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Abstract 

The Emotion Flip Reasoning task at 
SemEval 2024 aims at identifying the 
utterance(s) that trigger a speaker to shift 
from an emotion to another in a multi-party 
conversation. The spontaneous, informal, 
and occasionally multilingual dynamics of 
conversations make the task challenging. In 
this paper, we propose a supervised stacked 
instruction-based framework to finetune 
large language models to tackle this task. 
Utilising the annotated datasets provided, 
we curate multiple instruction sets 
involving chain-of-thoughts, feedback, and 
self-evaluation instructions, for a multi-step 
finetuning pipeline. We utilise the self-
consistency inference strategy to enhance 
prediction consistency. Experimental 
results reveal commendable performance, 
achieving mean F1 scores of 0.77 and 0.76 
for triggers in the Hindi-English and 
English-only tracks respectively. This led to 
us earning the second highest ranking1 in 
both tracks. 

1 Introduction 

The EDiReF shared task at SemEval 2024 (Kumar 
et al., 2024) encompasses two challenges in natural 
language processing (NLP): Emotion Recognition 
in Conversation (ERC) and Emotion Flip 
Reasoning (EFR). Our work focuses on the latter 
challenge—EFR, which aims at identifying the 
utterances responsible for triggering a shift in a 
speaker’s emotional state, hereafter referred to as 
an emotion flip, within a multi-party conversation. 
The task offers two tracks: one involving Hindi-
English code-mixed conversations and the other 
focusing on English-only conversations. The first 
track particularly addresses the complexities 

 
1https://codalab.lisn.upsaclay.fr/co
mpetitions/16769 

inherent in multilingual contexts. Each track comes 
with its respective dataset annotated by the 
organisers, wherein each utterance is labelled to 
represent one of the six primary emotional states—
anger, disgust, fear, joy, sadness, and surprise 
(Ekman, 1999). Additionally, the emotion neutral 
is assigned to utterances devoid of any expressed 
emotion (Kumar et al., 2024). Given these emotion 
labels, locating the emotion flip is straightforward. 
Our task is to identify the triggers behind it. 

Figure 1 shows a Hindi-English code-mixed 
conversation conducted between two speakers, 
complemented by English translations. During the 
chat, Speaker A undergoes an emotion flip from 
sadness to joy, while Speaker B transitions from 
surprise to joy. Utterance u4 is identified as the 
trigger causing both speakers’ emotion flip. 
Particularly, when Speaker B delivers utterance u4, 
their emotional state also undergoes a change, 
rendering u4 as a self-trigger for Speaker B’s own 
emotion flip. It is worth noting that, for an emotion 
flip, there can be no trigger utterances at all, or 
there can be one or multiple trigger utterances 
originating from any involved speakers, including 
themselves (Kumar et al., 2024). 

 

Figure 1:  A conversation with five utterances 
between two speakers involving two emotion flips. 
Translations are not part of the conversation. 

GAVx at SemEval-2024 Task 10:  
Emotion Flip Reasoning via Stacked Instruction Finetuning of LLMs 

 
Vy Nguyen⋄, Xiuzhen Zhang† 

	⋄School of Science, Engineering & Technology, RMIT University  
 †School of Computing Technologies, RMIT University 

⋄s3964786@rmit.edu.vn, †xiuzhen.zhang@rmit.edu.au 
 

326



 
 
 

The EFR task can be formulated as follows: 
Given a conversation between p speakers 	𝑠𝑖

𝑖=1..𝑝 
involving q utterances 𝑢&

&'(..) , each assigned an 
emotion 𝑒&

&'(..), if speaker 𝑠" changes their emotion 
at utterance 𝑢*, there may exist a set of utterances 
𝑢+, wherein 1 ≤ 𝑙 ≤ 𝑘, that trigger the emotion flip. 
If we use 1 to denote a trigger utterance and 0 to 
denote a non-trigger utterance, then the array 
[𝑡(, 𝑡,, … , 𝑡*], in which 𝑡- equals either 0 or 1 and 
its position in the array corresponds to the position 
of the utterance in the conversation, can 
conveniently represent the task’s label for an 
emotion flip. For instance, considering the 
conversation in Figure 1, the array [0, 0, 0, 1, 0] 
indicates that the utterance at position 4 caused 
Speaker A to shift from sadness to joy. 

