@inproceedings{ebrahimi-etal-2024-sharif,
title = "Sharif-{MGTD} at {S}em{E}val-2024 Task 8: A Transformer-Based Approach to Detect Machine Generated Text",
author = "Ebrahimi, Seyedeh Fatemeh and
Akhavan Azari, Karim and
Iravani, Amirmasoud and
Qazvini, Arian and
Sadeghi, Pouya and
Taghavi, Zeinab and
Sameti, Hossein",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Tayyar Madabushi, Harish and
Da San Martino, Giovanni and
Rosenthal, Sara and
Ros{\'a}, Aiala},
booktitle = "Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.semeval-1.85",
doi = "10.18653/v1/2024.semeval-1.85",
pages = "565--572",
abstract = "In this paper, we delve into the realm of detecting machine-generated text (MGT) within Natural Language Processing (NLP). Our approach involves fine-tuning a RoBERTa-base Transformer, a robust neural architecture, to tackle MGT detection as a binary classification task. Specifically focusing on Subtask A (Monolingual - English) within the SemEval-2024 competition framework, our system achieves a 78.9{\%} accuracy on the test dataset, placing us 57th among participants. While our system demonstrates proficiency in identifying human-written texts, it faces challenges in accurately discerning MGTs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ebrahimi-etal-2024-sharif">
<titleInfo>
<title>Sharif-MGTD at SemEval-2024 Task 8: A Transformer-Based Approach to Detect Machine Generated Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seyedeh</namePart>
<namePart type="given">Fatemeh</namePart>
<namePart type="family">Ebrahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karim</namePart>
<namePart type="family">Akhavan Azari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amirmasoud</namePart>
<namePart type="family">Iravani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arian</namePart>
<namePart type="family">Qazvini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pouya</namePart>
<namePart type="family">Sadeghi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeinab</namePart>
<namePart type="family">Taghavi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hossein</namePart>
<namePart type="family">Sameti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we delve into the realm of detecting machine-generated text (MGT) within Natural Language Processing (NLP). Our approach involves fine-tuning a RoBERTa-base Transformer, a robust neural architecture, to tackle MGT detection as a binary classification task. Specifically focusing on Subtask A (Monolingual - English) within the SemEval-2024 competition framework, our system achieves a 78.9% accuracy on the test dataset, placing us 57th among participants. While our system demonstrates proficiency in identifying human-written texts, it faces challenges in accurately discerning MGTs.</abstract>
<identifier type="citekey">ebrahimi-etal-2024-sharif</identifier>
<identifier type="doi">10.18653/v1/2024.semeval-1.85</identifier>
<location>
<url>https://aclanthology.org/2024.semeval-1.85</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>565</start>
<end>572</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sharif-MGTD at SemEval-2024 Task 8: A Transformer-Based Approach to Detect Machine Generated Text
%A Ebrahimi, Seyedeh Fatemeh
%A Akhavan Azari, Karim
%A Iravani, Amirmasoud
%A Qazvini, Arian
%A Sadeghi, Pouya
%A Taghavi, Zeinab
%A Sameti, Hossein
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Tayyar Madabushi, Harish
%Y Da San Martino, Giovanni
%Y Rosenthal, Sara
%Y Rosá, Aiala
%S Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F ebrahimi-etal-2024-sharif
%X In this paper, we delve into the realm of detecting machine-generated text (MGT) within Natural Language Processing (NLP). Our approach involves fine-tuning a RoBERTa-base Transformer, a robust neural architecture, to tackle MGT detection as a binary classification task. Specifically focusing on Subtask A (Monolingual - English) within the SemEval-2024 competition framework, our system achieves a 78.9% accuracy on the test dataset, placing us 57th among participants. While our system demonstrates proficiency in identifying human-written texts, it faces challenges in accurately discerning MGTs.
%R 10.18653/v1/2024.semeval-1.85
%U https://aclanthology.org/2024.semeval-1.85
%U https://doi.org/10.18653/v1/2024.semeval-1.85
%P 565-572
Markdown (Informal)
[Sharif-MGTD at SemEval-2024 Task 8: A Transformer-Based Approach to Detect Machine Generated Text](https://aclanthology.org/2024.semeval-1.85) (Ebrahimi et al., SemEval 2024)
ACL