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Abstract

This study describes the model built in Task
9: brainteaser in the SemEval-2024 competi-
tion, which is a multiple-choice task. As ac-
tive participants in Task 9, our system strate-
gically employs the decoding-enhanced BERT
(DeBERTa) architecture enriched with disen-
tangled attention mechanisms. Additionally,
we fine-tuned our model using low-rank adap-
tation (LoRA) to optimize its performance fur-
ther. Moreover, we integrate focal loss into our
framework to address label imbalance issues.
The systematic integration of these techniques
has resulted in outstanding performance met-
rics. Upon evaluation using the provided test
dataset, our system showcases commendable
results, with a remarkable accuracy score of
0.9 for subtask 1, positioning us fifth among
all participants. Similarly, for subtask 2, our
system exhibits a substantial accuracy rate of
0.781, securing a commendable seventh-place
ranking. The code for this paper is published
at: https://github.com/123yunnandaxue/
Semveal-2024_task9.

1 Introduction

The human reasoning process includes two types of
thinking: vertical and horizontal. Vertical thinking
is a sequential analysis process based on rationality,
logic, and rules. Horizontal thinking is a divergent
and creative process. The success of language mod-
els has inspired the natural language model (NLP)
community to focus on tasks that require implicit
and complex reasoning. Although this type of verti-
cal thinking task is widespread, horizontal thinking
puzzles have received little attention (Jiang et al.,
2024). Task 9 in the SemEval-2024 competition:
brainteaser is a multiple-choice task that tests the
model’s ability to demonstrate horizontal thinking
and challenge default common sense associations.
The task consists of two subtasks, sentence and
word puzzles (Jiang et al., 2023).

• Subtask 1: Sentence-type brain teaser where
the puzzle defying commonsense is centered
on sentence snippets.

• Subtask 2: Word-type brain teaser where the
answer violates the default meaning of the
word and focuses on the letter composition of
the target question.

In recent years, machine learning models have
garnered significant attention. Traditionally, these
models have employed a two-step process involv-
ing the extraction of hand-crafted features from
documents followed by classification using algo-
rithms like Naïve Bayes (Zhang, 2004), SVM
(Cortes and Vapnik, 1995), HMM (Trabelsi et al.,
2012), or random forests (Ren et al., 2015). How-
ever, this approach presents limitations, such as
the need for meticulous feature engineering and
reliance on domain knowledge for feature design.
To address these shortcomings, neural approaches
have emerged. Early attempts, such as latent se-
mantic analysis (LSA) (Dumais et al., 1988) and
neural language models, initially underperformed
compared to classical models but paved the way
for developing more powerful embedding models.
Significant advancements were made with the intro-
duction of word2vec (Mikolov et al., 2013), ELMo
(Peters et al., 1802), RoBERTa (Liu et al., 2019),
GPT (Radford et al., 2019), BERT (Devlin et al.,
2018), and subsequent models like GPT-3 (Brown
et al., 2020) and GShard (Lepikhin et al., 2020),
which boast increasingly more significant parame-
ters and training datasets (Minaee et al., 2021).

This paper proposes a deep learning system for
Task 9 in SemEval-2024, titled brainteaser. We
use the decoding-enhanced BERT (DeBERTa) (He
et al., 2020) model with disentangled attention as
the base model and use LoRA (Hu et al., 2021) to
fine-tune the model. Focal loss was used to address
the issue of label imbalance. The back-translation
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Figure 1: The overall architecture of the proposed
method.

method is used to enhance the original dataset, and
the processed dataset is used to train the model.
The experimental results of this paper were ulti-
mately presented in Task 9 of the SemEval-2024
competition. On the original dataset, the accuracy
of Task 1 was 0.9, ranking fifth; The accuracy of
Subtask 2 was 0.78, ranking seventh. The rest of
this paper is organized as follows. In Section 2,
we provided a detailed description of the proposed
system and model. The experiment and results are
discussed in Section 3. Finally, Section 4 presents
the conclusion.

2 DeBERTa

Transformer (Vaswani et al., 2017) has become the
most effective neural network architecture for neu-
ral language models. Unlike recurrent neural net-
works (RNNs) (Zaremba et al., 2014) that process
text sequentially, transformers apply self-attention
functionality to parallelly calculate the attention
weight of each word in the input text. Therefore,
compared to RNNs, they can perform large-scale
model training in parallel. In this paper, the De-
BERTa model we use is a new transformer neural
language model that improves the Bert model us-
ing two novel techniques: a disentangled attention
mechanism and an enhanced mask decoder. Fig-
ure 1 shows the structure of the system.

2.1 Tokenizer

Given a training data D = {X(m), y(m)}Mm=1,
X(m) is the input text, y(m) is the corresponding

ground-true label, tokenizer is applied to transform
X(m) as,

X = {[CLS], x1, x2, ..., xn, [SEP]} (1)

where xi is the token in the text, [CLS] represents
the classified characters, and [SEP] represents the
terminating characters.