In this paper, we introduce an instruction-based 
framework designed to finetune large language 
models (LLMs) for addressing the EFR task. 
Initially, leveraging the training data, we construct 
multiple distinct instruction sets to guide the model 
in identifying triggers for emotion flips. These 
instructs emulate human cognitive processes, 
incorporating both human feedback and self-
evaluation procedures as integral components of 
the reasoning process. Subsequently, we execute a 
supervised stacked finetuning pipeline to refine the 
model using these instructions. Once the model is 
tuned, we employ an inference strategy called self-
consistency (Wang et al., 2023) to generate 
predictions for the test data. 

Besides the system description, we made the 
following observations in our experiments: 

1. Our framework demonstrates competent 
performance for both English-only and 
Hindi-English code-mixed datasets, 
indicating its capacity to effectively handle 
both monolingual and multilingual contexts. 

2. Providing high-quality instructions to LLMs 
is crucial for achieving the desired output. 
Our model’s performance improves each 
time we provide more refined instructions. 

3. The self-consistency inference strategy 
helps mitigate the randomness in the output 
generated by LLMs, allowing us to attain 
more uniform results across executions. 

In the next section, we discuss various related 
works. Subsequently, we detail our proposed 
system in Section 3. Following this, we outline our 
experimental setup in Section 4, analyse its results 
in Section 5 before concluding in Section 6. 

2 Related Work 

The EFR task was first introduced by Kumar et 
al. (2022), who utilised a masked memory network 
and a transformer-based architecture to tackle it. In 
subsequent research in 2023, they delved deeper 
into the instigators behind emotion flips and 
introduced a neural architecture named TGIF. This 
architecture integrates transformer encoders and 
stacked gated recurrent units (GRUs) to 
comprehensively capture the conversation context, 
speaker dynamics, and emotional sequences.  

While EFR remains a relatively recent task, it is 
closely related to the widely studied task of 
Emotion-Cause Pair Extraction (ECPE) (Kumar et 
al., 2022). The objective of ECPE is to identify a 
text span that elicit a specific emotion (Xia and 
Ding, 2019). Earlier endeavours to address ECPE 
using deep learning faced challenges associated 
with position bias (Ding and Kejriwal, 2020). 
Zheng et al. (2022) introduced UECA-Prompt, a 
BERT-based universal prompt tuning method. 
Subsequently, Wu et al. (2024) proposed the DECC 
framework, which incorporates inducing inference 
and logical pruning to guide LLMs to reason. Both 
prompt-based approaches outperformed previous 
works on this task. The promising results observed 
in ECPE using prompt-based methods motivates us 
to adapt them to the EFR task. 

Prompt-based learning refers to prompting pre-
trained language models to tackle downstream 
tasks (Liu et al., 2021). Recently, LLMs like GPT 
(OpenAI, 2023) and LLAMA (Touvron et al., 
2023) demonstrate exceptional performance across 
various NLP tasks, even with zero-shot or few-shot 
prompts (Brown et al., 2020; Sun et al., 2023). 
Several prompting techniques have emerged 
recently. Chain-of-thoughts (CoT) prompting, one 
of the most popular techniques, replicates human 
cognitive process by integrating intermediate 
reasoning steps (Wei et al., 2023). Instead of 
attempting to reach the answer in a single leap, this 
approach encourages the model to divide 
complicated problems into smaller, more 
manageable components, imitating the way 
humans think. Tree-of-thoughts prompting extends 
CoT by constructing a tree of logical steps towards 
the solution (Yao et al., 2023). Multimodal CoT 
combines text and vision into a two-phase 
cognitive process (Zhang et al., 2023). On the other 
hand, instead of fixed prompts, LLMs themselves 
can be used to dynamically generate prompts for 
downstream tasks (Zhou et al., 2022) or to produce 
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and execute programming code as intermediate 
steps (Gao et al., 2022). Interestingly, LLMs are 
demonstrated to be capable of generating and 
analysing recursive reasoning, a unique cognitive 
ability akin to human thinking processes 
(Dąbkowski and Beguš, 2023). 

