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Abstract

Large language models (LLMs) have garnered
significant attention and widespread usage due
to their impressive performance in various
tasks. However, they are not without their own
set of challenges, including issues such as hal-
lucinations, factual inconsistencies, and limita-
tions in numerical-quantitative reasoning. Eval-
uating LLMs in miscellaneous reasoning tasks
remains an active area of research. Prior to
the breakthrough of LLMs, Transformers had
already proven successful in the medical do-
main, effectively employed for various natural
language understanding (NLU) tasks. Follow-
ing this trend, LLMs have also been trained
and utilized in the medical domain, raising con-
cerns regarding factual accuracy, adherence to
safety protocols, and inherent limitations. In
this paper, we focus on evaluating the natural
language inference capabilities of popular open-
source and closed-source LLMs using clinical
trial reports as the dataset. We present the per-
formance results of each LLM and further an-
alyze their performance on a development set,
particularly focusing on challenging instances
that involve medical abbreviations and require
numerical-quantitative reasoning. Gemini, our
leading LLM, achieved a test set F1-score of
0.748, securing the ninth position on the task
scoreboard. Our work is the first of its kind,
offering a thorough examination of the infer-
ence capabilities of LLMs within the medical
domain.

1 Introduction

Large language models (LLMs) have brought about
a paradigm shift in the field of Natural Language
Processing (NLP) (Kojima et al., 2023; Wei et al.,
2022). Their exceptional performance across var-
ious tasks has led to a surge in real-world appli-
cations utilizing LLM-based technology. How-
ever, a notable drawback of LLMs is their propen-
sity to generate plausible yet incorrect information,

commonly referred to as "hallucinations" (Ji et al.,
2023).

The remarkable breakthrough of LLMs has
raised questions regarding their "intelligent" ca-
pabilities, particularly in reasoning and inference
(Zhao et al., 2023; Chang et al., 2023; Laskar et al.,
2023). Two specific areas that have garnered sig-
nificant attention in relation to LLMs’ reasoning
abilities are numerical-quantitative reasoning and
natural language inference. These areas are con-
sidered integral to human intelligence, prompting
researchers to establish benchmarks and evaluate
LLM performance in these domains (Stolfo et al.,
2023; Yuan et al., 2023). LLMs often exhibit
limited performance in solving arithmetic reason-
ing tasks, frequently producing incorrect answers
(Imani et al., 2023). Unlike natural language under-
standing, math problems typically possess a single
correct solution, making the accurate generation of
solutions more challenging for LLMs. Regarding
NLI, performance reduction can be observed due
to shortcut learning (Du et al., 2023) and hallucina-
tions (McKenna et al., 2023). These investigations
aim to discern whether LLMs are mere memorizers
of training data or possess genuine logical reason-
ing abilities.

The volume of medical publications, including
clinical trial data, has experienced a significant up-
surge in recent years. The SemEval-2023 Task 7,
known as Multi-Evidence Natural Language Infer-
ence for Clinical Trial Data (NLI4CT), aimed to
address the challenge of large-scale interpretabil-
ity and evidence retrieval from breast cancer clin-
ical trial reports (Jullien et al., 2023). This task
required multi-hop biomedical and numerical rea-
soning, which are crucial for developing systems
capable of interpreting and retrieving medical ev-
idence on a large scale, thereby facilitating per-
sonalized evidence-based care. While the previ-
ous iteration of NLI4CT resulted in the develop-
ment of LLM-based models (Zhou et al., 2023;
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Kanakarajan and Sankarasubbu, 2023; Vladika and
Matthes, 2023) achieving high performance (e.g.,
F1-score ≈ 85%), the application of LLMs in criti-
cal domains, such as real-world clinical trials, ne-
cessitates further investigation. Consequently, the
second iteration of NLI4CT, SemEval-2024 Task
2, titled "Safe Biomedical Natural Language In-
ference for Clinical Trials" (Jullien et al., 2024)
is proposed, featuring an enriched dataset that in-
cludes a novel contrast set obtained through in-
terventions applied to statements in the NLI4CT
test set. Our work involves the evaluation of vari-
ous popular open-source and closed-source LLMs
on the development and test sets to explore their
reasoning capabilities in the domain of medical
NLI. We present the results by thoroughly analyz-
ing the performance on the development set, with
the best-performing LLM ranking ninth on the task
leaderboard. We have made the results on the de-
velopment set available on our GitHub repository1.

