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Abstract

Hallucinations in large language models
(LLMs) have recently become a significant
problem. A recent effort in this direction
is a shared task at Semeval 2024 Task 6,
SHROOM, a Shared-task on Hallucinations
and Related Observable Overgeneration Mis-
takes (Mickus et al., 2024). This paper de-
scribes our winning solution ranked 1st and 2nd
in the 2 sub-tasks of model agnostic and model
aware tracks respectively. We propose a meta-
regressor framework of LLMs for model evalu-
ation and integration that achieves the highest
scores on the leader board. We also experi-
ment with various transformer based models
and black box methods like ChatGPT, Vec-
tara, and others. In addition, we perform an
error analysis comparing GPT4 against our best
model which shows the limitations of the for-
mer.

1 Introduction

The recent rapid deployment of large language
models (LLMs) has led to a hallucination prolif-
eration which poses a barrier to the reliability and
trustworthiness of LLMs (Lin et al., 2022). One of
the widely agreed upon definition of hallucinations
(Maynez et al., 2020; Xiao and Wang, 2021) is out-
put text containing information not relevant to the
input or a desired output. Hallucinations should
not be thought of as an occasional nuisance, but
rather as a systemic issue inherent to these mod-
els and their web-sourced training data which can
be rife with bias and misinformation. This can di-
rectly cause user discontent when these systems are
implemented in production or real-world scenarios.

These type of hallucinations have been widely
studied in the context of text related tasks like
machine translation (Dale et al., 2022; Guerreiro
et al., 2023a,b), summarization (Huang et al., 2023;
van der Poel et al., 2022) and dialogue generation
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(Shuster et al., 2021a). Gaps in hallucination detec-
tion methods in LLM outputs persist across many
such tasks.

Despite some progress in hallucination detec-
tion, existing methods may rely upon comparisons
to reference texts, overly simplified statistical mea-
sures, reliance upon individual models, or anno-
tated datasets which can limit their extensibility.
Our approach leverages the uncertainty signals
present in a diverse basket of LLMs to detect hallu-
cinations more robustly.

In this paper, we present a meta-regressor frame-
work for LLM model selection, evaluation, and
integration.1 The overall approach is depicted in
Figure 1. For the first step, each LLM-generated
sentence is compared against stochastically gener-
ated responses with no external database as with
SelfCheckGPT (Manakul et al., 2023). A meta-
model that leverages input from a diverse panel
of expert evaluators evaluates and integrates the
output of multiple iterations of the process.

Our framework focuses on creating a meta-
model for identifying hallucinations, with the idea
that the meta-model’s prediction power is linked
to the performance of the underlying base mod-
els. This model achieves the highest scores in the
SemEval-2024 Task 6 competition across three sub-
tasks: Machine translation, Paraphrase generation,
and Definition modeling.

2 Related Work

In this section, we describe prior work on halluci-
nation detection methods. We will examine two po-
tential streams for hallucination detection: model-
aware detection and black-box detection. Model-
aware techniques have access to the model’s inter-
nals, such as weights and logits while black-box
methods do not has access to such model internals.

1The code of MetaCheckGPT is available at
https://github.com/rahcode7/semeval-shroom

342



Figure 1: MetaCheckGPT: Generated sentences are compared against stochastically generated responses.

2.1 Model aware Detection

These methods require access to model weights and
their logits (van der Poel et al., 2022). For machine
translation task, Guerreiro et al. (2023b) showcased
that sequence log-probability performs quite well
compared to reference based methods. For article
generation task, (Varshney et al., 2023) uncertainty
estimation techniques(Azaria and Mitchell, 2023)
(Tian et al., 2023) were used to detect hallucination
in ChatGPT. Other methods to detect hallucinations
include Retrieval Augmented Generation (Shuster
et al., 2021b) and Chain of Verification based tech-
niques (e.g., (Lei et al., 2023)).

2.2 Black box Detection

With the prevalence of closed source models, there
has been recent work on black-box hallucination
detection methods which doesn’t require the model
inputs, only the generated text. For example, a re-
cently proposed system SelfCheckGPT (Manakul
et al., 2023) utilizes a sampling-based technique
based on the idea that sampled responses for hallu-
cinated sentences will contradict each other.

This model achieves the highest scores across

two sub-tasks: Machine translation, Paraphrase
generation, and Definition modeling. We perform
extensive studies of LLMs like ChatGPT, Mistral,
and others to showcase their failure points.

3 Task Description and Datasets

In the SHROOM Task-6, the organizers propose
a binary classification task to predict a machine
generated sentence is a hallucination or not.

The organizers considered 3 types of text gener-
ation tasks - Definition Modelling, Machine Trans-
lation and Paraphrase Generation.

3.1 Task Tracks

The shared task was further divided into 2 tracks:
model agnostic and model aware. Figure 2 de-
scribes sample examples of hallucinations contain-
ing source, reference and output text for each task
type.

3.1.1 Model Agnostic Track
In this track, only the inputs, references and out-
puts were provided The details of the model that
produced the text was masked from the participants.
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Figure 2: Hallucination examples for each task type

For data preparation, the SHROOM organizers fol-
lowed the structure described in (Bevilacqua et al.,
2020).

