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Abstract

This paper presents the application of BERT in
SemEval 2024 Task 2, Safe Biomedical Natu-
ral Language Inference for Clinical Trials. The
main objectives of this task were: First, to in-
vestigate the consistency of BERT in its rep-
resentation of semantic phenomena necessary
for complex inference in clinical NLI settings.
Second, to investigate the ability of BERT to
perform faithful reasoning, i.e., make correct
predictions for the correct reasons. The submit-
ted model is fine-tuned on the NLI4CT dataset,
which is enhanced with a novel contrast set,
using binary cross entropy loss.

1 Introduction

NLI stands for Natural Language Inference. It is a
task in natural language processing (NLP) where
the goal is to determine the relationship between
two text segments: a premise and a hypothesis.
The task typically involves classifying whether the
hypothesis is entailed, contradicted, or neutral with
respect to the premise.

NLI has emerged as a beacon of hope for Clini-
cal Trial Reports (CTRs). Its ability to handle vast
amounts of medical evidence could revolutionize
the interpretation and retrieval of CTRs. Clini-
cal trials stand as pillars in experimental medicine,
scrutinizing the efficacy and safety of novel treat-
ments (Avis et al., 2006). CTRs meticulously out-
line trial methodologies and findings, guiding the
development of targeted interventions for patients.
Yet, the staggering quantity of published CTRs ren-
ders manual review impractical for devising new
treatment protocols (DeYoung et al., 2020).

The proposed textual entailment task aims to ad-
vance the understanding of models’ behavior and
enhance existing evaluation methodologies for clin-
ical NLI. By systematically applying controlled
interventions, each engineered to probe a specific
semantic phenomenon in natural language and nu-
merical inference, the study seeks to assess the

robustness, consistency, and faithfulness of mod-
els in clinical settings, thereby investigating their
reasoning capabilities.

In this paper, we present our findings on Se-
mEval 2024 Task 2, Safe Biomedical Natural Lan-
guage Inference for Clinical Trials (Jullien et al.,
2024). The aim of our method is to assess the ro-
bustness, consistency, and faithfulness of BERT
(Devlin et al., 2019), Pre-training of Deep Bidirec-
tional Transformers for Language Understanding,
on the clinical NLI. Our method follows to steps:
the first step is fine-tuning BERT on the Multi-
evidence Natural Language Inference for Clinical
Trial Data (NLI4CT) (Jullien et al., 2023) which
is enhanced with a novel contrast set. Then, the
prediction step, consists on the determining the
inference relation (entailment vs contradiction) be-
tween CTR - statement pairs.

The rest of the paper is structured in the follow-
ing manner: Section 2 provides the main objective
of the Task. Section 3 describes our system. Sec-
tion 4 details the experiments. And finally, Section
5 concludes this paper.

2 Task Description

This paper focuses on the task of textual entailment
within the domain of clinical trial data analysis,
specifically targeting Clinical Trial Reports (CTRs).
CTRs serve as comprehensive documents contain-
ing essential information regarding various aspects
of clinical trials, including eligibility criteria, in-
terventions, results, and adverse events. Automat-
ing the analysis of CTRs through natural language
processing techniques can significantly facilitate
researchers’ understanding and decision-making
processes.

The task of NLI4CT involves analyzing anno-
tated statements and determining their inference
relation with the information contained in the CTR
premises. These statements, characterized by an
average length of 19.5 tokens, make claims about

432



various sections of the CTRs, including:

• Eligibility criteria: A set of conditions for pa-
tients to be allowed to take part in the clinical
trial

• Interventions: Information concerning the
type, dosage, frequency, and duration of treat-
ments being studied.

• Results: Number of participants in the trial,
outcome measures, units, and the results.

• Adverse events: These are signs and symp-
toms observed in patients during the clinical
trial.

The NLI4CT task presents several challenges
inherent to clinical trial data analysis, including nu-
merical and quantitative reasoning, vocabulary and
syntax variations, and comprehension of complex
semantic structures. To address these challenges,
interventions have been implemented targeting the
following aspects:

• Numerical Reasoning: Models’ abilities to
apply numerical and quantitative reasoning
are specifically targeted, given the importance
of such inference in clinical trial analysis.

• Vocabulary and Syntax: Acronyms, aliases,
and syntactic patterns common in clinical
texts are addressed to improve model robust-
ness and performance.

• Semantics: Complex reasoning tasks involv-
ing longer premise-hypothesis pairs are inter-
vened upon to enhance model capabilities in
handling intricate semantic structures.