Despite these emerging techniques, LLMs often 
generate outputs that deviate from the ground truth 
labels (Wadhwa et al., 2023). To address this 
challenge, instruction tuning emerges as a solution, 
employing supervised learning on a set of 
instructions to narrow the gap between the output 
generated by the base LLMs and the desired output 
(Zhang et al., 2023). Additionally, human and 
augmented feedback play a crucial role in 
mitigating this issue. Akyurek et al. (2023) 
introduced a reinforcement learning framework 
equipped with a critique generator to guide GPT-3 
in improving its output. Diao et al. (2023) proposed 
the Active-Prompt method, which entails human 
manual annotation of uncertain rational chains. 
Furthermore, Paranjape et al. (2023) devised a 
novel framework that freezes LLMs and integrates 
reasoning steps from an external program. 

These prior studies underscore the significance 
of furnishing high-calibre instructions and 
feedback, as well as employing suitable prompting 
techniques, to achieve the desired output with 
LLMs. 

3 Our System 

In this section, we describe the general approach 
and the implementation of our system.  

3.1 General Approach 

Our system must be built upon an instruction 
tuneable LLM. The approach involves two stages: 
instruction tuning and inference. 

3.1.1 Instruction Tuning 

Our approach is founded on the premise that 
problems necessitating reasoning often allows 
multiple reasoning paths to arrive at the same 
correct solution. To instil the desired reasoning 
capabilities in an LLM, we adopt a supervised 
tuning approach using instructions derived from 
the training data (Zhang et al., 2023) and 
implement a stacked framework employing diverse 
instruction sets to foster the model’s ability in 
navigating varied reasoning paths. A summary of 
each step is provided below. 

Step 1. We train the base model with Chain-of-
thoughts (CoT) instructions. These instructions can 
be generated from the training data. This step trains 
the model on what is right.  

Step 2. We further provide feedback-based 
instructions to tuned model, expecting it to rectify 
the discrepancy between its current reasoning 
manner and the desired reasoning manner.  

Step 3. We further provide self-evaluation 
instructions to the tuned model, expecting it to 
enhance its ability to improve itself through 
autonomous evaluation.  

Figure 2 summarises the main steps in this 
supervised finetuning pipeline. Section 3.3.1 
describes how we construct these instruction sets. 

 

Figure 2: Supervised instruction tuning pipeline. 

3.1.2 Inference Procedure 

Language models are susceptible to random errors 
in reasoning, potentially resulting in incorrect 
conclusions (Wang et al., 2023). To mitigate this 
issue, these researchers introduced the self-
consistency (SC) inference strategy. It operates on 
the principle of generating diverse reasoning paths 
and selecting the most consistent conclusion by 
marginalising any inconsistent ones. We adapt this 
inference strategy to align with the characteristics 
of our own model. 

In our tailored version of SC, we iteratively 
prompt the model with a progressively increasing 
temperature, a parameter controlling the 
randomness of the output (Wang et al., 2020), until 
the answers converge. We introduce a threshold α 
to determine the convergence point. The 
convergence condition is if the average of the 
predicted labels for an utterance is not less than α 
or not greater than 1 − α.  Once the answers 
converge, the final label for each utterance is the 
average prediction rounded to the nearest integer, 
which is eventually either 0.0 or 1.0. Besides the α 
threshold, we also impose a minimum and 
maximum number of prompts so that sufficient 
runs are performed while ensuring the algorithm 
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still stops if it does not converge. Figure 3 presents 
a piece of pseudo-code for this inference strategy. 

 

Global variables: min, max,	α  
 

Converged(prediction): 
If each item in prediction array ≥ α or ≤ 1 − α: 

Return True 
Return False 
 

Infer(prediction, dialogue, temp, count): 
Prompt for dialogue, with temperature as temp  
Assign result array to new_prediction 
Set prediction to mean of all predictions so far 
Increase count by 1 
Increase temp by a constant 
If (max ≤ count) or  
    (min ≤ count and Converged(prediction)): 

Return round(prediction) 
Return Infer(prediction, dialog, temp, count) 

Figure 3: Our tailored version of SC. 

3.2 System Implementation 

 In this section, we describe how we implement 
the framework we conceptualise above. 

