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Abstract

The significant achievements of language mod-
els have motivated researchers in the natural
language processing (NLP) community to con-
front challenges requiring nuanced and implicit
reasoning, inspired by human-like common-
sense understanding. Although efforts focus-
ing on vertical thinking tasks have received
substantial recognition, there remains a no-
table lack of investigation into lateral think-
ing puzzles. To bridge this void, the authors
at SemEval-2024 propose BRAINTEASER: a
multiple-choice Question Answering task de-
signed meticulously to assess the model’s lat-
eral thinking capabilities and its capacity to
question default common-sense assumptions.
Specifically, at the SemEval-2024 Task 9, for
the first subtask (i.e., Sentence Puzzle) the or-
ganizers asked the participants to develop mod-
els able to reply to multi-answer brain-teasing
questions. For this purpose, we propose the
application of a DeBERTa model in a zero-
shot configuration. The proposed approach
achieves an aggregate score of 0.250. Sug-
gesting a significant room for improvements
in future works.

1 Introduction

Human reasoning encompasses two fundamental
types of cognitive processing: vertical and lateral
thinking. Vertical thinking is marked by its sequen-
tial and analytical approach, drawing upon prin-
ciples of rationality, logic, and rule-following, of-
ten attributed to the left-brain hemisphere (Knauff,
2013; Huang et al., 2023). This mode of thinking
is essential for creating logical pathways, such as
understanding physical scenarios or solving rid-
dles based on direct associations. In contrast, lat-
eral thinking, often referred to as "thinking outside
the box," is a creative cognitive process. It en-
tails exploring problems from unconventional per-
spectives and challenging ingrained assumptions.
Lateral thinking, associated with the right-brain

hemisphere, is crucial for resolving unconventional
puzzles by defying common-sense associations and
considering alternative perspectives.

While natural language processing (NLP) mod-
els have made significant strides in vertical think-
ing tasks, particularly in the field of large lan-
guage models (LLMs). Their performance in lat-
eral thinking remains largely unexplored. LLMs
have demonstrated remarkable performance across
various reasoning tasks, even when provided with
minimal or no training examples. These models
excel in tasks requiring vertical thinking abilities,
such as reasoning over physical interactions and
social implications (Siino et al., 2022b), showcas-
ing strong common-sense association and inference
capabilities. However, prior research has largely
overlooked the evaluation of LLMs’ lateral think-
ing abilities, as creative thinking problems are of-
ten filtered out during data preprocessing, and only
those aligned with common-sense associations are
retained.

To address this gap, a novel benchmark called
BRAINTEASER (Jiang et al., 2023) to evaluate the
lateral thinking abilities of state-of-the-art LLMs
is proposed at SemEval-2024 Task 9 (Jiang et al.,
2024). The organizers frame lateral thinking puz-
zles as multiple-choice Question Answering (QA)
tasks, a format that is intuitive for humans to en-
gage with and straightforward to assess automati-
cally. The BRAINTEASER benchmark comprises
two tasks: Sentence Puzzles and Word Puzzles, de-
signed to assess lateral thinking at different levels
of granularity. To develop the dataset, organiz-
ers employ a data collection pipeline that retrieves
relevant puzzles from publicly available websites,
filters out irrelevant question categories, and en-
sures high data quality. Additionally, to mitigate
concerns regarding LLM memorization and con-
sistency, the organizers enhance BRAINTEASER
with two reconstruction strategies: semantic recon-
struction and context reconstruction. These strate-
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gies aim to promote deeper understanding and rea-
soning rather than mere memorization of patterns.

To meet these objectives, there is a growing de-
mand for automated tools capable of understanding
data using recent advancements in NLP models.
The emergence of machine and deep learning ar-
chitectures has sparked increased interest in NLP,
prompting substantial efforts to develop techniques
for automated identification and understanding of
textual content available on the internet. In the
literature, various strategies have been proposed
so far. Over the past fifteen years, some of the
most successful approaches have included Support
Vector Machines (SVM) (Colas and Brazdil, 2006;
Croce et al., 2022), Convolutional Neural Networks
(CNN) (Kim, 2014; Siino et al., 2021), Graph Neu-
ral Networks (GNN) (Lomonaco et al., 2022), en-
semble models (Miri et al., 2022; Siino et al., 2022),
and Transformers (Vaswani et al., 2017).