Another aspect of our work was that we deliber-
ately refrained from investing significant effort into
prompting or experimenting with different prompts.
Additionally, we aimed to showcase the remark-
able development of LLMs, demonstrating their
capacity to effectively engage with the task while
minimizing dependence on the prompt.

2 Related Work

With the emergence of large language models
(LLMs), there has been a growing interest in ex-
ploring their capabilities within the clinical domain.
Recent studies have delved into both the potential
of LLMs and the associated risks when applied in
clinical settings. For instance, (Hung et al., 2023)
conducted experiments utilizing GPT-3.5 on vari-
ous medical NLP datasets, assessing metrics such
as factuality and safety, ultimately highlighting the
high level of safety offered by GPT-3.5 2. (Pal
et al., 2023) focused on the challenges posed by
hallucinations in LLMs and proposed a benchmark
dataset called Med-HALT (Medical Domain Hal-
lucination Test) to evaluate popular LLMs on this
front.

Regarding the reasoning capabilities of LLMs,
(Kwon et al., 2024) introduced a diagnostic
framework that prioritizes reasoning and employs
prompt-based learning. The study specifically fo-

1https://github.com/DuyguA/SemEval2024_NLI4CT
2https://platform.openai.com/docs/models/

gpt-3-5

cused on clinical reasoning for disease diagnosis,
where the LLMs generate diagnostic rationales to
provide insights into patient data and the reasoning
path leading to the diagnosis, known as Clinical
Chain-of-Thought (Clinical CoT), using GPT-3.5
and GPT-4 (OpenAI, 2024). Notably, none of the
previous studies simultaneously examined the per-
formance of both open-source and closed-source
LLMs, particularly with a comprehensive focus on
inference. Consequently, our work stands as the
first of its kind in this regard.

3 Task and Dataset Description

The clinical trials used to construct the dataset
were sourced from ClinicalTrials.gov3, a compre-
hensive database managed by the U.S. National
Library of Medicine. ClinicalTrials.gov contains
information on various clinical studies conducted
worldwide, both publicly and privately funded. The
dataset specifically focuses on clinical trials related
to breast cancer and includes a total of 1,000 trials
written in English.

• Eligibility Criteria: This includes a set of
conditions that determine the eligibility of pa-
tients to participate in the clinical trial. These
criteria may include factors such as age, gen-
der, and medical history.

• Intervention: This field provides information
about the type, dosage, frequency, and dura-
tion of treatments being studied within the
clinical trial.

• Results: The results section of each CTR re-
ports the outcome of the trial, including data
such as the number of participants, outcome
measures, units of measurement, and the ob-
served results.

• Adverse Events: This field documents any
unwanted side effects, signs, or symptoms
observed in patients during the course of the
clinical trial.

For the task at hand, each CTR may contain
one or two patient groups, known as cohorts or
arms, which may receive different treatments or
have different baseline characteristics.

The dataset consists of a total of 7,400 state-
ments. These statements were divided into a train-
ing dataset comprising 1,700 statements, a devel-
opment dataset containing 200 statements, and a

3https://clinicaltrials.gov
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Model Release Date Params
GPT-3.5 Mar-2022 x
Claude Mar-2023 x
Gemini Pro Dec-2023 x
PaLM Mar-2023 540B
Falcon 40B May-2023 40B
Mixtral 8x7B Dec-2023 12B
Llama 2 70B Jul-2023 130GB

Table 1: Comparison of the LLMs used in our work,
indicating the parameter sizes for known closed-source
LLMs and denoting unknown parameter sizes with "x".

hidden test dataset consisting of 5,500 statements.
The statements can be categorized into two types:
those that are solely related to a single CTR and oth-
ers that involve a comparison between two different
reports. Each statement in the dataset is labeled
as either "entailment" or "contradiction". Figure 1
shows an example statement from the training set.

The task primarily involves binary classification,
aiming to predict whether the label corresponds to
entailment or contradiction. The evaluation process
encompasses three aspects. Initially, the macro F1-
score is computed based on the binary classification
results. Subsequently, two semantic evaluations are
conducted: faithfulness and consistency. Faith-
fulness assesses the system’s ability to arrive at
accurate predictions for the correct reasons, while
consistency measures the system’s ability to pro-
duce consistent outputs for semantically equivalent
problems. The task organizers evaluate faithfulness
by providing semantically altered instances, and
consistency by providing preserved instances for
comparison.

