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Abstract

One of the key challenges in Natural Lan-
guage Generation (NLG) is “hallucination”, in
which the generated output appears fluent and
grammatically sound but may contain incor-
rect information. To address this challenge,
“SemEval-2024 Task 6 - SHROOM, a Shared-
task on Hallucinations and Related Observ-
able Overgeneration Mistakes” is introduced.
This task focuses on detecting overgeneration
hallucinations in texts generated from Large
Language Models for various NLG tasks. To
tackle this task, this paper proposes two meth-
ods: (1) hypothesis-target similarity, which
measures text similarity between a generated
text (hypothesis) and an intended reference
text (target), and (2) a SelfCheckGPT-based
method to assess hallucinations via predefined
prompts designed for different NLG tasks. Ex-
periments were conducted on the dataset pro-
vided in this task. The results show that both
proposed methods can effectively detect hallu-
cinations in LLM-generated texts.

1 Introduction

Natural Language Generation (NLG) is a field
within Natural Language Processing (NLP) that fo-
cuses on enabling machines to produce human-like
texts. In NLG, one of the challenges is the phe-
nomenon of “hallucination”, where the generated
output is fluent and grammatically sound but con-
tains incorrect information or extends beyond the
provided information. This issue is particularly sig-
nificant in NLG applications where correctness is
crucial, such as machine translation and paraphras-
ing. It can compromise the quality and reliability of
the generated content, resulting in a loss of fidelity
to the sources or models from which the content
is generated. To address this challenge, “SemEval-
2024 Task 6 - SHROOM, a Shared-task on Hallu-
cinations and Related Observable Overgeneration
Mistakes” (Mickus et al., 2024) is introduced. This

task aims to identify grammatically correct out-
puts that contain incorrect semantic information or
overgenerated content, with or without access to
the model that produced the output. The outputs
are obtained from various Large Language Mod-
els (LLMs) in three distinct NLG tasks: definition
modeling (DM), machine translation (MT), and
paraphrase generation (PG).

Recent efforts have been made to develop
frameworks for detecting hallucinations in LLM-
generated texts. One approach involves calculating
information overlap and contradictions between
generated and reference texts (Dhingra et al., 2019;
Shuster et al., 2021). Higher mismatches suggest
a greater likelihood of hallucination. Another pop-
ular approach is an LLM-based evaluation. This
approach focuses on prompting LLMs to assess a
machine-generated text and determine the proba-
bility of this text being a hallucination (Kadavath
et al., 2022; Manakul et al., 2023).

Despite the success of these existing methods,
they have mainly focused on detecting factual hallu-
cinations. This paper further explores how informa-
tion overlap calculation and LLM-based evaluation
approaches can be applied to detect overgeneration
hallucinations. Specifically, we propose two meth-
ods to detect overgeneration hallucinations in Se-
mEval Task 6. The first method is hypothesis-target
similarity, which measures text similarity between
a generated text (hypothesis) and an intended refer-
ence text (target). The second method is an LLM-
based evaluation approach that utilizes a state-of-
the-art framework called SelfCheckGPT (Manakul
et al., 2023). This method assesses hallucinations
via distinct predefined prompts tailored for texts
generated from different NLG tasks.

2 Related Work

Recently there have been some attempts to develop
frameworks for evaluating hallucinations in LLM-
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generated texts. One approach is to consider lexical
features of LLM-generated texts and reference texts
and calculate the information overlap and contradic-
tions between the generated and the reference texts.
The higher the mismatch counts, the lower the faith-
fulness and thus the higher the hallucination score.
For example, Dhingra et al. (2019) proposed PAR-
ENT (Precision And Recall of Entailed n-grams
from the Table), which is capable of assessing hal-
lucinations by referencing both the source and tar-
get texts. Shuster et al. (2021) introduced a metric
for knowledge-grounded dialogue tasks aimed at
measuring the alignment between LLM-generated
texts and the relevant knowledge judged by hu-
mans. Martindale et al. (2019) proposed the Bag-
Of-Vectors Sentence Similarity (BVSS) metric for
assessing sentence adequacy in machine transla-
tion. This metric aids in identifying disparities in
information between the output and the translation
reference. Despite the simplicity and effectiveness
of information overlapping, it has limitations in
handling syntactic or semantic variations, which
can impact its accuracy in evaluating faithfulness.

