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Abstract

Recent advancements in Large Language Mod-
els (LLMs) have propelled text generation to
unprecedented heights, approaching human-
level quality. However, it poses a new challenge
to distinguish LLM-generated text from human-
written text. Presently, most methods address
this issue through classification, achieved by
fine-tuning on small language models. Unfor-
tunately, small language models suffer from
anisotropy issue, where encoded text embed-
dings become difficult to differentiate in the
latent space. Moreover, LLMs possess the
ability to alter language styles with versatil-
ity, further complicating the classification task.
To tackle these challenges, we propose Gated
Mixture-of-Experts Fine-tuning (GMoEF) to
detect LLM-generated text. GMoEF lever-
ages parametric whitening to normalize text
embeddings, thereby mitigating the anisotropy
problem. Additionally, GMoEF employs the
mixture-of-experts framework equipped with
gating router to capture features of LLM-
generated text from multiple perspectives. Our
GMoEF achieved an impressive ranking of #8
out of 70 teams. The source code is available
on https://gitlab.com/werkzeug1/gmoef.

1 Introduction

The advancements in Large Language Models
(LLMs) have made generating human-level text
more accessible and cost-effective than ever before.
These advancements, coupled with techniques such
as chain-of-thought (Wei et al., 2022) and instruc-
tion tuning (Zhang et al., 2023), have enabled
LLMs in producing high-quality text on various
topics. However, in the real world, using LLM-
generate text is not always acceptable. Thus, there
is an urgent need for an easy yet reliable way to
detect LLM-generated text.

*Equal contribution.
†Corresponding author.

The SemEval-2024 task 8 (Wang et al., 2024)
aims to find methods that can detect machine-
generated text. In this work, we followed the most
common black-box detection paradigm, which re-
gards such problem as a classification task. We
argue that current methods all suffer from the fol-
lowing issues: (1) Anisotropy of the text embed-
dings (Li et al., 2020; Jiang et al., 2022; Gao et al.,
2021). Using small pretrained language models
(PLMs) to encode text is the very first step for all
classification models, however, PLM may suffer
from anisotropy issue, which makes text embed-
dings clustering in a small cone in the latent space,
and compromise the classification performance. (2)
Language style of LLM-generated text is dynamic.
As aforementioned, LLM can generate text that
accommodates various topics and contexts; differ-
ent LLM may have different optimization targets
during pre-training w.r.t. text generation. In other
words, finding a regular pattern for LLM-generated
text is difficult.

To this end, we propose Gated Mixture-of-
Experts Fine-tuning (GMoEF) to tackle these prob-
lems. GMoEF first uses the PLM to encode the text,
then employs parametric whitening transformation
to normalize the embedding distribution, in order to
mitigate the anisotropy issue; furthermore GMoEF
adopts Mixture-of-Experts equipped with gating
router to capture features of LLM-generated text
from multiple perspectives. Our GMoEF achieved
an impressive ranking of #8 out of 70 participating
teams on subtask B.

2 Related Work

Typically, LLM-generated text detection is re-
garded as a classification task aimed at distin-
guishing between LLM-generated text and human-
written text (Jawahar et al., 2020). With the ad-
vancement of LLMs, their text generation capa-
bilities have reached a level comparable to hu-
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man writing (Achiam et al., 2023), making it even
challenging for humans to differentiate between
LLM-generated text and human-written text. Con-
sequently, there is a need to develop effective detec-
tors to mitigate the potential misuse of LLM (Wu
et al., 2023). Recently, owing to the construction
of numerous high-quality benchmarks and inno-
vations in detection methods, significant progress
has been made in LLM-generated text detection
technology.