3.2.1 Instruction Construction 

We use the training data to construct the 
instruction sets. Each instruction comprises two 
components: a prompt and a desired output. Our 
finetuning pipeline requires three different 
instruction sets to be built as follows. 

 CoT instruction set—The prompt includes a 
labelled conversation sampled from the training 
data, a CoT that describes the progression of 
emotional states for the last speaker, and a query 
tasking the model with identifying the triggers. The 
desired output is a CoT that leads to the accurate 
identification. We programmatically generate these 
instructions using a dynamic text template that 
outlines the sequence of reasoning. The template 
contains placeholders that can be populated with 
matching information derived from the 
conversation. Figure 4 shows how a CoT 
instruction is crafted for a typical conversation, 
where each utterance originates from a single 
speaker, an emotion flip trigger is present, and it is 
not a self-trigger. Our implementation of the text 
template is versatile, capable of accommodating 
various scenarios, including those with no triggers, 
self-triggers, multiple triggers, and instances where 
an utterance is attributed to multiple or all speakers. 

Feedback-based instruction set—The prompt 
is constructed by sampling a labelled conversation 
and asking the model to identify the emotion flip 

triggers directly. Subsequently, its output is then 
compared with the ground truth labels. If 
discrepancies arise, the prompt is extended with 
feedback regarding missed or misidentified 
triggers, and a request for the model to retry the 
task. We utilise the model tuned using CoT 
instructions for this step, which enables us to assess 
its current reasoning manner. Following this, the 
desired output is a CoT that leads to the correct 
answer. Figure 5 provides an overview of 
constructing a feedback-based instruction through 
the integration of a labelled conversation and a 
baseline model. In our implementation, we again 
employ dynamic text templates to generate the 
prompt and desired output for various scenarios, 
including instances where multiple triggers are 
missed or misidentified, all triggers are 
misidentified, and self-triggers are misidentified. 

 

Figure 4: The construction of a CoT instruction for a 
conversation. Texts in colour indicate placeholders. 

 

 

Figure 5: The construction of a feedback-based 
instruction for a conversation. Texts in colour indicate 
placeholders. 

Self-evaluation instruction set—The prompt is 
structured similarly to a feedback-based 
instruction, involving the selection of a labelled 
conversation, and prompting the model finetuned 
in Step 2 to replicate its current reasoning 
approach. However, in cases where the output is 
inaccurate, the prompt extends to instruct the 
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model to evaluate its own output and iteratively 
retry the task until satisfaction is achieved.  The 
desired output is an augmented CoT that emulates 
a recursive reasoning and evaluation process, 
culminating in the correct answer. Our approach to 
constructing self-evaluation instructions is inspired 
by research indicating that LLMs possess recursive 
reasoning abilities (Dąbkowski and Beguš, 2023). 
Leveraging this capability, we instruct LLMs to 
engage in autonomous evaluation. To implement 
this idea, we compile a dynamic text template to 
simulate a recursive thinking process with 
information extracted from the given conversation. 
This template enables the generation of a variable 
number of iterations, mirroring the iterative 
cognitive process observed in humans, which may 
not always yield perfect results in the initial 
iterations. Figure 6 illustrates the construction of 
the prompt and the simulation of an expected 
output using two reasoning iterations before 
reaching a correct answer. 

 

Figure 6: The construction of a self-evaluation 
instruction for a conversation. Texts in colour indicate 
placeholders. 

As the building of the feedback-based and the 
self-evaluation instruction sets requires the model 
to undergo learning from the preceding step, our 
system must be finetuned in a sequential pipeline. 

3.2.2 Prompting Finetuned Model 

Following the finetuning of the base LLM with the 
three prepared instruction sets, we proceed with the 
SC inference procedure to make predictions for 
unlabelled data. A critical aspect of this process 
involves prompting the finetuned model in diverse 
manners to elicit varied reasoning paths. Given the 
utilisation of three instruction sets, we employ 

three distinct prompt variants to prompt the model 
in identifying emotion flip triggers. The prompt 
variants utilised are detailed in Figure 7. 

Extracting the label from the output sequence 
generated by the model requires engineering effort 
due to the dynamics of LLMs. When multiple 
labels exist in the output, our implementation 
selects the last label. This aligns with our tuning 
technique, where intermediate predictions may 
undergo adjustments during subsequent re-
evaluations. 

