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Abstract

This paper presents our approach to classify-
ing hierarchically structured persuasion tech-
niques used in memes for Task 4 Subtask 1 of
SemEval 2024. We developed a custom classi-
fication head designed to be applied atop of a
Large Language Model, reconstructing hierar-
chical relationships through multiple fully con-
nected layers. This approach incorporates the
decisions of foundational layers in subsequent,
more fine-grained layers. To improve perfor-
mance, we conducted a small hyperparame-
ter search across various models and explored
strategies for addressing uneven label distribu-
tions including weighted loss and thresholding
methods. Furthermore, we extended our pre-
processing to compete in the multilingual setup
of the task by translating all documents into En-
glish. Finally, our system achieved third place
on the English dataset and first place on the
Bulgarian, North Macedonian and Arabic test
datasets.

1 Introduction

Memes are widely used for communicating in the
digital age, often laced with sarcasm and humor.
However, beyond their role in everyday conversa-
tion, memes are increasingly recognized for their
persuasive and manipulative potential. They hold
power to subtly influence opinions, incite reactions,
or shape public discourse and perception. Given
this dual nature of memes as both funny commu-
nication tool and vehicle for manipulation, there
arises a need to dissect and understand the persua-
sion techniques embedded within them. A proper
understanding of this domain enhances the ability
to reflect on and emotionally defend against ma-
nipulation. In this context, Large Language Mod-
els (LLMs) emerge as valuable assets in analyzing
and deciphering the persuasive elements within
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memes. Their automated, rapid processing capa-
bilities make them well-suited for parsing through
vast amounts of meme data, extracting patterns,
and discerning underlying features. Recognizing
the importance of this topic, the SemEval 2024
Task 4 Subtask 1 focuses on identifying persua-
sion techniques used in memes (Dimitrov et al.,
2024). The aim of the first subtask is to classify
the textual content from memes into various hierar-
chically structured persuasion techniques. In this
paper, we provide a detailed description of our sys-
tem including the custom classification head we
designed in order to incorporate the hierarchy of
the labels. Our system was able to achieve the third
place on the English test dataset. Furthermore, we
outperformed all other systems on the Bulgarian,
North Macedonian and Arabic test sets. In sum-
mary, (i) we created a custom classification head
well-suited for hierarchical settings, (ii) developed
a strategy for languages where less training data is
available, (iii) analyzed the influence of different
hyperparameters and strategies in the context of
multi-label classification problems. Our code is
publicly available1.

2 Related Work

In the context of multi-label classification, the pri-
mary aim is to identify all relevant classes associ-
ated with a given sample. Additionally, in a hierar-
chical classification setting the labels are partially
ordered, ranging from broader generic categories
to narrowed specific instances (Kiritchenko et al.,
2006). There is a large variety of approaches for
this task. While earlier methods were based on tree-
structures and graphs, more recent approaches rely
on deep learning models (Liu et al., 2023). This
section introduces various models adaptable to the
task of hierarchical multi-label classification.

1https://github.com/LSX-UniWue/Semeval-2024-Task-4
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2.1 Models

Transformer models consist of an encoder and de-
coder which can individually be adapted for se-
quence classification tasks (Vaswani et al., 2017).

Encoder-only Models are well-suited for se-
quence classification. These models directly gener-
ate a representation of the input sequence, which is
then passed through a classification head for predic-
tion. As huggingface (Wolf et al., 2020) allows us
to easily test different models, we compared a vari-
ety of encoder-only models. This includes differ-
ent BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) models. As the memes in our dataset
often contain hateful or toxic content, we include
specifically pre-trained BERT-base models. While
hateBERT (Caselli et al., 2021) is re-trained on
explicitly hateful content from banned reddit com-
munities, bert-hateful-memes-expanded (limjiayi,
2021) was fine-tuned on multiple datasets contain-
ing hateful memes.

Decoder-only Models like LLaMA 2 can be
adapted for sequence classification tasks by uti-
lizing the logits of the last token from the input
sequence (Huggingface). We evaluated the perfor-
mance of the 7b and 13b parameter versions of
LLaMA 2 (Touvron et al., 2023).

