two matrices are smaller than the initial ma-
trix. This reduces the model’s trainable parameters
while maintaining high accuracy. The value of r is
a hyper-parameter and it is used as 8 in this work.

h(x) = W0X+(BA)X B ∈ Rd×r, A ∈ Rr×k

(3)
Applying LoRA can reduce the size of the

model from hundreds of megabytes to just a few
megabytes (Hu et al., 2021) while maintaining a
high level of accuracy.

3.3 System Architecture

The architecture of the system developed for the
STR task can be seen in Figure 2. The following
are the simplified steps.

1. Initialise the adapter with random weights.

2. The LoRA adapter is trained given the train-
ing sets. During training, only the low-rank
matrices are fine-tuned.

3. The adapter merges with the classification
head of the cross-encoder.

4. The testing data are fed into the cross-encoder
with the attached adapter to get the relatedness
score.
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Figure 2: System Overview.

3.4 Evaluation
The evaluation is based on Pearson’s correlation
coefficient as in Equation 4. The values of Xi

and Yi represent individual instances while the val-
ues X̄ and Ȳ represent the mean of X and Y. The
higher the coefficient, the better the model evalua-
tion. The value of the coefficient ranges between
-1 to 1 where 1 represents a higher correlation be-
tween the inputs. The metric value is generated
with submissions being uploaded through CodaLab
(Pavao et al., 2023). CodaLab is a platform for
competitions and research purposes. The platform
returns the scores for development and testing.

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n

i=1(Yi − Ȳ )2
(4)

In addition to the datasets, the organisers pro-
vided a baseline for all languages based on LabSE
(Feng et al., 2022), which provides sentence em-
beddings. Scores were calculated based on cosine
similarity between these embeddings.

4 Results

The system would initially be trained on the train-
ing set and evaluated with the development set, and
the official results would be produced by applying
the model to the testing sets. This work’s approach
is incremental and experimental. So, variations
of models and adapters would be tested, and the
models achieving better metrics would be selected.

4.1 Experimental Development Results
All the initial experiments were conducted in En-
glish. Then, the best approach was applied to
Moroccan Arabic. The experiments carried out
in the development phase were incremental in 10
epochs. Firstly, several models (BERT, ALBERT,
RoBERTa, DeBERTa, and T5) were fine-tuned with

the Pfeiffer adapter and the model with the best-
yielding scores was selected. The models and their
respectable Spearman scores can be seen in Table
3. The model with the highest score was RoBERTa,
with a development score of 0.8155. The exact
model names in Huggingface (Wolf et al., 2019)
are available in Appendix A. Huggingface is a plat-
form with a large number of pre-trained models.
The initial selected models were general and not
domain-specific. Therefore, a model trained for
similarity could be investigated. The chosen model
was a cross-encoder trained with the STS-B dataset.
The results were better than the base RoBERTa
model, reaching a development score of 0.8296.
So, the system continued using this model.

Model Score
BERT 0.8023
ALBERT 0.7755
DeBERTa small 0.8088
T5 small 0.8003
RoBERTa base 0.8155
RoBERTa STSB-CE 0.8296

Table 3: Selected models and their development scores.

Then, the impact of merging several single
adapters (Houlsby, Pfeiffer and LoRA) on the cross-
encoder was studied. Table 4 shows the scores with
the attachment of the three adapters. The LoRA
adapter scored the highest with a Spearman coeffi-
cient of 0.8343. To further improve the accuracy,
the training epochs were increased to 30 to im-
prove the generalisation of the model, and this was
achieved by producing a final development score
of 0.8417.

Adapter Score
Pfeiffer 0.8296
Houlsby 0.8309
LoRA 0.8343

Table 4: Impact of different adapters on the RoBERTa
STSB-CE in the development phase.

The same configuration was used for the Moroc-
can Arabic language, resulting in a development
score of 0.8577.

To see whether an Arabic model would perform
differently in an Arabic pre-trained model, another
experiment in Moroccan Arabic was conducted
in the development set using the CAMeLBERT
model (Inoue et al., 2021). This model was trained
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on a large corpus of Arabic for different tasks with
several dialects (modern standard Arabic, dialec-
tal Arabic, and classical Arabic). There is also a
version of the CAMeLBERT model trained on the
combination of the three dialects. This version pro-
duced a higher score of 0.871 on the Moroccan
Arabic development set. However, this result was
not submitted for the official competition.