Model Agnostic Track

Task Train Dev Test

Definition Modeling 10000 187 562
Machine Translation 10000 187 563
Paraphrase Generation 10000 125 375

Total 30000 499 1500

Table 1: Sample counts for the Model Agnostic Track

3.1.2 Model Aware Track
In this track, along with the inputs, references and
outputs, the model name and its checkpoints were
also provided from which the outputs were gener-
ated.

Model Aware Track

Task Train Dev Test

Definition Modeling 10000 188 562
Machine Translation 10000 188 563
Paraphrase Generation 10000 125 375

Total 30000 501 1500

Table 2: Sample Statistics for the Model Aware Track

It is worthwhile to note that the organizers chose
to share the training which was not labeled and
only the development set was labeled.

4 Our Methodology

Algorithm 1 Meta-Model Training/Evaluation

1: Input: Base models M , Meta-models N ,
Threshold x

2: Output: Top performing meta-model
3: for each base model m in M do
4: scorem ← Evaluate m (MAE)
5: end for
6: FilteredMs←Models.filter(MAE < x)
7: for each meta-model n in N do
8: Train n with FilteredMs
9: metaScoren ← Spearman MAE

10: end for
11: TopMeta ← Meta-model in N with lowest

Spearman MAE

Our approach is centered around building a meta-
model for hallucination detection, with the hypoth-
esis that the quality of prediction from underlying
base models is highly correlated with the meta-
model’s predictive power. Given a set of base
models M = {m1,m2, ...,mn} and actual labels
L = {l1, l2, ..., ln} in the dataset, the Spearman
correlation between predicted hallucination scores
H and actual labels is given by:

ρs(H,L) = 1− 6
∑

d2i
n(n2 − 1)

where di is the difference between the ranks of
corresponding elements in H and L.

Our overall process was to identify the meta-
model that minimized this mean absolute error
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(MAE) function ϵ, where

ϵ =
1

n

n∑

i=1

(Yi − Ŷi)

because Spearman correlation was one of the sec-
ondary metrics for Task 6 evaluation. Here, Yi
represents the actual Spearman correlation values
for hallucination and Ŷi represents the predicted
values. Our overall process is captured in Algo-
rithm 1.

Algorithms 2, 3, and 4 detail how some of our
different meta-models were trained. These algo-
rithms follow a unified framework, initiating with
the setup of training data and labels, with the ulti-
mate aim of fine-tuning a meta-regressor model. A
meta-search cross-validation approach was used to
conduct a hyperparameter space for each model’s
architecture. The process involves iterating over
the defined hyperparameter space for each algo-
rithm, fitting the meta-regressor with the training
data, and concluding with the identification and
preparation of the highest-performing model for
deployment. The training process for selecting
meta-models is included in the Appendix. RMSE,
MAE, and R-squared were used as additional prox-
ies in meta-model evaluation.

Because this problem was assessed with binary
classification accuracy, data was classified based
on the Spearman correlation coefficient according
to:

Class =

{
’Hallucination’, ρs > 0.5

’Not Hallucination’, otherwise

to convert our regression problem into a binary
classification task, simplifying the analysis and in-
terpretation of results. Once converted to a classifi-
cation problem, the primary metric used for eval-
uation was accuracy. Precision, Recall, F1 Score,
and a confusion matrix were used for secondary
evaluation.

5 Experiments & Results

5.1 Experimental set-up
Training was conducted both on cloud using APIs
as well as locally on V100/A100 GPUs for faster
processing times.

We conducted our initial experiments with sim-
pler base models including DeBERTa (He et al.,
2021), DistilBERT (Sanh et al., 2020), RoBERTa
(Liu et al., 2019), LLaMA 2 (Touvron et al., 2023),

and Mixtral of Experts (Jiang et al., 2024) among
others. Preliminary results indicated an accuracy
of 0.5 to 0.6, prompting us to continue our search
for more performant base models.

Additional analysis indicated our base mod-
els ChatGPT(Achiam et al., 2023), SelfCheck-
GPT(Manakul et al., 2023) and Vectara(Hughes,
2023) showed promising results in initial tests, with
accuracy in the range of 0.6 to 0.7. Prompt engi-
neering, self-consistency checks and uncertainty
based modeling techniques were used to maximize
performance in base models. The training process
for more performant meta-models, including ran-
dom forest and elementary neural ensemble models,
can be found in the Appendix.

5.2 Results

Classification performance obtained on the training
data, which includes an accuracy of 0.8317, preci-
sion of 0.7447, recall of 0.875, and an F1 score of
0.8046.

Positive Negative
Positive TP: 49 FN: 5
Negative FP: 12 TN: 35

Cross-validation and regularization techniques
were applied to increase confidence that the per-
formance observed on the training data would be
maintained on test data.