3 System Description

To evaluate BERT on the SemEval 2024 Task 2:
Safe Biomedical Natural Language Inference for
Clinical Trials, we have fine-tuned BERT model
on the NLI4CT dataset. we follow standard proce-
dures for fine-tuning transformer-based models on
natural language inference tasks. Here’s a descrip-
tion of the process:

• Data Preprocessing: Tokenize the CTR
premises and statements using the BERT tok-
enizer. Encode the tokenized sequences into
input IDs, attention masks, and segment IDs
as required by BERT.

• Model Architecture: Utilize the BERT ar-
chitecture, which is a pre-trained transformer
model. Add a classification layer on top of
the BERT model to predict the entailment re-
lation (entailment vs. contradiction) between
the CTR premises and statements.

• Fine-tuning Objective: Fine-tune the pre-
trained BERT model on the NLI4CT task us-
ing supervised learning. Minimize the binary
cross-entropy loss between the predicted en-
tailment labels and the ground truth labels.

• Training Procedure: Train the fine-tuned
BERT model on the training data compris-
ing CTR premises and statements along with
their corresponding labels (entailment or con-
tradiction).

4 Experimental Results

We experimented our model on on the SemEval
2024 Task 2: Safe Biomedical Natural Language
Inference for Clinical Trials. The experiment has
been conducted in Google Colab environment1,
The following libraries: Transformers - Hugging
Face2 (Wolf et al., 2020), and Tensorflow3 were
used to train and to assess the performance of the
model.

4.1 Datasets

The premises within NLI4CT are sourced from
1000 publicly accessible Breast cancer Clinical
Trial Reports (CTRs) in English4. These records
are overseen by the U.S. National Library of
Medicine and adhere to the HIPAA Privacy Rule.
The CTRs are categorized into four sections: El-
igibility criteria, Intervention, Results, Adverse
Events (Jullien et al., 2023).

A team of domain experts, including organizers
of clinical trials from a prominent cancer research
institution, participated in annotating the data. An-
notators were tasked with generating entailment
statements based on two CTR premises. These en-
tailment statements make objectively true claims
about the content of the premises. Annotators could
choose to create statements regarding one or both
premises. Substantial statements typically involve

1https://colab.research.google.com/
2https://huggingface.co/docs/transformers/index
3https://tensorflow.org
4https://ClinicalTrials.gov
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summarization, comparison, negation, relation, in-
clusion, superlatives, aggregation, or rephrasing,
requiring an understanding of multiple aspects of
the premise. Annotators then select a subset of
facts from the premises to support the claims in the
statement.

Subsequently, a negative rewriting technique
(Chen et al., 2020) was employed, altering the pre-
viously generated entailment statements to include
objectively false claims while maintaining the orig-
inal sentence structure and length. This technique
aims to mitigate the likelihood of stylistic or lin-
guistic patterns favoring either entailment or con-
tradictory statements. Annotators then extract a
subset of facts from the premises that contradict
the claims in the false statement.

The resulting dataset comprises 2400 annotated
statements with labels, premises, and evidence.
The dataset was divided into train/test/dev sets in
a 70/20/10 ratio. The two classes and four sec-
tions are evenly distributed across the dataset and
its partitions (Jullien et al., 2023).

4.2 Evaluation Metric

The assessment of task performance will entail mul-
tiple stages. Initially, the performance on the orig-
inal NLI4CT statements without any alterations,
employing the Macro F1-score for evaluation.

Subsequently, the performance will be assess
on the contrast set, comprising all statements with
interventions. In this evaluation, two novel met-
rics—faithfulness and consistency—will be uti-
lized, with their definitions provided below.

• Faithfulness: quantifies how accurately a sys-
tem predicts outcomes for the right reasons.
Essentially, it assesses the model’s capacity to
adjust its predictions accurately when encoun-
tering semantic-altering interventions. To
compute faithfulness for a set of N statements
xi in the contrast set C, alongside their orig-
inal statements yi and model predictions f(),
Equation 1 is utilized.

Faithfulness =
1

N

N∑

1

|f (yi)− f (xi)| (1)

xi ∈ C : Label (xi) ̸=
Label (yi) , andf (yi) = Label (yi)

• Consistency: assesses how consistently a
system generates identical outputs for prob-
lems that are semantically equivalent. Con-
sequently, it gauges a system’s capability to
assign the same label to both original state-
ments and contrast statements for interven-
tions that preserve semantics. This means that
even if the ultimate prediction is incorrect, the
representation of the semantic phenomenon
remains consistent across the statements. To
calculate consistency for a set of N statements
xi in the contrast set C, along with their cor-
responding original statements yi and model
predictions f(), Equation 2 is employed.