The sections of this paper are structured as fol-
lows: Section 2 offers background information on
Task 9, held at SemEval-2024. In Section 3, we out-
line the approach introduced in this study. Section
4 delves into the specifics of the experimental setup
employed to reproduce our findings. The outcomes
of the official task and relevant discussions are pre-
sented in Section 5. Finally, Section 6 concludes
our study and suggests avenues for future research.

We make all the code publicly available and
reusable on GitHub1.

2 Background

The increasing adoption of Transformer-based ar-
chitectures in academic research has also been bol-
stered by various methodologies showcased at Se-
mEval 2024. These methodologies tackle diverse
tasks and yield noteworthy findings. For instance,
at the Task 2 (Jullien et al., 2024), where to address
the challenge of identifying the inference relation
between a plain language statement and Clinical
Trial Reports is used T5 (Siino, 2024c); Task 4
(Dimitrov et al., 2024) where is employed a Mis-
tral 7B model to detect persuasion techniques in
memes (Siino, 2024b); and Task 8 (Wang et al.,
2024), that utilizes a DistilBERT model to identify
machine-generated text (Siino, 2024a).

The Task 9 hosted at SemEval-2024, is based on
the human reasoning processes comprising the two
already-mentioned types of thinking: vertical and
lateral.

1https://github.com/marco-siino/SemEval2024/

Specifically, the BRAINTEASER QA task con-
sists of two subtasks: the Sentence and the Word
Puzzle ones, that require awareness of common-
sense “defaults” and overwriting them through un-
conventional thinking that distinguishes these de-
faults from hard constraints.

In detail, for the Sentence Puzzle one, the puz-
zle defying common-sense is centred on sentence
snippets. On the other hand, for the Word Puzzle
subtask, the response diverges from the conven-
tional interpretation of the word and concentrates
on the letter arrangement within the target question.

Both subtasks incorporate an adversarial sub-
set, crafted by manually altering the original brain-
teasers while preserving their underlying reasoning
paths.

An example from the official CodaLab page2

takes as example the following original sentence:

"A man shaves everyday, yet keeps his
beard long."

The four possible explanations are:

1. He is a barber.

2. He wants to maintain his appearance.

3. He wants his girlfriend to buy him a razor.

4. None of the above.

However, the task organizers also included two
other samples based on the previous one. In these
two cases, a semantic and a contextual reconstruc-
tion have been made to challenge a classification
model. The two reconstructions (with the same
four possible explanations as in the original) are:

• SEMANTIC RECONSTRUCTION: "A man
preserves a lengthy beard despite shaving ev-
ery day."

• CONTEXT RECONSTRUCTION: "Tom at-
tends class every day but doesn’t do any home-
work."

3 System Overview

Despite evidence suggesting that Transformers may
not always yield optimal results for every text clas-
sification task (Siino et al., 2022a), various strate-
gies, such as domain-specific fine-tuning (Sun et al.,

2https://codalab.lisn.upsaclay.fr/
competitions/15566
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2019; Van Thin et al., 2023) and data augmentation
(Lomonaco et al., 2023; Mangione et al., 2022; Si-
ino et al., 2024a), have proven to be advantageous
depending on the task’s objectives.

However, to address the task 9 hosted at
SemEval-2024 we made use of a zero-shot learning
approach (Chen et al., 2023; Wahidur et al., 2024),
making use of the DeBERTa Transformer (He et al.,
2020).