3 Dataset

The organizers provided English datasets for
training, validation and testing (7000/500/1500,
train/val/test). Additionally a dev set (1000) was
published to enable comparison of participating
systems on a separate leaderboard ahead of the fi-
nal submission on the test data. Each sample within
these datasets consists of an unique id, the URL
linking to the source of the meme, the transcribed
text content and a list of associated labels. For ex-
ample, the text: Stay on high moral ground and
we will win - Raphael Warnoc, has the associated
labels: Appeal to authority and Glittering general-
ities (Virtue). The labels of the memes are struc-
tured hierarchically, with Ethos, Pathos and Logos
in the first layer. In total, there are 28 labels with
20 persuasion techniques in the last layer, which
we will refer to as leaves. It is important to note
that the leaves are not distributed equally within the
datasets. While Smears (1990), Loaded Language
(1750) and Name calling/Labeling (1518) appear
most frequently in the training data, Presenting Ir-
relevant Data (Red Herring) (59) and Obfuscation,

Figure 1: Illustration of our custom classification head.
The depicted parts represent different layers, where L1
corresponds to the first hierarchy layer: Ethos, Pathos,
Logos. L2 maps to the second layer, and L3 to the
third. Finally, all features are mapped to the Leaves.
This design allows us to incorporate previously made
decisions into subsequent layers. For simplicity, W1−4

represent fully connected layers.

Intentional vagueness, Confusion (21) occur most
rarely. The final submissions were made on the
English test dataset. In addition, the hosts released
testing data for North Macedonian (259), Bulgarian
(436) and Arabic (100) (Dimitrov et al., 2024).

4 System Overview

This section provides an in-depth description of
our system. To integrate the hierarchical structure
of the labels, we introduce a custom classification
head that is designed to be applied atop various
pre-trained Large Language Models.

4.1 Pre-Processing
We tested our system with two different pre-
processing approaches: In memes, lines of text
are often broken due to space limitations on the
image. Therefore, we assume that most newline
characters do not carry any semantic information
and thus remove them in the first pre-processing
variation (cleaned). As preliminary experiments in-
dicated that certain LLMs might exhibit enhanced
performance with all-lowercase input, the second
version incorporates an additional step to convert
the text to lowercase letters (all_lower).

4.2 Custom Classification Head
The fundamental concept of our classification
head entails intuitively reconstructing the hierar-
chy across multiple fully connected layers. As de-
picted in Figure 1, the basic architecture unfolds as
follows: In the initial layer (L1), the sequence em-
bedding provided by the backbone LLM serves as
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input, producing logits for the three highest nodes
of the hierarchy, namely: Ethos, Pathos and Logos.
Logits for the next layer (L2), Ad hominem, Justi-
fication and Reasoning, are obtained by passing a
concatenation of the sequence embedding and the
logits of the preceding layer through another feed-
forward layer. This process is repeated for the last
parent nodes, Distraction and Simplification (L3).
Finally, the logits for the 20 individual leaf nodes
(Leaves) are obtained using another linear layer,
which incorporates the concatenation of sequence
embeddings and the logits of all previous layers.
Accessing decisions from upper levels of the hier-
archy enables logits in the fine-grained layers to be
shaped by the choices made for more foundational
categories. Crucially, the loss is calculated over all
nodes, not solely leaf nodes, enabling the model to
learn the hierarchy effectively. The head outputs
logits for all 28 labels, which are then transformed
into probabilities using a sigmoid function. Lastly,
the probabilities are converted into labels using
thresholds, where labels with a probability above
the threshold are included in the final prediction.
Notably, all classes in the hierarchy, including leaf
nodes with low parent probabilities and vice versa,
can be predicted. This design principle ensures that
decisions made at higher levels serve as guidance
without imposing restrictions, thereby maintaining
the autonomy of lower-level decisions within the
hierarchical structure.

4.3 Loss function

We aimed to address the unequal label distribution
by testing both the standard binary cross-entropy
loss as well as its weighted variant. Each class
was weighted depending on their inverse frequency,
assigning a higher penalty to misclassifications of
minority classes, with the goal of enhancing the
performance of these less represented classes.

4.4 Ensemble

To further enhance the robustness of our predictions
we employed an ensemble approach where we uti-
lize majority voting across four different models.
Each of these models was trained with the same hy-
perparameters but with different random seeds. As
described above (Section 4.2) our model outputs
labels for each sample. To combine the suggestions
of multiple models, we experimented with various
boundary levels to determine the number of model
predictions needed for a label to be included in the
final prediction. Our experiments revealed that re-

quiring at least two of the four models to vote for a
label is the most effective.

