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Abstract
Discourse analysis studies the sentence orga-
nization within a document, aiming to reveal
its underlying structural information. Existing
works on dialogue discourse parsing mostly
use encoder-only models and sophisticated de-
coding strategies to extract structures. Despite
recent advances in Large Language Models
(LLMs), applying directly these models on dis-
course parsing is challenging. To fully lever-
age the rich semantic and discourse knowl-
edge in LLMs, we propose to transform dis-
course parsing into a generation task using a
text-to-text paradigm. Our approach is intu-
itive and requires no modification of the LLM
architecture. Experimental results on STAC
and Molweni datasets show that a sequence-to-
sequence model such as T0 can perform rea-
sonably well. Notably, our improved transition-
based sequence-to-sequence system achieves
new state-of-the-art performance on Molweni.
Furthermore, our systems can generate richer
discourse structures such as graphs, whereas
previous methods are mostly limited to trees.1

1 Introduction

Discourse parsing is a Natural Language Process-
ing task that aims to retrieve a structure from a doc-
ument. The discursive structure contains clause-
like text spans (known as Elementary Discourse
Units) and are linked by semantic-pragmatic rela-
tions such as Elaboration and Acknowledgment. It
plays a crucial role in natural language understand-
ing and has demonstrated its usefulness in various
downstream applications such as summarization
(Feng et al., 2021) and dialogue comprehension
(He et al., 2021; Ma et al., 2023).

Existing works on Dialogue Discourse Parsing
(DDP) suggest that task-specific models are nec-
essary to achieve state-of-the-art (SOTA) perfor-
mance (Chi and Rudnicky, 2022; Li et al., 2023a).

1Code is available at https://github.com/chuyuanli/
Seq2Seq-DDP.

They are based on complex architectures con-
structed on top of encoder-only pre-trained lan-
guage models (PLMs) such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019). These
models present a few limitations. First, they re-
quire task-specific architectures which oftentimes
involve heavy engineering of utterance embeddings
and specialized decoding strategies. Second, the
predicted structures are typically limited to trees,
neglecting other rich representations such as di-
rected acyclic graphs (Asher et al., 2016). Third,
they do not leverage rich latent knowledge in more
recent Large decoder-only and encoder-decoder
Language Models (LLMs) (Brown et al., 2020;
Sanh et al., 2022; Chowdhery et al., 2023; Touvron
et al., 2023).

Such LLMs have shown remarkable abilities in a
wide range of applications, from text understanding
and generation to coding to reasoning (Bang et al.,
2023; Bubeck et al., 2023), resulting in a shift in
focus from relatively small encoder-only PLMs
to large-scale encoder-decoder and decoder-only
LLMs. LLMs see a great amount of data: T0 model
(Sanh et al., 2022), for instance, is pretrained on the
C4 corpus (Habernal et al., 2016) containing 356
billion tokens; they are pretrained on a mixture of
downstream tasks such as multi-document question
answering (Yang et al., 2018) and natural language
inference (Bowman et al., 2015). Since many of
these tasks require an understanding of the inter-
sentence structure, we hypothesize that LLMs have
good contextual representation for sentence-level
reasoning (e.g., discourse analysis).

However, in our preliminary experiments, we
found that directly prompting LLMs does not per-
form well on the DDP task, confirming similar
observations by Chan et al. (2023) who applied
zero-shot prompting and in-context learning meth-
ods but found poor performance with GPT-3.5.

In this paper, we ask the question: how to effec-
tively transform the discourse parsing task into a

https://github.com/chuyuanli/Seq2Seq-DDP
https://github.com/chuyuanli/Seq2Seq-DDP
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Figure 1: Traditional dialogue discourse parsing and our Seq2Seq dialogue discourse parsing systems. ei denotes
the discourse units and “QA-pair” represents the question-answer pair.

generation task?
To this end, we propose to tackle this problem

within a text-to-text paradigm. We first formal-
ize the parsing task as a Seq2Seq process and
present a simple approach where a model takes
a sequence of raw texts as input and produces a
sequence of structures as output. We call this sys-
tem Seq2Seq-DDP. The adopted model, such as
T0, has a standard encoder-decoder architecture
and is fine-tuned on parsing task. There is a great
deal of flexibility in sequence representations, es-
pecially for the target sequence where tree-like and
graph-like structures need to be expressed linearly.
We design different schemes: one is close to nat-
ural language and another one is inspired by the
translation between augmented natural language
(TANL) formats (Paolini et al., 2021). This ap-
proach is straightforward, but it is constrained by
weak supervision with lengthy inputs, which can
lead to hallucinated or missing predictions for some
utterances.