High-quality datasets play a crucial role in ad-
vancing research on detecting LLM-generated text.
HC3 dataset (Guo et al., 2023), represents one
of the pioneering open-source efforts aimed at
comparing ChatGPT-generated text with human-
written text.The CHEAT dataset (Yu et al., 2023)
comprises academic abstracts written by humans
sourced from IEEE Xplore, and is committed
to detecting artificially generated deceptive aca-
demic content from ChatGPT. Additionally, there
are numerous datasets containing text generated
by various LLMs, such as monolingual datasets
DeepfakeText-Detect-Dataset (Li et al., 2023),
GPT-written dataset (Liu et al., 2023b), and M4
(Wang et al., 2023), used in this competition.

Focusing on recently proposed detection meth-
ods, these primarily encompass zero-shot (Corston-
Oliver et al., 2001), fine-tuning LMs (Qiu et al.,
2020), adversarial learning (Hu et al., 2023), and
LLMs as detectors (Koike et al., 2023). DetectGPT
(Mitchell et al., 2023) is dedicated to the detection
of LLM-generated text by analyzing the structural
attributes inherent in the probability functions of
LLMs. Fagni et al. (2021) noted that fine-tuning
RoBERTa (Liu et al., 2019a) resulted in optimal
classification outcomes across diverse encoding
configurations. Recent studies (Liu et al., 2023a;
Chen et al.) have additionally supported the out-
standing performance of fine-tuned variants within
the BERT family, such as RoBERTa, in discerning
LLM-generated text. Yang et al. (2023) conducted
an adversarial data augmentation process on LLM-
generated text, and the results showed that models
trained with augmented data exhibited enhanced
robustness.

3 Methodology

In this section, we present our GMoEF in details.
We first introduce the overall architecture of the
proposed GMoEF, then give a comprehensive in-
sight of the adopted parametric whitening and gated
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Figure 1: The main architecture of GMoEF.
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3.1 System Architecture

The overall architecture is shown in Figure 1. Ba-
sically, our GMoEF follows the fine-tuning PLM
as the classifier paradigm. We first employ a PLM
as the text encoder. For text sample si, we take the
last layer output at each token position through a
mean pooling layer to obtain the text embedding
xi. Notably, we do not take the commonly adopted
[CLS] position output as the text embedding. Fur-
ther discussion can be found in section 4.3. On
acquiring the text embedding, we put it through a
gated mixture-of-expert layer, in which we adopt
parametric whitening module as the expert, to learn
the language feature of LLM-generated text. Fi-
nally, we employ a feed-forward network to give
the final probability score ŷi. We then use the cross-
entropy loss as the optimization target.

L = −
k∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi). (1)

3.2 Parametric Whitening

While we can utilize a PLM to encode texts into em-
beddings, current studies have revealed that PLMs
induce a non-smooth, anisotropic semantic space

548



for general texts(Li et al., 2020). Anisotropy is-
sue makes the embeddings occupy a narrow cone,
resulting in a high similarity between any em-
bedding pairs. Consequently, this situation can
have a negative impact on downstream classifi-
cation tasks (Jiang et al., 2022). The problem
is further exacerbated when mixing texts gener-
ated by multiple LLMs and written by humans.
Drawing inspiration from recent studies that aim to
improve PLM-generated text embeddings through
whitening-based methods (Su et al., 2021; Huang
et al., 2021), we incorporate a simple linear trans-
formation to transform the original PLM gener-
ated embeddings for deriving isotropic representa-
tions. Unlike previous whitening-based methods,
we make mean and variance as two learnable pa-
rameters, for better generalizability. We define the
whitening transformation as:

x̃i = (xi − b) ·W1, (2)

where xi ∈ Rd is the original text embedding,
while b ∈ Rd and W1 ∈ Rd×d′ are all parame-
ters to learn. x̃i is the transformed text embedding.

3.3 Gated Mixture-of-Experts

As mentioned earlier, the dynamic language style
of LLM-generated text poses a significant chal-
lenge for all detecting methods. We contend that
conventional methods are only capable of capturing
limited or partial aspects of the pattern. To this end,
we employ multiple parametric whitening layers
to learn a series of whitening embeddings. Each
embedding will focus on a certain aspect of the lan-
guage style, and we make the final decision based
on all these embeddings to draw a more robust
conclusion.