4 Language Model Performance
Evaluation

This section aims to provide a detailed analysis of
the performance achieved by each individual LLM.
Based on the evaluation of various LLMs, includ-
ing closed-source models like GPT-3.5 (ChatGPT),
Claude (Anthropic, 2023), and Gemini Pro (Gem-
ini Team, 2023), as well as open-source models
like Falcon 40B (Almazrouei et al., 2023), Mix-
tral 8x7B (Jiang et al., 2024), and Llama 2 70B
(Touvron et al., 2023), the performance of these
models was assessed on the dev and test sets. Table
1 provides comprehensive information regarding
the release dates and parameter sizes, measured in
token size, for each LLM.

Model Acc F1 Prec Recall
Gemini Pro 0.82 0.81 0.82 0.8
Claude 0.81 0.80 0.81 0.81
PaLM 0.79 0.78 0.79 0.79
Falcon 40B 0.745 0.74 0.74 0.74
GPT-3.5 0.705 0.7 0.711 0.70
Llama 2 70B 0.675 0.67 0.68 0.67
Mixtral 8x7B 0.655 0.64 0.67 0.65

Table 2: Accuracy, macro F1-score, precision and recall
results on the development set for each LLM.

Model F1 Faith Consist
Gemini Pro 0.75 0.83 0.74
Claude 0.73 0.83 0.72
PaLM 0.72 0.87 0.73
Falcon 40B 0.702 0.569 0.609
GPT-3.5 0.684 0.74 0.66
Llama 2 70B 0.682 0.693 0.638
Mixtral 8x7B 0.604 0.899 0.73

Table 3: Macro F1-score, faithfulness and consistency
results on the test set for each LLM.

All conversations took place on the Poe.com
platform, providing users with a seamless chat
experience. To transmit both the development
set and the test set instances, we utilized an API
wrapper code in a Python script, which can be ac-
cessed in our GitHub repository. As mentioned ear-
lier, we intentionally avoided extensive prompting
and instead employed a straightforward, consistent
prompt for all instances. Each model’s chat ses-
sion commenced with a greeting, followed by a
brief introductory sentence regarding the task, and
subsequently, all instances were dispatched via the
Python script. Appendix A provides information
regarding the prompts.

Table 2 and Table 3 presents a concise overview
of the results obtained on the dev and test sets.
Gemini Pro emerged as the best-performing model,
ranking first on both the dev and test sets. Follow-
ing Gemini Pro, Claude and PaLM, two closed-
source LLMs, secured the second and third posi-
tions, respectively. Falcon 40B, an open-source
LLM, achieved the fourth place and outperformed
GPT-3.5. The last two positions were occupied by
two open-source LLMs, Llama 2 70B and Mixtral
8x7B.

In the next section, we delve into the detailed
performance analysis of the language models on
the development set, focusing on specific cases of
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Figure 1: An example comparison task from the training set with two CTRs.

Model Incorrect
Gemini Pro 36
Claude 38
PaLM 42
Falcon 40B 51
GPT-3.5 59
Llama 2 70B 65
Mixtral 8x7B 69

Table 4: Number of incorrect predictions on the devel-
opment set of 200 instances for each LLM.

interest.

4.1 General Performance Evaluation
Among the top-ranking LLMs, namely Gemini Pro,
Claude, PaLM, and Falcon 40B, their performance
on the development set was indeed remarkable.
The number of inaccurate predictions made by each
LLM on the development set of 200 instances is
presented in Table 4. There were only 3 instances
in the development set that were incorrectly pre-
dicted by all LLMs.

Among the top-performing LLMs, a set of 12
instances emerged as particularly challenging, de-
noted as "difficult instances". These instances
present a significant challenge, as none of the top
three performer LLMs in the set - Gemini Pro,
Claude and PaLM, were able to accurately pre-
dict their outcomes. Within this subset, 2 instances

involved medical abbreviations, 3 featured numeri-
cal entities, and the remaining 7 were categorized
as "plain instances". The subsequent subsections
will delve into a detailed analysis of the difficult
instances encompassing numerical entities and ab-
breviations. For the present discussion, our atten-
tion will be directed towards the plain difficult in-
stances.

One particular difficult instance is illustrated in
Figure 1, where the top two performing LLMs pro-
vided the answers given by Figure 2.