To tackle these issues, we propose to improve
our system with transition-based algorithms which
are widely used in dependency parsing (Nivre,
2003, 2008). A transition-based model receives the
states of parsed sentences and the target sentence
and predicts an action corresponding to the target
sentence. A recent work on coreference resolution
implemented such a system and achieved SOTA
performance (Bohnet et al., 2023). Our enhanced
system, Seq2Seq-DDP+Transition, processes one
sentence at each step and predicts an action that es-
tablishes links and relations towards that sentence.
We also adapt the sequence representations accord-
ingly. Compared to the previous approach using
full text input and output, the new system is more
controllable with partial inputs and outputs.

We evaluate both systems on the STAC and Mol-
weni datasets. The Seq2Seq-DDP model deliv-
ers promising results, matching the performance
of SOTA models on Molweni. The transition-
based system provides significant improvements
across both datasets, setting new SOTA on Mol-
weni. Through a series of analyses, we identify
several key factors in converting a parsing task into
a generation task, including the amount of supervi-
sion and the design of the representation scheme.

To summarize: (1) we propose a Seq2Seq-
DDP method, along with an improved Seq2Seq-
DDP+Transition variant, to transform discourse
parsing into an LLM-based generation task, where
our sophisticated sequence representations deliver
promising performance gains; (2) we conduct ex-
tensive experiments and comprehensive analyses,
which reveal insightful ideas on what makes a suc-
cessful generative model for discourse parsing.

2 Related Work

Discourse Parsing Discourse parsing is a hard
task, with low performance especially for multi-
party dialogues which involve intricate relations
between speakers, such as STAC (Asher et al.,
2016) and Molweni (Li et al., 2020). Early ap-
proaches to discourse parsing used varied decod-
ing strategies, such as Maximum Spanning Tree
(Muller et al., 2012; Afantenos et al., 2012; Li et al.,
2014) or Integer Linear Programming (Perret et al.,
2016). Researchers soon applied neural models
such as Gated Recurrent Units (Shi and Huang,
2019) and Graph Neural Networks (Wang et al.,
2021b) to build contextualized embeddings, com-
pared to hand-crafted features from the previous
work. More recent works attempted to enhance
the parsing task by utilizing Pre-trained Language
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Models (PLMs) as backbone (Liu and Chen, 2021;
Chi and Rudnicky, 2022), injecting external infor-
mation such as speaker interactions (Yu et al., 2022;
Li et al., 2023b), or joint learning with auxiliary
tasks (Yang et al., 2021; He et al., 2021). Due to the
small number of annotated examples, some also in-
vestigated semi-supervised approaches such as data
programming (Badene et al., 2019), bootstrapping
(Nishida and Matsumoto, 2022), and signals from
the attention matrices in PLMs (Li et al., 2023a).
However, much of this line of work dealt only with
structure extraction while ignoring relations.

With LLMs on the scene, Chan et al. (2023)
evaluated the performance of GPT-3.5 on discourse
parsing using zero-shot and few-shot in-context-
learning, but only to find that the model performs
abysmally. Recently, Maekawa et al. (2024) em-
ployed decoder-only LLMs for Rhetorical Struc-
ture Theory (RST) discourse parsing in mono-
logues, where conventional top-down and bottom-
up strategies are transformed into prompts. On
dialogues, only Wang et al. (2023) have investi-
gated discourse parsing with a fine-tuned T5 model.
However, their design of output sequences were
overly simplified and we observed poor results with
a similar abridged scheme in our experiments. In
comparison, we explore the effectiveness of using
Seq2Seq LLMs for this task with more sophisti-
cated representations, such as an output closer to
natural language.

Structure Prediction with Generative Models
Loosely related to our work are papers about
other structure prediction tasks which also apply
generative modeling. For instance, on corefer-
ence resolution, Urbizu et al. (2020) conducted
a proof-of-concept study where they literally trans-
lated the coreference annotation into a target se-
quence. Zhang et al. (2023) fine-tuned the T0
model with more sophisticated sequence repre-
sentations that outperformed traditional corefer-
ence models. Bohnet et al. (2023) developed a
transition-based Seq2Seq system based on mT5,
which works on the same principle as our second
approach. Paolini et al. (2021) proposed a unified
framework that translates a series of structure tasks
into augmented natural languages using T5. Their
work aimed at creating a general and transferable
model to solve many tasks. Generative models have
also been used for semantic parsing (Rongali et al.,
2020), syntactic parsing (He and Choi, 2023), and
constituency parsing (Bai et al., 2023). Although

large generative models have been successfully ap-
plied to various structure prediction tasks, the DDP
task, which requires inter-sentence reasoning in
dialogues, remains under-explored.