To implement our idea, we employ the mixture-
of-experts (MoE) architecture (Jacobs et al., 1991;
Eigen et al., 2013). More sepcifically, we employ
k parametric whitening layers as the experts, then
employ a gating router (Shazeer et al., 2016; Hou
et al., 2022) to aggregate them. For text sample si,
the gated mixture-of-expert output vi is defined as:

vi =

k∑

j=1

gj x̃i
(j), (3)

where x̃i
(j) represents j-th whitening transformed

embedding for text sample si. gj is the weight
derived from the gating router, which is defined as
follows:

g = Softmax(xi ·W2 + δ), (4)

δ = ϵ · Softplus(xi ·W3). (5)

where g ∈ Rk is the routing vector. We employ two
learnable parameters W2 and W3 to dynamically
adjust the weight for each expert. Inspired by Inoue
(2019), we incorporate a series of noises δ in the
gating router to balance these experts and avoid
overfitting.

4 Experiment

4.1 Experimental setup

Dataset and Evaluation. A sampled version of
M4 (Wang et al., 2023) dataset provided by the
organizer was adopted. Comprehensive statistics
regarding the dataset can be found in Table 1. Sub-
task A focuses on detecting single-model generated
text while subtask B focuses on the multi-model
generated text distinguish. However, subtask C has
a very different optimization target comparing to
subtask A and B, we opted not to conduct experi-
ments on this particular subtask. As mentioned in
the official task description, we employed Accu-
racy as the evaluation metric to assess the quality
of the detection.

Subtask #Train #Dev #Test
A (mono.) 119,757 5,000 34,272
A (multi.) 172,417 4,000 42,378
Subtask B 71,027 3,000 18,000

Table 1: Statistics on subtask A (monolingual & multi-
lingual) and subtask B.

Implementation details. We implemented the
GMoEF model based on RoBERTa1 (Liu et al.,
2019b) and XLM-R2 (Conneau and Lample, 2019)
for monolingual and multilingual scenarios respec-
tively, with Pytorch (Paszke et al., 2019) and the
Huggingface Transformers library (Wolf et al.,
2020). To facilitate distributed training, we uti-
lized the pytorch-lightning framework (Falcon and
The PyTorch Lightning team, 2019).

For optimization, we used the AdamW opti-
mizer with an initial learning rate of 2e−4 for the
RoBERTa part and 2e−5 for the non-RoBERTa
parts. The learning rate was linearly decayed with
10% warm-up steps. The hyperparameter settings

1https://huggingface.co/FacebookAI/roberta-large
2https://huggingface.co/FacebookAI/xlm-roberta-large
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Hyperparameter Symbol Value
Maximum words (tokens) - 512

# of experts k 3
# of epochs - 3

weight decay - 1e−2

seed - 42
batch size - 32†

hidden dim d′ 256
PLM embedding dim d 1024

Table 2: The hyperparameters of the experiment. †: on
a single GPU.

we employed are summarized in Table 2. All mod-
els are trained on two NVIDIA-SXM4-A100 GPUs.

4.2 Main Results
The main results on test set are shown in Table
3. Our GMoEF exhibits impressive results in both
subtask A and subtask B. However, our original
submissions (orig. sub.) for subtask A is not satis-
fying as expected. We attribute this discrepancy as
two folds: 1) It is possible that we failed to identify
the optimal checkpoint for generating predictions
on the test set due to a substantial disparity between
the number of training and evaluation samples. 2)
We searched for the optimal number of experts (k)
from 4 up to 10 during submission stage, however,
the best result shows up at k = 3.