Another recent approach is an LLM-based evalu-
ation where an LLM is prompted to evaluate gener-
ated texts, e.g., to predict the probability that a gen-
erated text is a hallucination. For instance, Kada-
vath et al. (2022) used LLMs to evaluate the validity
of their own claims by asking models to first gen-
erate answers and then to evaluate the probability
that their answers are correct. Manakul et al. (2023)
proposed an approach called SelfCheckGPT with
prompts. In their approach, each LLM-generated
sentence was compared against multiple generated
responses from an LLM. An LLM was asked to
assess whether an LLM-generated sentence was
supported by the generated responses. If it was
consistently supported by multiple responses, then
it was likely to not be a hallucination. Friel and
Sanyal (2023) proposed the ChainPoll approach
where an LLM was asked to decide whether an
LLM-generated text contained hallucinations, us-
ing a detailed and carefully engineered prompt.
However, the majority of existing approaches have
primarily focused on detecting factual hallucina-
tions related to incorrect information in texts, rather
than overgeneration hallucinations. Thus, there re-
mains a critical need to explore and adapt these
approaches for the detection of overgeneration hal-
lucinations.

3 Problem Formulation

The objective of this task is to predict whether the
actual model production (generated text) is a hal-
lucination, with or without having access to the
model that generated the text. Specifically, each
input in this task consists of the following informa-
tion:

• Task (task): the task for which the model
was optimized, which can be either Defini-
tion Modeling (DM), Paraphrase Generation
(PG), or Machine Translation (MT).

• Source (src): the input provided to the model.

• Target (tgt): the intended reference ’gold’ text
that the model is expected to generate.

• Hypothesis (hyp): the actual model output.

• Reference (ref): specifies whether the target,
source, or both fields contain the semantic
information necessary to establish whether
the hypothesis is a hallucination.

• Model Checkpoint (model): Identifies the
model used to produce the hypothesis (only
applicable for model-aware inputs).

For each input, the goal is to predict a label indi-
cating whether the hypothesis is a hallucination,
along with the probability of the hypothesis being
a hallucination (p(Hallucination)).

In this task, two datasets were provided: model-
aware dataset and model-agnostic dataset. In
the model-aware dataset, model checkpoints (avail-
able on HuggingFace) were provided for every sam-
ple. Conversely, in the model-agnostic dataset,
these checkpoints were not included. For each
dataset, an unlabeled training set, a validation set
(with true labels), and a test set were provided.
Also, a trial set was given without categorizing the
samples based on whether they were model-aware
or model-agnostic. The validation, trial and test
sets contain binary annotations provided by at least
five different annotators, along with a majority vote
gold label.

4 Methods

To achieve the task of detecting overgeneration
hallucinations, we propose two methods: (1)
hypothesis-target similarity and (2) SelfCheckGPT-
based methods. The details of each approach are
discussed in the following subsections.
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4.1 Hypothesis-Target Similarity Method
The proposed hypothesis-target similarity approach
is an intuitive method for evaluating whether a gen-
erated text (hypothesis) contains hallucinations by
comparing it with an intended reference or gold
text (target). Specifically, we compute the text sim-
ilarity between a hypothesis and a target and use the
resulting value to determine whether the hypothesis
contains hallucinations. The lower the similarity,
the more likely it is that the hypothesis may contain
a certain degree of hallucination. To compute text
similarity, a text embedding method is first applied
to generate embeddings of the generated and in-
tended reference texts. In this work, we adopt Sen-
tenceTransformers1 (Reimers and Gurevych, 2019)
(paraphrase-MiniLM-L6-v2) to generate such em-
beddings since it has demonstrated success across
various applications (Reimers and Gurevych, 2020;
Choi et al., 2021; Markchom et al., 2020). Then, a
cosine similarity metric is applied to these embed-
dings to compute the similarity. It is worth noting
that other metrics are also applicable. This work
selects cosine similarity due to its widespread us-
age and simplicity (Lin et al., 2014; Zhang et al.,
2023).