3 A Formal Description of Discourse
Parsing and Seq2Seq Modeling

3.1 Discourse Parsing
Given a document D “ te0, e1, ..., enu where ei
are clause-like text spans known as Elementary
Discourse Units (EDU) and e0 is a dummy root
node, the general goal of discourse parsing is to
create a graph G composed of pV,E, ℓq where V is
a set of nodes or EDUs including te0, e1, ..., enu,
Ei Ă V ˆ V a set of edges pointing towards
the node ei with i P r1, ns, and ℓ a function
ℓ : pek, eiq ÞÑ r that maps an EDU pair with a
rhetorical relation type r P R, with 0 ď k ă i ď n.

Ei “ tpek, eiq, ei P V, ek P V u (1)

Every Ei contains at least one pair of EDUs
pointing to the node ei. Here, we emphasize the
uni-direction of edges given that in a dialogue,
there are no “backwards” edges such that an EDU
ek by speaker a is rhetorically and anaphorically
dependent upon a further EDU ei of speaker b.
This is known as Turn Constraint in the Segmented
Discourse Representation Theory (SDRT) (Asher
and Lascarides, 2003; Afantenos et al., 2015). The
combination of all Ei is the set of all potential EDU
pairs in document D.

E “ Yn
i“1Ei, Eďi “ Yi

j“1Ej (2)

The equation 2 defines what we called discourse
structure prediction where a “naked” graph can be
extracted from D. For full parsing, each edge must
be assigned a relation with the function ℓ. We can
expand the pairs in E to triples in F :

Fi “ tpek, ei, rkiq, ei P V, ek P V, rki P Ru (3)

F “ Yn
i“1Fi, Fďi “ Yi

j“1Fj (4)

In a nutshell, discourse parsing takes a document
D as input and predicts the triples F as output.
Assuming we have a training set of N examples,
pDi, Fiq

N
i“1 consists of N pairs of triples.

3.2 Seq2Seq Modeling
Let V denote the vocabulary. Given a training pair
px, yq where x P VT 1

is the source sequence of
length T 1 P N, y P VT is the target sequence of
length T P N, a Seq2Seq model computes the
conditional probability ppy|x; θq autoregressively:
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ppy|x; θq “

T
ź

t“1

ppyt|y1, ..., yt´1, x; θq (5)

Model parameters θ are learned by maximizing
the sum of conditional probabilities of all examples
in the training set:

θ˚ “ argmax
θ

ÿ

X,Y

log ppY |X; θq (6)

3.3 Discourse Parsing as Seq2Seq Generation
To conduct discourse parsing with a Seq2Seq
model, we translate pD, F q into a pair of sequences
px, yq. The transformation from D to x is straight-
forward since D contains already a sequence of
raw text. Our goal is to find a way to express F
as a sequence y P VT , which is also known as the
“linearization” process for structured objects. A
minimal approach is to literally predict the triples
pek, ei, rikq in F as a sequence of strings. However,
such a succinct format performs unsatisfactorily
with limited training examples (see analysis in Sec-
tion 6). We design several representation formats
to explore a better solution for structure learning.

Another crucial issue is how to calculate the
conditional probability ppy|xq. We can either
feed x all at once and predict y in an end-to-end
style or employ a transition system (Nivre, 2008),
where the Seq2Seq model takes a single EDU as
input and predicts an action corresponding to a set
of discourse links involving that EDU as its output.
In practice, we implement two Seq2Seq systems:
a full text-in text-out system (Section 4) and an
improved transition-based system (Section 5).

4 Seq2Seq Modeling for DDP

4.1 Methodology
End-to-End System A Seq2Seq-DDP system
takes as input a document with raw text sequences
and generates structure-and-relation-labeled out-
put for each discourse unit autoregressively. Dif-
ferent from a classic pipeline approach where
structure and relation are predicted subsequently
(Afantenos et al., 2015; Shi and Huang, 2019;
Liu and Chen, 2021; Li et al., 2024), our method
jointly predicts link attachment pek, eiq and relation
pek, eiq ÞÑ rki.