4.5 Handling Different Input Languages
To extend the applicability of our system for the
multilingual setting, we integrated an additional
pre-processing step. The provided non-English test
datasets were translated into English using GPT-
4 (OpenAI et al., 2023), using the following prompt:
You are a bilingual humorist, adept at translating
meme text between languages while preserving the
original humor, cultural nuances, and any slang
or idiomatic expressions. Ensure the translation is
accurate, contextually appropriate, and retains the
meme’s playful tone. Avoid adding explanations
or additional commentary and provide only the
translation.

5 Experimental Setup

In order to approximate optimal parameters for
the LLaMA 2 models, we conducted a grid-search
for various BERT and RoBERTa models as these
require less computational resources. During train-
ing, we utilized gradient accumulation to reach a
gradient update every 128 samples. All models
were trained for ten epochs, with a learning rate of
either 5 × 10−4 or 5 × 10−5 and the Adam opti-
mizer (Kingma and Ba, 2014). We further included
the two different pre-processing styles as well as
the binary-cross entropy loss and its weighted vari-
ation as hyperparameters. Lastly, we performed
all experiments with and without our custom clas-
sification head. Training was conducted on either
NVIDIA GeForce RTX 4090 or NVIDIA A100
GPUs. Due to the large size of the LLaMA 2 mod-
els, we used Low-Rank-Adaptation to greatly re-
duce the number of trainable parameters for this
model-family (Hu et al., 2021). We used the pro-
vided training dataset for training and the valida-
tion dataset to test generalization capabilities after
each epoch. In the final stage, we assessed our
system’s performance on the dev dataset, utilizing
a hierarchical version of the F1-score metric (hF1)
following (Kiritchenko et al., 2006). The full set of
hyperparameters we used is shown in Table 3.

5.1 Determining Optimal Thresholds
For each sample, our model outputs one logit for
each class. Thus, we need to decide on a threshold,
determining the decision boundary for assigning
labels to instances based on their predicted prob-
abilities. As the commonly used threshold of 0.5
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Table 1: Comparison of hF1-scores and averages across all languages of our system and other top-performing
systems. The corresponding ranks are provided in brackets.

System en bg md ar Avg

Ours 0.697 (3) 0.568 (1) 0.512 (1) 0.476 (1) 0.563 (1.5)
NLPNCHU 0.663 (6) 0.517 (3) 0.462 (5) 0.475 (2) 0.529 (4.0)
914isthebest 2 0.752 (1) 0.463 (11) 0.369 (14) 0.360 (13) 0.486 (9.75)
BCAmirs 3 0.699 (2) 0.448 (13) 0.393 (12) 0.396 (9) 0.484 (9.0)

appeared non-optimal for our task based on prelim-
inary testing, we implemented different strategies
aiming to find optimal thresholds on the validation
dataset. To systematically find the best threshold,
we predetermined a spectrum of threshold levels to
investigate. We experimented with (i) picking the
same global threshold for all classes, and (ii) op-
timizing the threshold for each class individually.
We computed the accuracy and F1-score for each
threshold-label combination and selected the best
outcomes for both metrics respectively. For both
variants, we output all classes with probabilities
above the threshold as well as all parents of the
selected nodes.

6 Results

This paragraph discusses the influence of various
hyperparameters, our ranking on the leaderboard
and provides a detailed error analysis.

6.1 Influence of Hyperparameters

We tested the influence of both pre-processing
styles, the two variants of the loss calculation, dif-
ferent learning rates and the custom classification
head we designed. As shown in Table 5, the pre-
processing variant has a negligible impact, with
all models performing almost identical for both
cleaned and all_lower data. Surprisingly, all mod-
els perform worse when weighting classes based on
their inverse frequency in the binary cross-entropy
loss. A possible reason for this is the high im-
balance of our dataset (see Section 3). Weighted
loss prioritizes minimizing the loss for minority
classes, potentially compromising accuracy for ma-
jority classes, leading to sub-optimal overall re-
sults. The addition of our custom classification
head improves our results up to eleven percent
points and two percent points on average. Strik-
ingly, bert-large-cased performs the worst and