2.2 Encoder
DeBERTa’s encoder is mainly composed of multi-
layer transformer encoders, and each transformer
encoder is composed of multiple sub-layers. The
following are the main components of the encoder
of the DeBERTa model.

Token embeddings. Each token in the input text is
first converted into the corresponding word embed-
ding vector. First, we use an embedding layer to
map each token xi to its corresponding word em-
bedding vector. The embedding matrix E is with
dimension V ×d, where V is the size of the vocabu-
lary and d is the dimension of the word embedding.
Then, the embedding vector corresponding to the
i-th token xi can be expressed as ei = E[xi].

Positional encoding. Positional encoding repre-
sents the absolute position of each word in the
input sequence. Suppose we have a position encod-
ing matrix P with dimensions N × d, where d is
the dimension of the word embedding. Then, the
position encoding vector corresponding to the i-th
position pi can be expressed as pi = P [i]. After
adding positional encoding, the new word embed-
ding sequence we get is E(X) + [p1, p2, ..., pN ].

Relative positional encoding. The relative posi-
tion encoding matrix is a learnable parameter ma-
trix with dimensionsL× 2D, where L is the max-
imum sequence length and D is the word embed-
ding dimension. In DeBERTa, the calculation pro-
cess of relative position encoding is as follows:

For each pair of words (i, j), we calculate its
relative position relationship vector rij .

rij = PE(i−j) (2)

where PE(i−j) represents the encoding vector at
position (i − j) in the relative position encoding
matrix. Finally, the input text sequence X that
needs to be sent to transformer encoder layers can
be obtained by adding the word embedding vector,
position encoding, and relative position encoding.

xi = E[xi] + pi + rij (3)
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X = {x1, x2, ..., xn} (4)

Transformer encoder layers. Each transformer
encoder layer contains the following sub-layers:

1. Multi-head self-attention. This sub-layer al-
lows the model to focus on different parts of
the input sequence simultaneously to capture
global information.

2. Feed-forward neural network. This sub-layer
contains a feed-forward neural network for
non-linear transformation and feature extrac-
tion of the context vector at each position.

When the input text sequence passes through the
encoder of the DeBERTa model, it can be expressed
as:

H = Encoder(X) (5)

where H is the encoded context representation, X
is the input text sequence, and Encoder() is the
Encoder part of the DeBERTa model.

2.3 Output Layer

In the DeBERTa model, the output layer is usu-
ally used to predict downstream tasks, such as text
classification, named entity recognition, etc.

Linear transformation. First, map the output of
the transformer encoder to the output space, usually
through a linear transformation (fully connected
layer). Assuming we have a weight matrix W and
a bias vector b, the calculation of the linear trans-
formation can be expressed as:

Z = H ·W + b (6)

where Z is the output after linear transformation.

Activation function. The softmax function is a
commonly used activation function in the output
layer in multi-classification problems. The formu-
lation of the softmax function is as follows:

softmax(xi) =
exi

∑N
j=1 e

xj
(7)

where the xi is the i-th element in the input vector
Z, and N is the length of the input vector. Finally,
the category label is obtained by the following for-
mula.

ŷ = argmax(softmax(H ·W + b)) (8)

Focal loss. Focal loss is a dynamically scaled
cross-entropy loss. A dynamic scaling factor can
dynamically reduce the weight of easily distin-
guishable samples during training, thereby quickly
focusing the center of gravity on those difficult-to-
distinguish samples. The formula for focal loss is
as follows.

FL(pt) = −αt(1− pt)
γ log(pt) (9)

where the αt is a trainable parameter, the γ is a hy-
perparameter, and the pt represents the probability
of the category of t obtained by softmax function.

2.4 LoRA

The low-rank adapter (LoRA) significantly reduces
the number of trainable parameters for downstream
tasks by freezing the weights of pre-trained models
and injecting trainable rank decomposition matri-
ces into each layer of the transformer architecture.
Research has shown that the model quality and fine-
tuning of LoRA on RoBERTa, DeBERTa, GPT-2
(Radford et al., 2019), and GPT-3 (Brown et al.,
2020) are equivalent or better.

LoRA injects trainable low-rank matrices into
transformer layers to approximate the parameter up-
date. For a pre-trained weight matrix W ∈ Rn×d,
LoRA decomposes the update with a low-rank fac-
torization,

W +∆W = W +W downW up (10)

where W down and W up are both trainable param-
eters. Specifically, LoRA applied such an update
to the query and value projection matrix in the
multi-head attention. For a specific input Hl−1 to
the linear projection in multi-head attention, LoRA
can be defined as,

Hl = Hl + γ ·Hl−1W
downW up (11)

where γ was used to scale the contribution of
LoRA.