Our approach is zero-shot (Pourpanah et al.,
2022) and make use of the above-mentioned De-
BERTa model. Specifically, we employed the mul-
tilingual version 3 fine-tuned on the SQuAD2.0
dataset3. DeBERTa improves upon the BERT and
RoBERTa models by introducing disentangled at-
tention mechanisms and an enhanced mask decoder.
Leveraging these enhancements, DeBERTa outper-
forms RoBERTa across most Natural Language Un-
derstanding (NLU) tasks when trained on a dataset
of 80GB in size. In DeBERTa V3, efficiency is
further enhanced by integrating ELECTRA-Style
pre-training with Gradient Disentangled Embed-
ding Sharing. Comparative analysis against De-
BERTa reveals notable enhancements in model per-
formance across downstream tasks in the V3 ver-
sion. Further elaboration on the novel techniques
employed in this new model can be found in the
original paper. The version of DeBERTa utilized
in our experiments is mDeBERTa, a multilingual
variant of DeBERTa. It maintains an identical archi-
tecture while being trained on CC100 multilingual
data. The mDeBERTa V3 base model comprises
12 layers with a hidden size of 768. It encompasses
86 million backbone parameters and a vocabulary
of 250,000 tokens, resulting in 190 million parame-
ters in the embedding layer. This model underwent
training using 2.5 trillion tokens of CC100 data,
akin to the XLM-R model.

For the experimental settings, we started evalu-
ating several prompt engineering strategies (White
et al., 2023; Liu et al., 2023) to optimize the model
replies and to obtain satisfactory results guided
by the labelled samples in the training set. For
example, we included in the prompt/question to
the model, the premise that the given question is
a brain-teaser one. Furthermore, we also evalu-
ated the performance of the model on the training
set using a few-shot learning setup. In this case,
we provided as input (included in the prompt) ten
questions indicating the correct answer. Also in

3https://rajpurkar.github.io/SQuAD-explorer/

this case we did not obtain satisfactory results.
More specifically, given the task hosted at

SemEval-2024, we asked the model: "What is the
correct answer to the brain teaser question from
the following choices? (Pick only one Option (A)-
(D)". To this request, the model replied with one
or more words that we parsed to extract one of the
choices. For example, given the context:

"Romeo and Juliet are discovered dead
on the bedroom floor. Glass shards and
some water were on the floor when they
were found. A bookcase and a bed
are the sole pieces of furniture in the
space. Other than the neighboring rail-
road track, the house is located in a rural
area. How is that even doable? "

And our question:

"What is the correct answer to the
brain teaser question from the following
choices? (Pick only one Option (A)-(D)"

And the answers/options:

(A): They were sleeping and scared by
the sound of track.

(B): The rumble of the train moved the
shelf which crushed them.

(C): Romeo and Juliet are fish. The rum-
ble of the train knocked the tank off the
shelf, it broke and Romeo and Juliet did
not survive.

(D): None of above.

The model replied with:

"Romeo and Juliet are fish."

that we mapped into the label 2 corresponding
to the third answer. Finally, we collected all the
predictions provided on the test set to into a JSON
file with required format to submit our predictions.

During our experiments to build our prompt, we
also evaluated other LLMs like GPT-Neo and GPT-
NeoX (Gao et al., 2020). However, on the labelled
training set, we found better performance of De-
BERTa in the responses provided. It is also worth
notice that we conducted several experiments to
find an effective prompt strategy to address the
task.

As indicated in a recent investigation by Siino
et al. (Siino et al., 2024b), preprocessing does
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not significantly impact text classification tasks
when employing Transformers. Specifically, the
optimal combination of preprocessing strategies
closely resembles the performance achieved with-
out any preprocessing at all, particularly in the con-
text of Transformer models. Therefore, to maintain
a highly efficient and computationally lightweight
system, we opted not to apply any preprocessing to
the text.

4 Experimental Setup

We implemented our model on Google Colab. The
library we used come from Hugging Face and as
already mentioned is a multilingual version of De-
BERTa4. The dataset provided for all the phases
are available on the official competition page. We
did not perform any additional fine-tuning on the
model. To run the experiment, a T4 GPU from
Google has been used. After the generation of the
predictions, we exported the results on the format
required by the organizers. As already mentioned,
all of our code is available on GitHub.