 

Figure 7: Multiple prompts variants are utilised to 
produce varied reasoning paths. 

4 Experimental Setup 

4.1 Datasets 

In our experiments, we utilise the datasets 
provided by the organisers. The data for both tracks 
originate from previously published datasets. The 
Hindi-English dataset is sourced from MaSaC, a 
multimodal dataset compiled from the Hindi TV 
series Sarabhai vs Sarabhai (Bedi et al., 2023). The 
English monolingual dataset is sourced from 
MELD, a dataset containing dialogues from the 
American TV sitcom Friends (Poria et al., 2019). 
In the Hindi-English track, a new emotion, 
contempt, appears, which does not impact our 
approach since it solely focuses on the positions of 
the utterance before and after the emotion flip, not 
the emotions themselves. Table 1 summarises the 
shape of both datasets. 

Upon closer examination of the training splits, it 
is evident that a significant portion of triggers lies 
within a proximity of either 1 or 2 utterances 
preceding the emotion flip. Furthermore, 
conversations in the Hindi-English dataset exhibit 
greater length and involve more speakers on 
average compared to the English-only dataset. 
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Statistics on the training splits for both tracks are 
shown in Table 2. 

 Split Instances Utterances Triggers % Triggers 
Hindi-English dataset 
 Train 4,894 98,777 6,542 6.62% 
 Val 3,89 7,462 434 5.82% 
 Test 3,85 7,690 461 5.99% 
English-only dataset 
 Train 4,000 35,000 5,575 15.93% 
 Val 426 3,522 494 14.03% 
 Test 1,002 8,642 1,169 13.53% 

 

Table 1: Shape of the datasets provided. 

  Utterances Triggers Speakers Distance 
Hindi-English dataset 

 Min 1.00 0.00 1.00 0.00 
 Mean 20.19 1.34 3.59 1.43 
 75% 27.00 2.00 4.00 2.00 
 Max 106.00 6.00 10.00 21.00 
English-only dataset 
 Min 2.00 0.00 1.00 0.00 
 Mean 8.75 1.39 2.62 1.38 
 75% 12.00 2.00 3.00 1.00 
 Max 24.00 12.00 8.00 17.00 

 

Table 2: Statistics on the training splits. 

4.2 Evaluation Method 

We utilise the F1 score of the identified trigger 
utterances, labelled as 1, as the primary evaluation 
metric. The F1 score, which balances precision and 
recall, serves as a robust metric to evaluate the 
model’s ability to accurately identify emotion flip 
triggers while considering both false positives and 
false negatives (Goutte and Gaussier, 2005). 

To assess the efficacy of our system, we 
establish a baseline by referring to the results 
obtained using masked memory networks and 
transformers by the researchers who proposed the 
EFR task (Kumar et al. 2022). Subsequently, we 
conduct an ablation study, aiming to discern the 
impact of each component in the architecture on the 
overall performance of the model. Furthermore, we 
also perform cross-lingual inference to assess the 
cross-lingual capability of our approach. 

4.3 Tuning and Inference Settings 

We use the model GPT-3.5-Turbo-1106 by 
OpenAI 2  as the base model and Azure 3  as the 
infrastructure. For each track, we separately 

 
2https://platform.openai.com/docs/mo
dels 

finetune the model in five epochs using a batch size 
of 8 and a learning rate multiplier of 1.0, while also 
incorporating a prompt loss weight. Due to the 
impromptu and informal nature of conversations, a 
low content filter setting is consistently used 
throughout all stages so that the model accepts 
more contents in their original form. 

After finetuning, we generate predictions for the 
test data using the SC inference strategy. We 
incorporate a minimum of 3 prompts and a 
maximum of 10 prompts, alongside an α threshold 
set at 0.75. This stringent threshold dictates that a 
consensus of at least 3 out of 4 (75%) agreement 
amongst predicted labels for an utterance must be 
achieved before the final label is determined. 
Furthermore, the temperature parameter is 
initialised at 0.0 and progressively incremented by 
0.1 in each iteration. This iterative adjustment 
facilitates the introduction of increasing 
randomness into the model’s output, thereby 
mitigating the risk of overfitting. 