3(Dailin Li and Lin, 2024)
3(Amirhossein Abaskohi and Carenini, 2024)

models pre-trained on hateful content can outper-
form their foundation counterparts. While bert-
hateful-memes-expanded achieves even better re-
sults than models with a higher parameter count,
hateBERT performs worse than the BERT-base
model. Lastly, 5 × 10−5 was the best learning
rate for all models tested in the grid search. Never-
theless, first experiments with LLaMA 2 revealed,
that a learning rate of 5×10−4 works better for this
model family. Using these findings, we decided
to train a LLaMA 2 13b model using the all_lower
pre-processing style with our custom classification
head, a learning rate of 5× 10−4 and no weighted
loss. The LLaMA 2 models outperform the other
models with the chosen parameter selection. We
further observed that global thresholds consistently
yielded superior performance compared to select-
ing single thresholds for each class. The optimal
thresholds of our experiments range between 0.2
and 0.4 and vary depending on the base model
and other parameters. We assume that the inferior
performance of individual thresholds stems from
our methodology of including all ancestors of a
predicted leaf in the output, regardless of their as-
signed probabilities. As a result, inaccuracies at the
lowest hierarchy level disproportionately affect our
system’s precision due to the compounded errors
in ancestor predictions.

6.2 Main Results

A total of 33 teams competed in the subtask.
Table 1 compares our system against other top-
performing systems across all evaluated languages
using the official test results. Our framework con-
sistently ranks among the top three across all lan-
guages, securing the top position for Bulgarian (bg),
North Macedonian (md) and Arabic (ar) datasets. It
achieves the highest average hierarchical F1-score
and the highest average leaderboard ranking. This
demonstrates the versatility of our approach, under-
lining our methodology’s effectiveness and adapt-
ability to non-English languages. Table 2 presents
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hierarchical performance on the dev dataset for our
four distinct models trained using varied seeds, in
addition to their ensemble which was used for the
final submission.

The highest performing individual model records
a hF1 of 0.682, while the ensemble demonstrates
an enhanced score of 0.690. This indicates that
leveraging the outputs from multiple independently
trained models can lead to improved results. De-
spite similar hF1 scores across models, variations
of up to four and seven percent points in hierar-
chical precision (hP) and hierarchical recall (hR)
respectively suggest differing error patterns and
strengths among the models. This disparity high-
lights the efficacy of our ensemble approach, show-
casing its capacity to amalgamate diverse insights
from the dataset.

6.3 Error Analysis

In this chapter, we will dive deeper into the short-
comings of our system regarding the performance
of our ensemble model on the dev dataset (Fig-
ure 2). Overall, the distribution of labels predicted
by our system closely aligns with the ground truth.
However, our system exhibits a bias towards pre-
dicting classes with a larger number of samples,
leading to a higher frequency of these labels in our
output. Conversely, labels with fewer occurrences
in the training data are underrepresented in our pre-
dictions, leading to lower F1-scores in comparison.
Some leaves with very few training samples such
as Presenting Irrelevant Data (Red Herring) (59)
and Obfuscation, Intentional vagueness, Confusion
(21) are never predicted by our system, leading to
a F1-score of zero. Interestingly, despite Appeal
to authority only occurring very rarely in the train-
ing data (850), our system achieves an F1-score of
0.892 in this class. This label describes that a claim
is being stated as true simply because a valid author-
ity or expert on the issue said it was true, without
any other supporting evidence offered (Dimitrov
et al., 2024). We therefore assume the label to be
easier to predict than other classes, as the occur-
rence of certain authorities or names in particular
at the end of a sentence are a strong indicator for
this persuasion technique. It is noticeable, that our
model is able to differentiate well at the first hi-
erarchy level: Ethos, Pathos and Logos, achieve
F1-scores of over 60%. Similar observations can
be made for the non-English test datasets (Figure 3,
Figure 4, Figure 5).

Table 2: Hierarchical results on the dev dataset for our
four distinct models trained using various seeds and the
ensemble of these four models.