5 Results

Participants in Brain Teaser may participate in any
or all of the two subtasks. The organizers created
two adversarial questions, semantic and context
reconstruction, for each brain-teaser (examples can
be found on the Task Home Page). The evaluation
metrics applied are Instance-based Accuracy and
Group-based Accuracy, defined as follows:

• Instance-based Accuracy: Each question,
whether original or adversarial, is treated as
an individual instance. Accuracy is reported
for the original question, its semantic recon-
struction, and context reconstruction.

• Group-based Accuracy: Questions and
their corresponding adversarial instances are
grouped together. A system earns a score of
1 only if it correctly answers all questions
within the group. Accuracy is reported for
original and semantic reconstruction and orig-
inal and semantic and context reconstruction.

In Table 1, we present the outcomes derived from
our methodology. They are the same results pub-
licly available on the official final ranking shown

4https://huggingface.co/timpal0l/
mdeberta-v3-base-squad2

DeBERTa
Original 0.225
Semantic 0.250
Context 0.275

Ori+Sem 0.200
Ori+Sem+Con 0.075

Overall 0.250

Table 1: The method’s performance on the test set. In
the table are reported the results obtained and shown on
the official task page.

on the official task page5. The results are about the
sentence task, given the fact that we did not take
part in the word-related task.

Table 2 presents the performance results of the
top three teams alongside the results achieved by
the final-ranking team, as displayed on the offi-
cial task page. While our straightforward approach
shows potential for enhancement compared to the
top-performing models, it is noteworthy that our
method required no additional pre-training. More-
over, the computational resources needed to ad-
dress the task were manageable, utilizing the free
online resources provided by Google Colab.

6 Conclusion

This paper introduces the utilization of a DeBERTa
model for addressing Task 9 at SemEval-2024. In
our submission, we opted for a zero-shot learn-
ing approach, leveraging a pre-trained and fine-
tuned Transformer model without further adapta-
tion. Through various experiments, we found it
advantageous to construct a prompt containing the
question for the model. Subsequently, we provided
the context, question, and answer candidates as the
prompt, prompting the model to discern the cor-
rect candidate answer. Despite the task’s inherent
complexity, as evidenced by the final ranking, there
remains ample room for improvement.

Potential alternative methodologies include
leveraging the few-shot learning capabilities of the
model or exploring alternative models such as GPT
and T5. Additionally, integrating additional data or
incorporating samples from training and develop-
ment sets could yield performance enhancements.
Further refinements could be achieved through fine-
tuning and framing the problem as a text classifi-
cation task. Moreover, given the promising results

5https://codalab.lisn.upsaclay.fr/
competitions/15566
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TEAM NAME Original Semantic Context Ori+Sem Ori+Sem+Con Overall
abdelhak (1) 1.000 1.000 0.950 1.000 0.950 0.983

lulu13gjdfnglgr (2) 1.000 0.975 0.925 0.975 0.900 0.967
Maxine (3) 0.975 0.975 0.925 0.975 0.900 0.958

wwangbw (31) 0.300 0.175 0.150 0.075 0.025 0.208

Table 2: Comparing performance on the test set. In the table are shown the results obtained by the first three teams
and by the last one. In parentheses is reported the position in the official final ranking.

observed across various tasks, the adoption of few-
shot learning or data augmentation strategies could
also be explored for improved outcomes (Wang
et al., 2023; Maia et al., 2024; Siino et al., 2023;
Meng et al., 2024; Muftie and Haris, 2023; Tapia-
Téllez and Escalante, 2020; Siino and Tinnirello,
2023).

While our straightforward approach demon-
strates potential for refinement, it is noteworthy
that it required no additional pre-training. More-
over, the computational resources needed to ad-
dress the task were manageable, utilizing the free
online resources provided by Google Colab.
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