5 Results and Analysis 

5.1 Main results 

In this section, we conduct five executions for each 
test and report the averages to obtain reliable 
results. Table 3 provides a summary of the models’ 
performance across all tests conducted. 

Initially, to evaluate the base LLMs, we conduct 
one-shot prompting using the GPT-3.5-Turbo-1106 
and GPT-4-0613 models. This prompt construction 
mirrors that of the CoT instruction set. Our results 
reveal that GPT-4-0613 achieves an F1 score of 
0.60 for the English-only track, surpassing the 
baseline by 0.061 points, without prior training. 
Similarly, it shows comparable performance in the 
Hindi-English track, achieving an F1 score of 0.57. 

Subsequent tests demonstrate that finetuning the 
base GPT-3.5-Turbo-1106 model with additional 
instructions consistently enhances its performance. 
We utilise a distinct prompt variant at each tuning 
stage for zero-shot prediction to prompt the model 
to reason according to our desired approach, as 
described in Section 3.3.1. We then apply the SC 
procedure on the fully tuned model. Integrating all 
proposed techniques into the final model yields a 
plateau F1 score of 0.77 and 0.76 for the Hindi-
English and English-only tracks respectively. Note 

3 https://azure.microsoft.com 
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that in the SemEval-2024 Task 10 leader board, we 
achieved 0.79 for the former track, which was our 
best run. The results reported in this paper are the 
mean F1 scores across five runs. 

System Prompt  Accuracy  F1 (0) F1 (1) 
Hindi-English track 
  GPT-3.5-Turbo-1106  1-shot 0.95 0.97 0.53 
  GPT-4-0613 1-shot 0.95 0.97 0.57 
  GPT-3.5 tuned Step 1 0-shot 0.96 0.98 0.67 
  GPT-3.5 tuned Step 2 0-shot 0.97 0.98 0.71 
  GPT-3.5 fully tuned 0-shot 0.97 0.99 0.73 
  GPT-3.5 fully tuned SC 0.98 0.99 0.77 
English-only track  
  GPT-3.5-Turbo-1106  1-shot 0.88 0.93 0.57 
  GPT-4-0613 1-shot 0.89 0.93 0.60 
  GPT-3.5 tuned Step 1 0-shot 0.91 0.95 0.69 
  GPT-3.5 tuned Step 2 0-shot 0.92 0.96 0.72 
  GPT-3.5 fully tuned 0-shot 0.93 0.96 0.74 
  GPT-3.5 fully tuned SC 0.95 0.96 0.76 

 

Table 3: Model performance in different settings. 

5.2 Error Analysis 

Our quantitative analysis indicates that the test data 
provided are representative of the training data. 
Table 4 shows the confusion matrices of the fully 
tuned models for both tracks. In the Hindi-English 
code-mixed track, the model exhibits a tendency to 
misclassify triggers as non-triggers. Conversely, in 
the English-only track, a notable balance exists 
between misidentified triggers and misidentified 
non-triggers, despite the class imbalance. 

Upon closer examination, Table 5 displays the 
frequency of each type of emotional flip, along 
with the corresponding number of accurate 
predictions. In this table, a prediction for a 
conversation is considered accurate only when all 
triggers and non-triggers are correctly identified. 
The data shows that across both tracks, emotion 
flips from neutral to joy and from joy to neutral are 
the most prevalent. The model achieves accuracy 
rates of 67.27% and 70.16% in identifying the 
triggers for these flips in the Hindi-English and 
English-only tracks respectively. 

5.3 Ablation Analysis 

In our ablation analysis, we note a consistent 
improvement in model performance with the 
addition of each instruction set. Table 6 illustrates 
these findings, indicating that each successive step 
reduces the number of false positive and false 
negative errors from its previous step. Despite that, 
it also introduces new errors into the predictions; 

however, the number of new errors is consistently 
lower than the errors reduced. Notably, tuning the 
model with CoT instructions at Step 1 emerges as 
the most impactful, reducing error rates by 38% 
and 25%, thus increasing F1 scores by 0.15 and 
0.12 points for the Hindi-English and English 
tracks respectively. This highlights the efficacy of 
instruction tuning. Even with only one instruction 
set, the disparity between the base model’s 
reasoning manner and the desired reasoning 
manner is significantly diminished. Subsequent 
steps further diminish errors, ultimately resulting in 
the plateau performance observed when employing 
all techniques in conjunction. 