Gemini made a somewhat fair mistake by incor-
porating knowledge from the training data, suggest-
ing that PET includes orally administered tracer
drugs. However, it should be noted that tracer drugs
do not qualify as any form of medication for treat-
ing cancer or other diseases. In this case, Gemini
falters by "assuming too much" and "relying too
heavily on prior knowledge." It is important to clar-
ify that this is not a hallucination. On the other
hand, Claude correctly deduced that there were no
oral medications in the primary trial and that oral
medication was administered in the secondary trial.
However, Claude failed to synthesize this informa-
tion and draw a conclusion, indicating a breakdown
in reasoning from evidence. Similarly, PaLM and
Falcon 40B encountered the same issue as Claude.
While they accurately pointed out the evidence,
they failed in the reasoning process. In the case
of PaLM, it did not provide any indications of en-
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Figure 2: An example comparison task from the training set with two CTRs.

gaging in reasoning. Falcon 40B made a literal
mistake by becoming mired in the intricacies of the
language. Its answer includes the statement, "the
statement cannot be directly entailed from the inter-
vention information provided. Specifically, while
the primary trial does not mention oral medication,
the secondary trial does not exclusively mention
oral medication, contradicting the statement."

These mistakes range from overthinking, fail-
ure to follow the evidence, inadequate reasoning,
to becoming excessively focused on minute de-
tails—a clear manifestation of the inherent chal-
lenges that LLMs face. The less performing LLMs,
namely GPT-3.5, LLama 2 70B, and Mixtral 7x8B,
demonstrated a decent performance considering
the task difficulty. However, they exhibited a rela-
tively higher frequency of failures in reasoning and
inference compared to the top-performing LLMs.

Having examined the plain difficult instances,
we now turn our attention to evaluating the perfor-
mance of the LLMs on instances containing medi-
cal abbreviations.

4.2 Abbreviated Instances Performance
Evaluation

In our development set, we identified 31 instances
that contained medical abbreviations. We used the
ScispaCy package’s abbreviation detector to extract
these instances.

Among the top performers, Gemini, Claude,

PaLM, and Falcon 40B made 4, 6, 7, and 8 mis-
takes, respectively, in handling these abbreviations.
The bottom performers, GPT-3.5, Llama 2 70B,
and Mixtral 8x70B, made 10, 8, and 8 mistakes,
respectively.

Upon closer examination, we found that all of
the LLMs were able to correctly resolve the mean-
ings of the medical abbreviations. However, they
made mistakes due to other reasoning problems.

For example, none of Gemini’s four mistakes
in handling abbreviations were related to resolv-
ing their meanings. Similarly, the other LLMs
also failed the task primarily due to quantitative-
numerical reasoning failures. Appendix B show-
cases a more comprehensive example of this par-
ticular type of occurrence and the corresponding
failure.

Overall, the performance of all LLMs in resolv-
ing abbreviations was commendable. However, as
mentioned before, the majority of failures stemmed
from challenges in numerical-quantitative reason-
ing.

4.3 Numerical Instances Performance
Evaluation

Our development set contained 78 instances with
numerical entities. We employed the spaCy pack-
age (Honnibal and Montani, 2017) and its NER
component to identify these entities. To ensure
comprehensive semantic evaluation, we combined
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ScispaCy and spaCy models.
Among the top-performing LLMs, Gemini,

Claude, PaLM, and Falcon 40B made 13, 14, 18,
and 19 mistakes, respectively. Notably, the bottom
performers, GPT-3.5, Llama 2 70B, and Mixtral
8x70B, made significantly more mistakes (21, 26,
and 24, respectively).

Interestingly, the top performers, Gemini and
Claude, made the same mistakes on numerical in-
stances in the development set. Upon examining
their responses, we observed that they performed
arithmetic operations and reasoned based on the
calculated results. In Appendix B, Figure 8 and
Figure 9 portray instances of successful outcomes
achieved by our LLMs. These figures demonstrate
accurate performance in arithmetic operations and
logical deduction.

However, even the top performers made occa-
sional errors. For instance, Gemini provided an
incorrect answer where there was no evidence of
arithmetic operations or reasoning: "The primary
trial adverse events section shows that there were
10 patients in cohort1 who suffered adverse events
out of a total of 67 patients. Therefore, it is accu-
rate to say that over 1/6 patients in cohort1 of the
primary trial suffered adverse events." This sug-
gests that Gemini did not calculate 1/6 of the total
number of patients (67).