Consistency =
1

N

N∑

1

1− |f (yi)− f (xi)| (2)

xi ∈ C : Label (xi) = Label (yi)

4.3 Experimental Settings

During the fine-tuning of BERT model on the
NLI4CT taining set, we set the hyper-parameters
as follows: 10−5 as the learning rate, 30 epochs, 64
as the max sequence length, and 16 as batch size.
Table 1 summarizes the hyperparameters settings
of BERT base model.

Hyperparameters Settings
Learning rate 10−5

Batch size 16
Epochs 30
Max sequence length 64

Optimizer
Adam
(Kingma and Ba, 2015)

Loss Binary Cross Entropy

Table 1: Hyperparameters settings for the model in the
experiments

4.4 System Performance

The reported results for the fine-tuned BERT model
on the NLI4CT task are as follows:

• Macro F1-score: 0.62

• Faithfulness: 0.44

• Consistency: 0.54
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The model achieved the 26th position in Macro
F1-score, Faithfulness and Consistency among a
total of 32 teams. The reported score of 0.62 in the
Macro F1-score indicates that the model achieves
moderate performance in accurately predicting the
inference relation between CTR premises and state-
ments. Moreover, the Faithfulness score, which
is 0.44, suggests that the model struggles in mak-
ing correct predictions for the right reasons. This
indicates potential issues with reasoning or inter-
pretation of the textual entailment task. On the
other hand, the Consistency score, which is 0.54,
indicates moderate consistency in the model’s out-
puts for similar instances. However, there is room
for improvement to achieve higher consistency.

The suboptimal performance of the fine-tuned
BERT model on the NLI4CT task could be at-
tributed to several factors: Firstly, clinical trial data,
especially Clinical Trial Reports (CTRs), often con-
tain domain-specific terminology, complex medi-
cal concepts, and nuanced language. BERT, being
pre-trained on general-domain text, may struggle
to comprehend and accurately reason over such
specialized content. Secondly, The success of fine-
tuning BERT depends on various hyperparameters,
such as learning rate, batch size, and optimization
algorithm. Suboptimal choices for these param-
eters can hinder convergence and degrade model
performance. Thirdly, The interventions applied to
the test set statements could introduce complexities
or biases that the model is not equipped to handle,
the model may struggle to generalize effectively.
By addressing these factors the model performance
can be improved in clinical trial data analysis tasks.

5 Conclusion

in this paper, an investigation is conducted into
the utilization of BERT for NLI4CT, which under-
scores the complex nature of textual entailment
tasks within the medical domain. The described ap-
proach tackles SemEval 2024 Task 2: Safe Biomed-
ical Natural Language Inference for Clinical Trials.
The model secured the 27th position among a total
of 32 teams.

Despite challenges such as domain-specific ter-
minology and nuanced semantics, our study reveals
the potential for advancements in automated analy-
sis of clinical trial reports. By recognizing the need
for domain-specific approaches and leveraging the
models, we pave the way for more accurate and re-
liable models tailored to the intricacies of medical

data. Ultimately, our findings advocate for con-
tinued research and development efforts aimed at
enhancing natural language processing techniques
for clinical applications, thereby contributing to im-
proved healthcare outcomes and medical decision-
making processes.
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Here’s a breakdown of the results:

Control:

• F1-score: 0.6212

• Recall: 0.5899

• Precision: 0.6560

Contrast:

• F1-score: 0.4786

• Recall: 0.3655

• Precision: 0.6933

Faithfulness:

• Score: 0.4375

Consistency:

• Score: 0.5365

Paragraph Consistency:

• Score: 0.5813

Continuous Faithfulness:

• Score: 0.4160

Continuous Consistency:

• Score: 0.4080

Numerical Paragraph Consistency:

• Score: 0.5804

Numerical Continuous Faithfulness:

• Score: 0.5789

Numerical Continuous Consistency:

• Score: 0.6667

Definitions Consistency:

• Score: 0.5353

Paragraph:

• F1-score: 0.6293

• Recall: 0.5646

• Precision: 0.7107

Continuous:

• F1-score: 0.0

• Recall: 0.0

• Precision: 0.0

Numerical Paragraph:

• F1-score: 0.5

• Recall: 0.4845

• Precision: 0.5165

Numerical Continuous:

• F1-score: 0.0

• Recall: 0.0

• Precision: 0.0

Definitions:

• F1-score: 0.6001

• Recall: 0.5267

• Precision: 0.6973
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