After obtaining the similarity between a hypoth-
esis and a target, we set a threshold δ to determine
whether a hypothesis is a hallucination or not. If
the similarity is lower than δ, it means that the
hypothesis is different from the target and may
contain hallucinations. Mathematically, given a
hypothesis h and a target t, let eh and et denote
embeddings of the hypothesis and target, respec-
tively. We define a function f(h, t) that outputs the
labels “Hallucination” and “Not Hallucination” for
a given hypothesis h and target t as follows:

f(h, t) =

{
Hallucination, if s(eh, et) < δ

Not Hallucination, otherwise
(1)

where s(eh, et) denotes the cosine similarity be-
tween the hypothesis h and the target t. Further-
more, we compute p(Hallucination) based on the
computed cosine similarity by applying a sigmoid
function to the similarity as follows:

p(Hallucination) = σ(s(eh, et)) (2)

where σ denotes a sigmoid function. This function
scales the computed similarity to the [0, 1] interval
and treats the resulting value as the probability of

1https://www.sbert.net/

the hypothesis being a hallucination. Note that, in
the PG task, target texts are unavailable for certain
samples. Consequently, we consider source texts
as target texts in these instances. In other words,
we assess the similarity between a generated (para-
phrased) text and its corresponding source text in-
stead.

4.2 SelfCheckGPT-Based Method
In the SelfCheckGPT-based method, we adopt the
SelfCheckGPT with Prompt approach in (Manakul
et al., 2023) and design prompts to validate halluci-
nations. Specifically, for each sample, a prompt is
crafted to assess whether a hypothesis is supported
by a context, which includes a provided source and
target (if available). If a hypothesis is not supported
by a context, it is considered a hallucination. The
prompt formats vary slightly for each task. Table 1
shows the prompt formats for samples from each
task, where {src} denotes a source, {tgt} denotes
a target, {hypo} denotes a hypothesis, and {term}
denotes the term to be defined in a source only for
the DM task. As shown in this table, the prompt for
the DM task is noticeably different from the others.
This is because we would like to semantically use
the term as additional information apart from the
source and hypothesis.

Task Prompt format

DM

Context: {src} The term "{term}" means {tgt}
Sentence: The term {term} means {hypo}
Is the sentence supported by the context above?
Answer Yes or No:

PG

Context: {src}
Sentence: {hypo}
Is the sentence supported by the context above?
Answer Yes or No:

MT

Context: {src} {tgt}
Sentence: {hypo}
Is the sentence supported by the context above?
Answer Yes or No:

Table 1: Prompt formats for samples from each task
where {src} represent a source, {tgt} represents a tar-
get, {hypo} represents a hypothesis, and {term} repre-
sents the term to be defined in a source of the DM task.

Each prompt is run through the GPT-3.5 model
(gpt-3.5-turbo-1106)2 (Brown et al., 2020; OpenAI,
2022) N times, and the final label is determined
by the majority of these responses. The probability
p(Hallucination) of each sample is computed based

2https://platform.openai.com/docs/models/gpt-3-5
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(a) Model-aware validation set (b) Model-agnostic validation set (c) Trial set

Figure 1: The accuracy on (a) the model-aware validation set, (b) model-agnostic validation set, and (c) the trial
set when different threshold values are applied in the hypothesis-target similarity method

on the corresponding N responses as follows:

p(Hallucination) =
1

N

N∑

i=1

li (3)

where li denotes the ith predicted label (1 for “Hal-
lucination” and 0 for “Not Hallucination”) identi-
fied from the ith response.