Among the numerical instances incorrectly pre-
dicted by Gemini and Claude, we found no in-
stances where arithmetic calculations were per-
formed. Conversely, correctly predicted instances,
such as the one shown in Figure 13 in Appendix
B, involved at least one mathematical operation
that was logically connected to the rest of the ar-
gument. We determined these logical connections
by analyzing the dependency tree of the answers,
as explained in Appendix B. Our findings indicate
that when LLMs demonstrate signs of performing
arithmetic operations, their results are generally
reliable. Conversely, when there is no evidence of
arithmetic operations, the result is likely incorrect.

The other top performers, PaLM and Falcon 40B,
exhibited similar behavior to Gemini and Claude.
They performed arithmetic operations and made
deductions based on those operations. When they
failed, they did not provide any numerical clues.

The bottom performer, GPT-3.5 was able to per-
form arithmetic operations. However, it struggled
with simple quantity comparisons, such as n<m for
random integers. Mixtral 8x7B also faced similar
challenges.

Llama 2 70B performed particularly poorly on
numerical instances. For the example in Figure 9,
where other LLMs succeeded by performing arith-
metic operations, Llama failed completely. It pro-
vided an incorrect answer without any evidence of
subtraction or comparison. In fact, Llama generally
struggled with numerical examples, succeeding pri-
marily in quantitative comparisons where operands
were provided directly in the context without re-
quiring mathematical processing.

In conclusion, while other LLMs demonstrated
proficiency in handling numerical entities, Llama
2 70B failed to meet expectations.

5 Conclusion

Our detailed analysis of LLMs’ performance on
various reasoning tasks in the medical domain re-
veals that they are not merely passive memoriz-
ers. They possess the ability to perform numerical-
quantitative reasoning, general reasoning, and ab-
breviation resolution, even in a highly specialized
domain with unique vocabulary. Notably, Fal-
con 40B, an open-source LLM, demonstrated im-
pressive performance, rivaling top closed-source
LLMs.

Despite their successes, LLMs are not without
limitations. Occasional nonsensical predictions
highlight the need for caution when using them
in high-stakes domains such as medicine. How-
ever, the results of our study are highly promising
and suggest that with increased training data and
computational power, LLMs have the potential to
become invaluable tools in the medical field.

The future of LLMs in medicine holds exciting
possibilities. As these models continue to evolve,
we anticipate that they will play an increasingly
significant role in healthcare, transforming the way
we diagnose, treat, and prevent diseases.

6 Limitations

As mentioned in earlier sections, we utilized the
Poe platform for interacting with LLMs. All the
work was accomplished within the confines of a
monthly subscription fee of $20. The results of
GPT-4 are not included in this study due to the
messaging limit imposed by the platform, which
was exceeded by the number of instances in the test
set.
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A Prompts

We employed two prompts, the prompts for the
individual task and comparison tasks outlined as
follows:

"Below find section_name section of the primary
trial of a clinical trial. Infer if the following state-
ment entails from the given trial information. An-
swer should be either entailment or contradiction.
Please justify the answer based on numbers. PRI-
MARY TRIAL section_name: trial_value STATE-
MENT: statement"

"Below find section_name sections of a primary
trial and a secondary trial belonging to same clin-
ical trial. Infer if the following statement entails
from the given trial information. Answer should
be either entailment or contradiction. Please justify

Figure 3: Initiation of the conversation with PaLM.

the answer based on numbers. PRIMARY TRIAL
section_name: trial_value1 SECONDARY TRIAL
section_name: trial_value2 STATEMENT: state-
ment".

Figure 3 illustrates the initiation of a chat with
PaLM and the method by which instances are pro-
vided during the conversation. As evident in the
interaction, we maintained minimal prompting and
limited additional interactions.

B Example Instances

In this section of the appendix, we present spe-
cific instances from the development set to provide
readers with a concrete understanding of the perfor-
mance of LLMs. Firstly, we present a challenging
instance, which none of the LLMs in our study
were able to correctly predict. Figure 4 depicts
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this instance, which involves making an inference
about the results section of a single CTR. The in-
ference relates to PFS, a time range spanning from
7.0 to 9.9 months, with an average of 8.4 months.
Consequently, the statement presents an entailment.
Surprisingly, all the LLMs failed to address this
instance. As depicted in Figure 5 and 6, the LLMs
struggled to calculate the difference due to various
reasons, such as difficulties in numerical deduction
or becoming overly focused on linguistic details.