System hP hR hF1

1 0.623 0.745 0.679
2 0.661 0.673 0.667
3 0.643 0.698 0.669
4 0.631 0.740 0.682

Ensemble 0.636 0.754 0.690

7 Conclusion

In this paper, we introduced a robust system to
classify hierarchically structured persuasion tech-
niques in a meme-corpus for the SemEval chal-
lenge 2024 Task 4 Subtask 1. Our system achieved
a top-three ranking for each language individually
and outperforms every other system averaged over
all languages. A key aspect of our approach is the
incorporation of the label hierarchy using a cus-
tom classification head that models the individual
layers of the hierarchy. This classification head
can be used atop of different LLMs and improves
the performance by up to 11 percent points. We
employed a grid-search across various models and
hyperparameters to approximate optimal parame-
ters for a LLaMA 2 13b model that then produces
the embedding for the classification head. Interest-
ingly, weighting the loss to increase the influence
of classes with fewer samples did not improve the
overall performance. In addition, picking the same
classification threshold for each class worked better
than searching one for each label individually.

There are multiple possibilities to build upon
the success of our system: First, the organizers
suggested similar data sources that could be used
for pre-training. Additionally, upgrading to a big-
ger LLM, such as LLaMA 2 70b, known for its
superior performance over smaller LLaMA 2 vari-
ants, could further elevate our system’s capabil-
ities. Moreover, extending our hyperparameter
tuning could uncover better model configurations.
Our methodology for parent-node selection could
be refined by discarding parent nodes selected by
children if the ancestor itself has low confidence.
Lastly, feature stacking could be used to create a
powerful model that incorporates features gener-
ated by other models in its classification head.
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A Hyperparameters

Table 3: Search space for hyperparameter optimization.

Parameter Values

Model bert-base-cased,
bert-base-uncased,
hateBERT,
bert-hateful-memes-expanded,
bert-large-cased,
bert-large-uncased,
xlm-roberta-base,
xlm-roberta-large,
llama-2-7b,
llama-2-13b

Batch Size 128
Epochs 10
LR 5× 10−5, 5× 10−4

Style all_lower, cleaned
Weight Loss True, False
Custom Head True, False
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B Grid Search results

Table 4: Results of a grid-search on the dev dataset for BERT and RoBERTa models across all hyperparameters.

Model LR Style Weight Loss Custom Head hP hR hF1

bert-large-cased 5× 10−5 cleaned True True 0.429 0.718 0.537
bert-large-cased 5× 10−5 cleaned True False 0.488 0.651 0.558
bert-large-cased 5× 10−5 all_lower True True 0.436 0.705 0.539
bert-large-cased 5× 10−5 all_lower True False 0.450 0.722 0.554
bert-large-cased 5× 10−5 cleaned False True 0.600 0.612 0.606
bert-large-cased 5× 10−5 cleaned False False 0.540 0.638 0.585
bert-large-cased 5× 10−5 all_lower False True 0.589 0.614 0.601
bert-large-cased 5× 10−5 all_lower False False 0.544 0.689 0.608

hateBERT 5× 10−5 cleaned True True 0.423 0.742 0.539
hateBERT 5× 10−5 cleaned True False 0.469 0.634 0.539
hateBERT 5× 10−5 all_lower True True 0.477 0.651 0.550
hateBERT 5× 10−5 all_lower True False 0.420 0.732 0.534
hateBERT 5× 10−5 cleaned False True 0.572 0.651 0.609
hateBERT 5× 10−5 cleaned False False 0.551 0.661 0.601
hateBERT 5× 10−5 all_lower False True 0.549 0.669 0.603
hateBERT 5× 10−5 all_lower False False 0.553 0.661 0.602

bert-base-cased 5× 10−5 cleaned True True 0.449 0.717 0.552
bert-base-cased 5× 10−5 cleaned True False 0.477 0.624 0.541
bert-base-cased 5× 10−5 all_lower True True 0.478 0.691 0.565
bert-base-cased 5× 10−5 all_lower True False 0.483 0.614 0.541
bert-base-cased 5× 10−5 cleaned False True 0.520 0.693 0.594
bert-base-cased 5× 10−5 cleaned False False 0.510 0.654 0.573
bert-base-cased 5× 10−5 all_lower False True 0.567 0.665 0.612
bert-base-cased 5× 10−5 all_lower False False 0.533 0.674 0.595

bert-base-uncased 5× 10−5 cleaned True True 0.458 0.723 0.561
bert-base-uncased 5× 10−5 cleaned True False 0.417 0.737 0.532
bert-base-uncased 5× 10−5 all_lower True True 0.490 0.664 0.564
bert-base-uncased 5× 10−5 all_lower True False 0.426 0.721 0.535
bert-base-uncased 5× 10−5 cleaned False True 0.579 0.659 0.616
bert-base-uncased 5× 10−5 cleaned False False 0.549 0.633 0.588
bert-base-uncased 5× 10−5 all_lower False True 0.571 0.662 0.613
bert-base-uncased 5× 10−5 all_lower False False 0.551 0.662 0.601
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Table 5: Results of a grid-search on the dev dataset for BERT and RoBERTa models across all hyperparameters.
Additionally, the outcomes of LLaMA 2-models for the approximated best configurations are shown.