5 Experiments

The experiments were conducted on both model-
aware and model-agnostic datasets. For each of
these datasets, we applied the proposed methods
to both the validation and test sets to evaluate their
performance. Two evaluation metrics were em-
ployed: the accuracy of binary classification and
the Spearman correlation of the predicted probabil-
ities (p(Hallucination)) with the proportion of the
annotators marking the hypothesis as “Hallucina-
tion”. We compared the proposed methods with the
baseline provided by the task organizers on the test
set. This baseline is based on the SelfCheckGPT
with Prompt approach, employing an open-source
Mistral model (Jiang et al., 2023). In this baseline,
for samples from a PG task, only the source text is
provided as context to the Mistral model, similar
to our SelfCheckGPT-based method. For DM and
MT tasks, the baseline utilizes only the target text
as context. In contrast, our SelfCheckGPT method
incorporates both source and target texts as context.
Also, in this baseline, each prompt was run through
the Mistral model only once.

5.1 Hyperparameter Settings
Hypothesis-Target Similarity Method To de-
termine the threshold δ, we conducted an analysis
on the validation set to identify the optimal value.
We varied the threshold from 0.5 to 0.9, increasing

it by 0.1 at each step, and evaluated the accuracy on
the validation and trial sets. Figure 1 displays the
accuracy on the model-aware validation set, model-
agnostic validation set, and the trial set when differ-
ent threshold values were applied. From this figure,
a threshold of 0.6 achieved the highest accuracy on
the validation sets and closely approached the high-
est accuracy on the trial set. Therefore, we selected
δ = 0.6 when applying this method to the test
set. To further examine the performance of using
δ = 0.6, it was applied to determine hallucina-
tions on both the model-aware and model-agnostic
training sets. However, since the training set is un-
labelled, it is not possible to examine the accuracy.
Therefore, our focus shifted to examining the fre-
quency of "Hallucination" and "Not Hallucination"
predictions. This was to ensure that using δ = 0.6
would not result in the tendency of exclusively pre-
dicting one or the other. As shown in Figure 2, with
δ = 0.6, 27.3% and 41.3% of the samples in the
model-aware and model-agnostic sets, respectively,
were predicted as hallucinations.

SelfCheckGPT-Based Method To select the
number of generated responses (N ), we varied
N from 1 to 5. The accuracy and Spearman cor-
relation results on both model-aware and model-
agnostic validation sets, with different values of N ,
are presented in Figure 3. This figure indicates that
as N increased, accuracy generally improved with
fluctuations observed in both datasets. However,
Spearman correlation consistently increased with
no fluctuations as N increased. Therefore, we set
N to 5 to obtain five responses for each sample in
the test set. All hyperparameters of gpt-3.5-turbo-
1106 were configured with their default values. For
any model response that indicated undetermined
answers, the corresponding sample was considered
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Dataset Method
Validation set Test set

Accuracy Spearman correlation Accuracy Spearman correlation

Model-aware
Baseline 0.707 0.461 0.745 0.488
Hypothesis-Target Similarity 0.699 0.536 0.734 0.518
SelfCheckGPT-based 0.722 0.510 0.768 0.582

Model-agnostic
Baseline 0.649 0.380 0.697 0.403
Hypothesis-Target Similarity 0.699 0.574 0.687 0.467
SelfCheckGPT-based 0.707 0.567 0.728 0.595

Table 2: Comparative performance of the proposed methods measured by accuracy and Spearman correlation on
the validation and test sets, with the highest value in bold

(a) Model-aware unlabelled training set with 0.6 threshold

(b) Model-agnostic unlabelled training set with 0.6 threshold

Figure 2: The percentage of “Hallucination” and “Not
Hallucination” from the result of the hypothesis-target
similarity method

as “Hallucination”.

5.2 Results and Discussions
Table 2 shows the comparative performance of
the proposed methods measured by accuracy and
Spearman correlation on the validation and test
sets. From this table, the proposed method based
on SelfCheckGPT outperformed the baseline in
terms of both accuracy and Spearman correlation
on both model-aware and model-agnositc datasets.
This indicates the effectiveness of using the GPT-
3.5 model with prompts that include both source
and target as context. Also, it suggests the benefit

(a) Model-aware validation set

(b) Model-agnostic validation set

Figure 3: Accuracy and Spearman correlation results
on both (a) model-aware and (b) model-agnostic vali-
dation sets when using different values of N .