It is worth noting that this instance also includes
an abbreviation, PFS, which is fully explained in
the body of the CTR. Despite the LLMs demon-
strating some understanding of this abbreviation,
they ultimately failed due to their inability to per-
form the necessary numerical inference.

Subsequently, we present a numerical case study
depicted in Figure 7 to showcase the numerical
reasoning capabilities of the Language and Logic
Models (LLMs). Impressively, almost all LLMs
accurately predicted this particular case. However,
Llama 2 70B exhibited a complete failure, display-
ing no signs of any numerical inference whatsoever.
Figures 8 and 9 illustrate how other LLMs meticu-
lously explained their reasoning step by step. They
initiated the process by performing the subtraction
89%− 88% = 1% and subsequently compared the
result to the claimed amount of 13.2%.

To process numerical instances, we adopted the
following approach: firstly, we utilized spaCy’s
Matcher component to extract all numerical ex-
pressions 4. This component, being part of the
pretrained spaCy pipelines, is incredibly helpful
in extracting expressions based on patterns. These
patterns can involve characteristics such as token
shape, POS tags, and even entity types if the to-
ken forms part of an entity. By leveraging spaCy’s
built-in NER component, we could extract various
numerical entity types, including cardinal numbers,
ordinal numbers, percentages, and quantities. We
formulated two general Matcher patterns, namely
NUMERIC OP NUMERIC and NUMERIC OP NU-
MERIC = NUMERIC, and then generated all pos-
sible combinations of numerical entities and math-
ematical expressions by taking the cross product
between numeric entity types and mathematical
operator tokens. This comprehensive approach fa-
cilitated the extraction of all numerical expressions
from the LLM answers. For identifying medical en-
tities, we utilized the ScispaCy package, as medical

4https://spacy.io/api/matcher

entities are not included in spaCy’s general-purpose
NER models.

Following this, we parsed the dependency tree of
the answer and determined the syntactic head of the
numerical expression. We then examined whether
the numerical expression attached meaningfully to
the rest of the answer. For a detailed explanation
of the reasoning process, refer to Figure 13.

Moving on to our list of examples, we encounter
an intriguing case worth mentioning. Figure 10
presents a CTR with an empty adverse events sec-
tion, making it a particularly interesting example.
As depicted in Figures 11 and 12, all LLMs, ex-
cept for Falcon 40B, demonstrate impressive intel-
ligence by correctly interpreting "0/0" as indicating
the absence of any adverse events, thereby resulting
in an empty adverse events section. This example
highlights the remarkable general language under-
standing and common sense reasoning abilities of
LLMs, transcending the boundaries of the medical
domain.
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Figure 4: A challenging instance that was incorrectly predicted by the top-performing LLMs.

Figure 5: Responses of the top-performing LLMs to the selected challenging instance, where all models failed to
exhibit any signs of numerical inference.
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Figure 6: Responses of the low-performing LLMs to the selected challenging instance, which were not significantly
different from the answers provided by the top LLMs.

Figure 7: A numerical example extracted from the development set, focusing on inferring information from a single
CTR’s results section.
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Figure 8: Responses of the top-performing LLMs to the selected numerical instance, showcasing impressive
performance in numerical inference across all models.

Figure 9: Responses of the bottom-performing LLMs to the selected numerical instance, where all models, except
for Llama 2 70B, successfully performed the subtraction operation and made the corresponding numerical inference.
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Figure 10: A CTR from the training set that is both interesting and uninteresting. It is interesting because the value
of 0 denotes emptiness, but uninteresting because humans can understand 0 as representing null.

Figure 11: Responses from the top-performing LLMs, demonstrating high intelligence and deliberate reasoning.
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Figure 12: Responses from the low-performing LLMs, where all models, except for Falcon 40B, achieved success
comparable to the top performers.
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Figure 13: Semantic parse of a successful answer by Gemini. Named entities are highlighted in the above picture,
where dependency tree of the sentence is exhibited in the below pictures. In the dependency tree, head token of the
numerical expression 89% - 88% = 1% is 89% and syntactic head of 89% is subtract, which is the mathematical
operation. By following the syntactic parent of the numerical expression, we reach the explanation of the chain of
mathematical operations, hence we can deduce that Gemini put down a valid argument and numerical reasoning.
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