Track Accuracy Rho Rank
Aware 80.6 0.71 1/46

Agnostic 84.7 0.77 2/49

Table 3: Final Modeling results on the test set

5.3 Discussion

Our results, as summarized in Table 3, demonstrate
the effectiveness of meta-regressor models in de-
tecting hallucinations across various text genera-
tion tasks. One of the key strengths of the approach
is that a diverse set of base models is able to bet-
ter capture a wide range of features indicative of
hallucinations than a single model or knowledge
base alone may be able to. High performance met-
rics underline the promise of combining base mod-
els/knowledge bases through meta-learning.

Our approach is not without its limitations. The
black-box nature of some base models (e.g. GPT4),
limits understanding of the internal mechanisms
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driving the generation and detection of hallucina-
tions. More detailed limitations of the system and
directions for future work are examined in the fol-
lowing section.

5.4 Limitations

There are several limitations to the current work.
For example, all language models have inherent
limitations such as bias and lack of world ground-
ing. Unfortunately, more recent models such as
GPT have also started to function as black box
systems. The corpus for training data for base lan-
guage models is predominantly English. The sys-
tem also would not readily integrate into a produc-
tion system without additional effort. The system
could also benefit from the ability to learn from
feedback. All of the base language models may
also suffer from potential safety issues like false
confidence and over-reliance, etc.

6 Conclusion

Our meta-model strategy represents a step forward
in addressing the challenges of mitigating halluci-
nations and the importance of a nuanced approach
to model selection, evaluation, and integration. The
work also acknowledges the need for additional
research into more transparent, interpretable, and
multilingual models, as well as the integration of
external knowledge sources and feedback mecha-
nisms to refine and improve hallucination detection
methods. In the future, some areas we would like
to work on include utilizing additional multilingual
datasets, expand the scope of our work to more set
of text generation task, and focus more on white
box hallucination detection systems.

While the current system was tested on some
machine translation tasks, we believe it could ben-
efit from more work on multilingual datasets. The
current system could improve by integrating with
external knowledge bases via retrieval augmented
generation. The system could also be made more
usable by distilling its knowledge into a portable
fine-tuned model widely available to others. An-
other area for potential improvement includes inte-
gration of human or agent feedback through rein-
forcement learning.
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A Appendix: MR Training Processes

Algorithm 2 MR1 Training: Algorithm 2 outlines
the process of training a meta-regressor model with
hyperparameters for random forest.

Require: Xtrain, ytrain ▷ Training data and
labels

Ensure: modelbest ▷ Optimally tuned model
1: MR←MetaRegressor()
2: H ← {n_estimators ∈ {α1, . . . , αN},
3: max_depth ∈ {β1, . . . , βM},
4: min_samples_split ∈ {γ1, . . . , γL},
5: min_samples_leaf ∈ {δ1, . . . , δK},
6: max_features ∈ {’auto’, ’sqrt’},
7: bootstrap ∈ {True,False}}
8: MetaCV = MetaSearchCV (MR,H, cv)
9: MetaCV.fit(Xtrain, ytrain)

10: paramsbest = MetaCV.bestparams
11: modelbest = MetaRegressor(paramsbest)
12: modelbest.fit(Xtrain, ytrain)

Algorithm 3 MR2 Training: Algorithm 3 outlines
the process of training a meta-regressor model with
hyperparameters for gradient boosted trees.

Require: Xtrain, ytrain ▷ Training data and
labels

Ensure: modelbest ▷ Optimally tuned model
1: MR←MetaRegressor()
2: H ← {n_estimators ∈ η1, . . . , ηn,
3: learning_rate ∈ θ1, . . . , θn,
4: max_depth ∈ ι1, . . . , ιn,
5: min_child_weight ∈ κ1, . . . , κn,
6: gamma ∈ λ1, . . . , λn,
7: subsample ∈ µ1, . . . , µn,
8: colsample_bytree ∈ ν1, . . . , νn,
9: reg_alpha ∈ ξ1, . . . , ξn,

10: reg_lambda ∈ ζ1, . . . , ζn}
11: MetaCV = MetaSearchCV (MR,H, cv)
12: MetaCV.fit(Xtrain, ytrain)
13: paramsbest = MetaCV.bestparams
14: modelbest = MetaRegressor(paramsbest)
15: modelbest.fit(Xtrain, ytrain)

Algorithm 4 MR3 Training: Algorithm 4 the train-
ing procedure for a meta-regressor model designed
for an elementary neural ensemble model.

Require: Xtrain, ytrain ▷ Training data and
labels

Ensure: modelbest ▷ Optimally tuned model
1: MR←MetaRegressor()
2: H ← {num_layers ∈ η1, . . . , ηn,
3: For each layer i in 1, . . . , num_layers :
4: units_i ∈ δ1, . . . , δn,
5: activation_i ∈ ζ1, . . . , ζn,
6: l2_reg ∈ ι1, . . . , ιn,
7: dropout ∈ γ1, . . . , γn
8: learning_rate ∈ θ1, . . . , θn, }
9: MetaCV = MetaSearchCV (MR,H, cv)

10: MetaCV.fit(Xtrain, ytrain)
11: paramsbest = MetaCV.bestparams
12: modelbest = MetaRegressor(paramsbest)
13: modelbest.fit(Xtrain, ytrain)
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