We further find out that our GMoEF shows more
significant performance improvements on subtask
A (multilingual) and subtask B over the baselines.
However, interestingly, the GMoEF does not ex-
hibit significant advantages in subtask A (monolin-
gual). It may indicates that the GMoEF is better
suited for complex scenarios, for instance, the texts
are multilingual and may generated by multiple
models.

4.3 Ablation Study
In order to validate the unique contribution of each
module, we conduct experiments on the following
variants of GMoEF:

• Without parametric whitening (w/o PW). In
this variant, we substitute all parametric
whitening layers into the linear layers.

• Using [CLS] position output as the text em-
bedding (alt. PLM).

As shown in Table 3, all variants will lead to im-
mediate performance drop on all subtasks, which

Model A (mono.) A (multi.) B
baseline 0.885 0.809 0.746

orig. sub. 0.806 0.768 0.822
GMoEF 0.903 0.892* 0.848*
improv. 2.03% 10.3% 13.7%
w/o PW 0.896 0.848 0.732
alt. PLM 0.845 0.808 0.711

Table 3: Experimental results on subtask A (monolin-
gual & multilingual) and subtask B. The best results
are marked in boldface. w/o stands for “without”; alt.
stands for “alternative”. “*” denotes that the improve-
ments are significant at the level of 0.01 with paired
t-test.

further validates the necessity and effectiveness of
all proposed model components. Through these
results, we have several noteworthy observations:
(1) The multilingual and multi-model cases exhibit
more severe anisotropy issue. Removing the PW
layer can lead to a substantial decline in perfor-
mance. (2) The utilization of the [CLS] token for
text encoding proves to be coarse-grained when it
comes to capturing language styles or features in
the LLM-generated text detection task. In this con-
text, our token position pooling strategy emerges
as a more suitable alternative.

2 3 4 5 6 7
#experts

0.55
0.60
0.65
0.70
0.75
0.80
0.85

AC
C

400 steps 600 steps 800 steps

Figure 2: Experimental results on subtask B with dif-
ferent numbers of experts (k). Each line indicates start
testing after training for certain steps. Notably, a whole
training epoch takes ~1,110 steps under our setup.

4.4 Case Study on Number of Experts (k)

To reveal the effectiveness of our proposed gated
mixture-of-experts fine-tuning, we further conduct
experiments with different numbers of experts. De-
tailed results are shown in Figure 2, from these
results, we have the following observations: (1)
With the assistance of multiple experts, the model
tends to converge much earlier, often requiring less
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than a full epoch of training. The complete train-
ing process for subtask B takes about 1,110 steps.
However, as shown in Figure 2, the optimal result
is achieved at the 600th step with 3 experts. By
the 800th step, the performance becomes expert-
agnostic and suboptimal, indicating overfitting. (2)
Our GMoEF achieves best performance with k = 3.
With fewer experts, GMoEF can hardly capture the
dynamic language features of LLM-generated text,
and revert to conventional fine-tuning models. On
the other hand, increasing the number of experts
does not necessarily guarantee a better outcome.
For instance, when k = 5, these experts may reach
conflicting conclusions, leading to the worst re-
sult. While adding more experts may mitigate this
phenomenon, it also introduces additional noise,
ultimately resulting in suboptimal performance.

5 Conclusion and Future Work

In this work, we find out that current LLM-
generated text detection methods may suffer from
anisotropy issue, and they fail to capture the dy-
namic language features. To this end, we propose
GMoEF, which incorporates parametric whitening
to mitigate the anisotropy issue. GMoEF further
adopts the Mixture-of-Experts equipped with gat-
ing router to model the pattern of LLM-generated
text from multiple aspects. Our GMoEF exhibits
an impressive #8 out of 70 participating teams on
the multi-model generated text detection subtask.
Extensive experiments show that our GMoEF is
suitable for complicated scenarios where texts are
multi-lingual and may generated by multiple possi-
ble LLMs.

In the future, we aim to extend our observations
to other text classification tasks, and incorporate
LLM itself to detect machine-generated text.
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