(a) Model-aware (b) Model-agnostic

Figure 4: Accuracy results on (a) model-aware and (b)
model-agnostic test sets using different thresholds δ.

of running each prompt through an LLM multiple
times to obtain a final prediction.

The proposed hypothesis-target similarity
method closely approached the performance of the
SelfCheckGPT-based approach on the validation
sets, showing higher Spearman correlation values.
However, on the test sets, the latter surpassed it.
The reason could be that the selected threshold
might not be precisely suitable for the test
sets. Figure 4 shows the accuracy results on
model-aware and model-agnostic test sets when
different thresholds δ were used. From this figure,
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(a) Model-aware validation set

(b) Model-aware test set

(c) Model-agnostic validation set

(d) Model-agnostic test set

Figure 5: The percentages of response types, includ-
ing “Not Hallucination”, “Hallucination”, and “Unde-
termined”, obtained from the proposed SelfCheckGPT-
based method on (a) model-aware validation set, (b)
model-aware test set, (c) model-agnostic validation set,
and (d) model-agnostic test set

using δ = 0.6 resulted in the highest accuracy
on the model-aware test set. However, on the
model-agnostic test set, using δ = 0.5 resulted
in better accuracy. This indicates the challenge
of selecting an optimal threshold based solely on
observed data for generalizing to unseen data.

We investigated the number of undetermined
responses in the SelfCheckGPT approach to vali-
date whether this approach can effectively generate
definitive answers for this task. Figure 5 shows the
percentages of response types, including “Not Hal-
lucination”, “Hallucination”, and “Undetermined”,
obtained from the proposed SelfCheckGPT-based
method on the model-aware validation set, model-
aware test set, model-agnostic validation set, and
model-agnostic test set. According to this figure,
the proposed SelfCheckGPT approach predicted
less than 0.2% of undetermined answers across all
datasets. This indicates that the SelfCheckGPT
approach is effective in terms of producing defini-
tive answers. Nonetheless, one limitation of this
approach is its reliance on the availability of prior
knowledge or expected outcomes (which, in this
case, are the targets). In real-world situations, such
information may not be available.

In the official competition rankings, the top-
performing model achieved an accuracy of 0.813
and a Spearman correlation of 0.699 on the model-
aware test set, and an accuracy of 0.847 and a Spear-
man correlation of 0.770 on the model-agnostic test
set. Consequently, our SelfCheckGPT model se-
cured the 26th position on the model-aware test set
and the 35th position on the model-agnostic tes set.

6 Conclusions

This work proposes two methods for detecting hal-
lucinations and observable overgeneration mistakes
in texts generated by LLMs. The first method, the
hypothesis-target similarity method, involves cal-
culating the information overlap between a gen-
erated text and a reference text. This method uti-
lizes a pre-trained SentenceTransformer model to
calculate text embeddings for both the generated
and reference texts, and cosine similarity to mea-
sure their similarity. The second method employs
an LLM-based evaluation approach. It uses the
SelfCheckGPT technique with prompts tailored
to LLM-generated texts from various NLG tasks.
The experimental results highlight the effective-
ness of the proposed hypothesis-target similarity
method in detecting hallucinations, particularly
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when the similarity threshold is carefully chosen.
Additionally, the findings reveal that the proposed
SelfCheckGPT-based method outperformed the
baseline, and effectively identified hallucinations
in texts generated by LLMs. Moreover, these re-
sults underscore the significance of prompt design
in evaluating hallucinations using LLMs. However,
there is still room for improvement in the perfor-
mance of our methods.

For future work, other SentenceTransformers
models, such as Multi-QA or MSMARCO Pas-
sage models (SBERT.net, 2022) or alternative
embedding models, such as InferSent (Conneau
et al., 2018) or Universal Sentence Encoder (Cer
et al., 2018) for the Hypothesis-Target Similar-
ity approach will be considered. As for the
SelfCheckGPT-based approach, other LLMs be-
sides GPT-3.5 will also be investigated. Moreover,
various prompt formats and the use of few-shot
examples in the prompt will be explored.
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