3 Experimental Results

Datasets. The training set for subtask 1 (507 data)
and subtask 2 (396 data) are processed using back-
translation to enhance the model’s efficiency. The
dataset is translated into Chinese, Russian, Ara-
bic, French, German, Spanish, Portuguese, Italian,
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Method Loss Subtask 1 Subtask 2

LoRA CE 0.93 0.51
Focal 0.83 0.67

AdaLoRA CE 0.37 0.37
Focal 0.51 0.32

Prompt-Tuning CE 0.17 0.22
Focal 0.17 0.27

R-Drop CE 0.96 0.80
Focal 0.34 0.40

Table 1: Accuracy of each strategy in dev data. Results
in bold are the best performance.

and Japanese and re-translated into English. The
translated results are added to the dataset to obtain
the enhanced dataset: the training set for subtask 1
(5070 data) and the training set for subtask 2 (3960
data).

Evaluation Metrics. In this paper, the task will
be evaluated based on the following two accuracy
indicators.

• Example-based accuracy: treat each problem
(primitive/adversarial) as a separate instance.

• Based on group accuracy: each problem and
its related adversarial instances form a group.

Implementation Details. In this paper, we use the
back-translation method for data augmentation to
improve the model’s efficiency. After obtaining
more data, use focal loss to address the issue of
category imbalance in the data. LoRA is used to re-
duce the trainable parameters of downstream tasks
to save computational costs. This is the DeBERTa-
V2-xxlarge model with 48 layers and a 1536 hidden
size. The total parameters are 1.5B, and it is trained
with 160GB of raw data.

Comparative Results. In addition to using
LoRA, this paper also attempted methods such as
AdaLoRA (Zhang et al., 2023), Prompt-Tuning
(Lester et al., 2021), R-Drop (Wu et al., 2021),
using cross-entropy and focal loss as losses, with
accuracy as the evaluation metric. The results are
shown in Table 1.

Figure 2 depicts validation set accuracy for sub-
task 1 across various methods. Models employing
LoRA and R-Drop exhibit higher accuracy with
cross-entropy loss. Transitioning to focal loss saw
a 0.1 drop for LoRA, whereas R-Drop experienced
a significant decrease. AdaLoRA’s accuracy in-
creased by 0.14 with focal loss adoption, though

Figure 2: Accuracy of each strategy in dev data (Subtask
1).

Figure 3: Accuracy of each strategy in dev data (Subtask
2).

Dataset Subtask 1 Subtask 2

Back-translation method dataset 1.0 1.0
Original dataset 0.96 0.98

Table 2: Accuracy of LoRA in dev data.

performance remains subpar. Prompt-Tuning’s ac-
curacy remains stagnant regardless of the loss func-
tion, indicating poor performance.

Figure 3 shows the accuracy of various methods
on the validation set for subtask 2. From the figure,
we can see that the accuracy of the model using
LoRA increased by 0.16 after using focal loss. Af-
ter using focal loss, AdaLoRA’s accuracy dropped
by 0.05. Moreover, no matter which method the
model uses, its performance on subtask 2 is worse
than on subtask 1.

Finally, we found that when using cross-entropy,
R-Drop achieved the best results, with LoRA rank-
ing second. However, after using focal loss, the
accuracy of R-Drop decreased significantly. Based
on the results of cross-entropy and focal loss, using
LoRA yields the best result. Therefore, LoRA was
chosen for model fine-tuning, and then the data
augmentation dataset was used to train the model.
The obtained model was retrained using the orig-
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Dataset Subtask 1 Subtask 2

Original dataset 0.900 (5) 0.781 (7)
Semantic reconstruction 0.825 (8) 0.719 (9)
Recontextualization 0.800 (7) 0.812 (6)
Original dataset + Semantic reconstruction 0.825 (8) 0.719 (9)
Original dataset + Recontextualization 0.725 (8) 0.625 (10)
Original dataset + Semantic reconstruction + Recontextualization 0.842 (12) 0.771 (13)

Table 3: Result in the Test

inal dataset, and the results on dev are shown in
Table 2.

Table 3 shows the competition results on the Test,
with rankings displayed in parentheses. To ensure
that the task evaluates reasoning ability rather than
memory ability, adversarial versions of the original
data are constructed in two ways.

• Semantic reconstruction: rephrasing the origi-
nal question without changing the correct an-
swer and interfering factors.

• Context reconstruction: maintains the original
reasoning path but changes the question and
answer to describe the new contextual context.

As shown in Table 3, our model achieved good
results on both subtask 1 and subtask 2 on the orig-
inal dataset. In subtask 1, the accuracy reached
0.9, ranking fifth, and in subtask 2, the accuracy
reached 0.781, ranking seventh. Except for the final
dataset, the accuracy of our model ranks in the top
ten. Moreover, our model performs better on sub-
task 1 except for the context reconstruction dataset.
It is well proven that our system has demonstrated
competitive performance.

4 Conclusions

This paper describes a deep learning model for a
multiple-choice task (Task 9: brainteaser in the
SemEval-2024 competition), using DeBERTa as
the base model and achieving good results, ranking
fifth in accuracy in subtask 1 and ranking seventh
in accuracy in subtask 2. However, there is still
considerable room for improvement in the model.
Therefore, we will try more methods to improve
the model’s efficiency in the future.
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