Model LR Style Weight Loss Custom Head hP hR hF1

xlm-roberta-base 5× 10−5 cleaned True True 0.455 0.715 0.556
xlm-roberta-base 5× 10−5 cleaned True False 0.461 0.659 0.543
xlm-roberta-base 5× 10−5 all_lower True True 0.449 0.707 0.550
xlm-roberta-base 5× 10−5 all_lower True False 0.446 0.652 0.530
xlm-roberta-base 5× 10−5 cleaned False True 0.561 0.688 0.618
xlm-roberta-base 5× 10−5 cleaned False False 0.507 0.647 0.568
xlm-roberta-base 5× 10−5 all_lower False True 0.598 0.633 0.616
xlm-roberta-base 5× 10−5 all_lower False False 0.495 0.650 0.562

bert-large-uncased 5× 10−5 cleaned True True 0.512 0.692 0.589
bert-large-uncased 5× 10−5 cleaned True False 0.480 0.676 0.561
bert-large-uncased 5× 10−5 all_lower True True 0.508 0.723 0.596
bert-large-uncased 5× 10−5 all_lower True False 0.479 0.643 0.594
bert-large-uncased 5× 10−5 cleaned False True 0.578 0.692 0.630
bert-large-uncased 5× 10−5 cleaned False False 0.412 0.686 0.515
bert-large-uncased 5× 10−5 all_lower False True 0.608 0.654 0.630
bert-large-uncased 5× 10−5 all_lower False False 0.594 0.621 0.607

bert-hateful-memes-expanded 5× 10−5 cleaned True True 0.494 0.673 0.570
bert-hateful-memes-expanded 5× 10−5 cleaned True False 0.472 0.638 0.542
bert-hateful-memes-expanded 5× 10−5 all_lower True True 0.502 0.666 0.573
bert-hateful-memes-expanded 5× 10−5 all_lower True False 0.473 0.643 0.545
bert-hateful-memes-expanded 5× 10−5 cleaned False True 0.591 0.679 0.632
bert-hateful-memes-expanded 5× 10−5 cleaned False False 0.564 0.657 0.607
bert-hateful-memes-expanded 5× 10−5 all_lower False True 0.601 0.660 0.629
bert-hateful-memes-expanded 5× 10−5 all_lower False False 0.562 0.664 0.609

xlm-roberta-large 5× 10−5 cleaned True True 0.480 0.662 0.557
xlm-roberta-large 5× 10−5 cleaned True False 0.499 0.662 0.569
xlm-roberta-large 5× 10−5 all_lower True True 0.514 0.623 0.564
xlm-roberta-large 5× 10−5 all_lower True False 0.494 0.638 0.557
xlm-roberta-large 5× 10−5 cleaned False True 0.662 0.639 0.650
xlm-roberta-large 5× 10−5 cleaned False False 0.574 0.673 0.619
xlm-roberta-large 5× 10−5 all_lower False True 0.631 0.697 0.662
xlm-roberta-large 5× 10−5 all_lower False False 0.581 0.688 0.630

llama7b 5× 10−4 all_lower False True 0.648 0.684 0.666
llama13b 5× 10−4 all_lower False True 0.623 0.745 0.679
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C Label distribution and F1
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Figure 2: Distribution of labels in the English dev set and our system’s predictions, normalized by the number of
samples. The star ( ⋆ ) indicates the F1-Score of our system for the given label.
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Figure 3: Distribution of labels in the Bulgarian test set and our system’s predictions, normalized by the number of
samples. The star ( ⋆ ) indicates the F1-Score of our system for the given label.
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Figure 4: Distribution of labels in the North Macedonian test set and our system’s predictions, normalized by the
number of samples. The star ( ⋆ ) indicates the F1-Score of our system for the given label.
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Figure 5: Distribution of labels in the Arabic test set and our system’s predictions, normalized by the number of
samples. The star ( ⋆ ) indicates the F1-Score of our system for the given label.
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