BAMBAS at SemEval-2024 Task 4: How far can we get without looking at hierarchies?

Arthur Vasconcelos, Luiz Felipe De Melo, Eduardo Goncalves, Eduardo Bezerra, Aline Paes, Alexandre Plastino


Abstract
This paper describes the BAMBAS team’s participation in SemEval-2024 Task 4 Subtask 1, which focused on the multilabel classification of persuasion techniques in the textual content of Internet memes. We explored a lightweight approach that does not consider the hierarchy of labels. First, we get the text embeddings leveraging the multilingual tweets-based language model, Bernice. Next, we use those embeddings to train a separate binary classifier for each label, adopting independent oversampling strategies in each model in a binary-relevance style. We tested our approach over the English dataset, exceeding the baseline by 21 percentage points, while ranking in 23th in terms of hierarchical F1 and 11st in terms of hierarchical recall.
Anthology ID:
2024.semeval-1.70
Volume:
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Month:
June
Year:
2024
Address:
Mexico City, Mexico
Editors:
Atul Kr. Ojha, A. Seza Doğruöz, Harish Tayyar Madabushi, Giovanni Da San Martino, Sara Rosenthal, Aiala Rosá
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
455–462
Language:
URL:
https://aclanthology.org/2024.semeval-1.70
DOI:
10.18653/v1/2024.semeval-1.70
Bibkey:
Cite (ACL):
Arthur Vasconcelos, Luiz Felipe De Melo, Eduardo Goncalves, Eduardo Bezerra, Aline Paes, and Alexandre Plastino. 2024. BAMBAS at SemEval-2024 Task 4: How far can we get without looking at hierarchies?. In Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 455–462, Mexico City, Mexico. Association for Computational Linguistics.
Cite (Informal):
BAMBAS at SemEval-2024 Task 4: How far can we get without looking at hierarchies? (Vasconcelos et al., SemEval 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.semeval-1.70.pdf
Supplementary material:
 2024.semeval-1.70.SupplementaryMaterial.txt
Supplementary material:
 2024.semeval-1.70.SupplementaryMaterial.zip