         
      True Label 

  0 1 

Pr
ed

ic
te

d 0 7,201 113 

1 73 303 
Hindi-English track 

  
True Label 

  0 1 

Pr
ed

ic
te

d  0 0  7,197 285 

1 0 276 884 
English-only track 

Table 4: Confusion matrices for the fully tuned models. 

   

Hindi-English track 
  Emotion Before 
  Ag Ct Dg Fr Jy Nt Sn Sp 

Em
ot

io
n 

Af
te

r  

Ag  5! 1" 1" 8# 23$% 0" 3& 
Ct 4!  0" 2" 12' 15$" 0" 1$ 

Dg 3& 1$  0" 0" 1$ 0" 1$ 
Fr 2" 0" 1"  2" 13$$ 2& 1$ 
Jy 6( 2$ 1" 3$  38&& 5) 3! 
Nt 27&$ 22$) 2" 15$) 72%&  9% 13' 
Sn 4! 2$ 0" 3& 12' 12(  1$ 
Sp 6( 3! 0" 0" 7) 14$) 0"  

 

  English-only track 
  Emotion Before 
  Ag Dg Fr Jy Nt Sn Sp 

Em
ot

io
n 

Af
te

r 

Ag  13# 9# 14* 65!% 15$" 28$' 
Dg 7(  1$ 3& 19$" 4& 5! 
Fr 2& 1"  4& 20$! 3! 4& 
Jy 12# 1$ 3!  119#% 19$) 31$* 
Nt 73%% 16$! 17$) 119'&  47)" 67%) 
Sn 22$& 2" 2$ 13$" 49!&  17( 
Sp 27$* 7# 2& 24$' 83(( 13$$  

 

Table 5: Statistics of the model’s accurate predictions 
for each emotion flip. Cell values present the 
frequency for an emotion flip, while subscript values 
present the number of accurate predictions. Top 2 
mostly seen flips are highlighted in grey. 
Abbreviations: Anger (Ag), Contempt (Ct), Disgust 
(Dg), Fear (Fr), Joy (Jy), Neutral (Nt), Sadness (Sn), 
and Surprise (Sp). 
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Error  GPT-3.5 +CoT +Feedback +Self-eval +SC 

Hindi-English track 
FP 223 113+&",$!" 105+*,$* 89+$!,&' 73+(,&& 
FN 185 137+$!,($ 130+#,$) 124+),$" 113+(,$# 

English-only track  
FP 583 414+&%,$') 351+$*,*$ 313+',)# 276+#,!" 
FN 478 344+!#,$#$ 319+$(,)$ 298+$",!$ 285+),$# 

 

Table 6: Ablation analysis of the model performance at 
each stage. Superscript values indicate the number of 
errors reduced, while subscript values indicate the 
number of newly introduced errors. Abbreviations: 
False Positive (FP), False Negative (FN). 

5.4 Effectiveness of SC Inference Strategy 

Previous sections show that SC improves the F1 
score for both tracks. This section proceeds to deep 
dive into this strategy. Table 7 shows a 
conversation excerpted from the test data between 
Mark and Rachel, wherein there exists no triggers 
for Rachel’s emotion flip from anger to neutral, 
hence the ground truth label is [0, 0, 0]. This 
instance is tricky, as Mark’s question, Rachel’s 
response, and her subsequent exclamation all 
appear relevant to the emotion flip. With α set at 
0.75, after the first three prompt variants, the 
model’s outputs do not align. However, as we 
prompt with a progressively higher temperature, 
convergence is achieved after 8 iterations, with at 
least 75% of the predictions for each utterance now 
in agreement. As a result, the predicted label 
matches the true label. This example aptly 
illustrates the efficacy of SC in resolving 
disagreements between different reasoning paths. 