4.2 Official Results
The same configuration used in the development
phases was applied in the test set. The model
used for both languages was the cross-encoder
RoBERTa trained on STS-B. The adapter was
LoRA and the training epochs were 30. The rest of
the parameters can be seen in Appendix B. The
official results reported can be seen in Table 5.
The scores for English and Moroccan Arabic were
0.8425 and 0.8163 respectively. Both exceed the
baseline scores of 0.83 and 0.77 respectively.

System Baseline Our System
English 0.83 0.8425
Morrocan Arabic 0.77 0.8163

Table 5: Official submitted scores of the competition in
the English and Morrocan Arabic.

5 Discussion

5.1 Error Analysis
One interesting negative result was found during
development. The developed system was applied
to Algerian Arabic, which yielded a low evaluation
metric of 0.54. This could be attributed to the fact
that this dialect had majorly unseen data for the
model. The STS-B dataset has some overlap with
the two languages (English and Moroccan Arabic)
worked on in this paper.

The development set with labels was not utilised
in the testing phase. Moreover, the differences
between applying the adapters on the cross-encoder
are minor. So, applying these models to the testing
set may yield different results.

The results on CAMelBERT on Moroccan Ara-
bic were better than the cross-encoder in the de-
velopment phase, but this was not considered in
the system’s official results to maintain the consis-
tency of the used model (cross-encoder). The usage
of CAMelBERT yielded a metric value of 0.8347,
which is higher than the cross-encoder. This was
noticed in the post-evaluation phase and, therefore,

not reported in the official results. This indicates
that using a pre-trained model on a large corpus of
Arabic yields a better result than the cross-encoder
trained on the STSB dataset.

5.2 Limitations

Due to time constraints, this work has several lim-
itations. Firstly, the models were not fully fine-
tuned with the training data. It would be com-
prehensive to compare the full fine-tuning to the
adapter tuning and discuss the obtained results.
Secondly, there was no hyper-parameter optimi-
sation was done in this system except for the num-
ber of epochs. The effect of applying different
parameters to different models would yield a better
overview of the effect of these hyper-parameters
on the training process. Thirdly, full training of
the cross-encoder would be an interesting scope of
future work. Lastly, there was no pre-processing,
and the sentences were tokenised as they were. The
impact of pre-processing could be studied.

5.3 Ethical Statement

This work used only the STS-B and STR datasets,
which are both publicly available. Although the
dataset has some overlap between the development
and testing sets, this work maintains that the devel-
opment set was not used for training. This is at-
tributed to the ethical convention in machine learn-
ing of using the appropriate set for the suitable
task.

Conclusion

This work involves participating in the SemEval
2024 STR task in two languages (English and Mo-
roccan Arabic). The regression task is to predict a
score relating to two sentences. The developed sys-
tem consists of a LoRA adapter trained on the given
training instances and then attached to a cross-
encoder previously trained on the STS-B dataset.
The system achieved excellent performance, ex-
ceeding the baseline and ranking seventh in Mo-
roccan Arabic and eighth in English, with Pearson
Coefficient scores of 0.8163 and 0.8425, respec-
tively.
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A Model Names

The exact model names in Huggingface2 used in
this work are available in Table 6.

Table 6: Model Names in Huggingface.

Model Model Name
BERT google-bert/bert-base-uncased
RoBERTa FacebookAI/roberta-base
DeBERTa microsoft/deberta-v3-small
ALBERT albert/albert-base-v2
T5 google-t5/t5-small
RoBERTaCE cross-encoder/stsb-roberta-base

CAMeLBERT
CAMeL-Lab/

bert-base-arabic-camelbert-mix

2https://huggingface.co/

B Hyper-parameters Configuration

The hyper-parameters used to develop the system
are available in Table 7. The number of epochs
during the development phase was 10, while in
testing, it was increased to 30.

Parameter Value
Epoch 10 - 30
Learning rate 5× 10−4

Batch size 30
LoRA (r and alpha) 8
GPU Tesla A100 (40GB)

Table 7: Parameter configuration.

C Used Libraries

This section includes the Python libraries used in
the code and their versions according to Table 8.

Library Version
adapters 0.1.1
transformers 4.35.2
datasets 2.17.0
sklearn 1.2.2
torch 2.1.0
accelerate 0.27.0
pandas 1.5.3
numpy 1.23.5

Table 8: Used Python libraries.
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