Mark: Why do all your coffee mugs have numbers 
on the bottom? [Surprise] 

Rachel:  Oh. That’s so Monica can keep track. That 
way if one on them is missing, she can be 
like, “Where’s number 27?!” [Anger] 

Rachel:  Y’know what? [Neutral] 
 

Iter Prompt Temp Prediction Running Average 
1 1 0.0 [0, 1, 0] [0.00, 1.00, 0.00] 
2 2 0.1 [0, 0, 0] [0.00, 0.50, 0.00] 
3 3 0.2 [0, 0, 1] [0.00, 0.33, 0.33] 
4 1 0.3 [0, 0, 1] [0.00, 0.25, 0.50] 
5 2 0.4 [0, 0, 0] [0.00, 0.20, 0.40] 
6 3 0.5 [1, 0, 0] [0.17, 0.17, 0.33] 
7 1 0.6 [0, 0, 0] [0.14, 0.14, 0.28] 
8 2 0.7 [0, 1, 0] [0.14, 0.25, 0.25] 

 

Table 7: Efficacy of SC in helping resolve 
disagreements between different reasoning paths for a 
sample conversation excerpted from test data. 

5.5 Cross-lingual Inference 

To assess the cross-lingual generalisability of our 
approach, we use the model trained on the Hindi-
English dataset to predict outcomes for the 
English-only track, and reciprocally, the model 
trained on the English-only track for the Hindi-
English dataset. The results presented in Table 8 
demonstrate that our models achieve commendable 
performance, both surpassing GPT-4-0613, despite 
not being finetuned on data representative of the 
test data provided. 

Model Test Data Accuracy  F1 (0) F1 (1) 
Hindi-English  English-only 0.92 0.95 0.69 
English-only Hindi-English 0.96 0.98 0.64 

 

Table 8: Model performance using cross-lingual 
inference. 

5.6 Model Hallucination 

When fine-tuning GPT-3.5, we encountered a 
peculiar form of hallucination—an instance where 
the model generates outputs that largely deviate 
from the provided training data (Ji et al., 2023). 
Despite being explicitly instructed to classify each 
utterance as ‘0’ or ‘1’, the model predictions 
include ‘2’ for some utterances in one execution 
and include more labels than the number of 
utterances in another execution. We eventually 
decided to omit these anomalous executions to 
maintain the integrity of our results. Currently, 
controlling this type of hallucination remains a 
challenge. Further research is necessary to mitigate 
this phenomenon and improve the model’s 
adherence to its operational constraints. 

5.7 Other Constraints 

In our experiments, we leverage GPT models 
hosted on Azure cloud infrastructure. While this 
offers convenience and efficiency, they are not 
without their associated costs. Our finetuning 
process demands 3.5 hours of training time, 
encompassing approximately 2 million training 
tokens alongside nearly 200,000 prompting tokens. 
Additionally, the SC strategy necessitates multiple 
prompts to attain convergence, thereby extending 
the time required to derive final predictions. With 
our settings, the average model speed is 1.22 
seconds per prompt for the Hindi-English track and 
0.83 seconds per prompt for the English-only track. 
In light of these considerations, it is crucial to 
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diligently address cost and resource constraints 
when building the models. 

6 Conclusion & Future Work 

The paper presents an instruction based LLM 
finetuning framework to address the EFR task. Our 
strategy employs a multilayered finetuning 
pipeline, utilising three diverse instruction sets to 
steer the model towards recognising emotion flip 
triggers and, and finalised with the application of 
the SC inference strategy. The framework benefits 
significantly from the provision of high-quality 
instructions, as evidenced by the progressively 
improved performance of our model as better-
quality feedback and instructions are incorporated 
into the finetuning pipeline. The robustness of our 
framework is demonstrated by its proficient 
handling of both English-only and Hindi-English 
code-mixed datasets, affirming its effectiveness in 
varied linguistic scenarios. Through these findings, 
we trust that our study makes a meaningful impact 
on the field of prompt-based learning techniques by 
harnessing the evolved capabilities of LLMs. 

Moving forward, our focus will be on an in-
depth exploration of various instruction types to 
devise the optimal way to amalgamate them for the 
most generalisability. Furthermore, we plan to 
develop a systematic method for constructing a 
processing pipeline tailored to this task and 
potentially applicable to related NLP tasks. This 
pipeline will be designed to encompass a CoT 
prompts, incorporate feedback mechanisms, and 
integrate self-evaluation instructions to ensure a 
robust, repeatable process for enhancing model 
performance. 
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