Representation Scheme We investigate two out-
put schemes: a natural scheme and an augmented
scheme. For natural scheme, we hypothesize that
the closer the output is to natural language, the
more advantage the Seq2Seq model can take from

its pre-training. In other structure prediction tasks
such as syntactic dependency parsing (He and Choi,
2023), natural language in the outputs has demon-
strated its effectiveness. We use the following as a
running example (pilot01, STAC corpus):

D: [e0] Dave: has anyone got a sheep, [e1] Dave: I
can trade wheat or clay. [e2] Tomm: Surprisingly I
am bereft of sheep.
F : tpe0, e1,Elaborationq, pe0, e2,QA-pairqu

We describe the triples in F with the template
“ei is rki of ek”: ei and ek are EDU markers; rki is a
relation. In the input, we also append these markers
as prefixes for each speech turn. The output joins
all sequences with a semicolon. It reads:

ynat: [e0] is root; [e1] is Elaboration of [e0]; [e2] is
Question-Answer-pair of [e0].

In cases where one node has multiple incom-
ing edges, the template extends its tail to “ei is
rki of ek rmi of em rni of en”, where em and en
(resp. rmi and rni) are other linked nodes (resp.
relations) to ei. The advantage of this format is that
each EDU uses exactly one sentence for structure
description so that the length T of prediction y is
fixed (T “ T 1).

Inspired by the pioneering work on TANL
(Paolini et al., 2021), we design an augmented
scheme yaug that replicates the input sentences and
augments them with link and relation information:

yaug: [ Dave: has anyone got a sheep, | e0 | root = e0
] [ Dave: I can trade wheat or clay | e1 | Elaboration
= e0 ] [ Tomm: Surprisingly I am bereft of sheep. |

e2 | QA-pair = e0 ]

Specifically, each EDU is enclosed by the special
tokens [ ]. The pipe token | separates raw text, the
EDU marker, and a list of relations in the format
“rki “ ek”. The EDU marker ei is not prepend in
the input. The model needs to use EDU markers
to represent utterances and apply them on structure
prediction. In other structure prediction tasks such
as semantic role labeling (Paolini et al., 2021) and
coreference resolution (Zhang et al., 2023; Bohnet
et al., 2023), such a representation gives SOTA
performance with Seq2Seq models.

Decoding Structured Output Once the model
generates an output (ynat or yaug), we decode the
sentences to obtain F by following:

• Step1. Split the sequences with semicolons
(resp. enclosed brackets) and remove all spe-
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STAC Molweni STAC Molweni

Scheme Link Full Link Full Hallu Miss Hallu Miss

Natural 65.6 ˘ 0.3 46.9 ˘ 1.8 81.4 ˘ 0.4 57.8 ˘ 0.1 3.1% 1.7% 0.4% 0
Augmented 66.7 ˘ 0.7 52.0 ˘ 0.1 82.4 ˘ 0.4 59.1 ˘ 1.0 0 0.2% 0 0

Table 1: Seq2Seq-DDP results on STAC and Molweni test sets (left) and error statistics (right). Scores are averaged
micro-F1. “hallu” and “miss”: hallucinated and missed EDUs.

cial tokens (is, of, |, “) to extract triples in
ynat and quadruples in yaug.

• Step2. Match the generated êi with the source
ei using heuristics. For ynat, we match EDU
markers; for yaug, we match the input sen-
tence and the cleaned output sentence at the to-
ken level using the Jaro distance (Jaro, 1989).
We use 10 examples from the validation set in
STAC and find that using the similarity value
ą 0.96 can best cover the difference—most
of times caused by more spacing between to-
kens—in generated and gold output. Once the
êi and ei is matched, we obtain the triples in
pek, êi, rkiq which is the predicted structure
for EDU ei.

• Step3. Sanity check for hallucinated or for-
gotten EDUs in ŷ. The output sequence is
designed in a way that its length matches the
length of the input, so it is easy to spot erro-
neous generation. We introduce default rules
for failure cases: remove the hallucination
and add an adjacent attachment with a major-
ity relation (i.e., Question-answer-pair) to the
missed EDUs2.

We do not apply constrained decoding (Hokamp
and Liu, 2017) as the output is well-aligned with
the designed scheme and does not require extra
vocabulary masking during generation.

4.2 Experimental Setup
We test our Seq2Seq-DDP system on two most
commonly utilized datasets for dialogue discourse
parsing: STAC (Asher et al., 2016) is composed of
online multi-party conversations during the game
Settlers of Catan. It contains 1, 161 documents
with in average 11 speech turns. We follow the
subset split in Shi and Huang (2019) and set the
maximum document length to 37, resulting in 911,
97, and 109 documents for training, validation, and
testing, respectively. Molweni (Li et al., 2020) is a

2In reality, failure cases are few with a F1 ă ˘1%.

dataset derived from Ubuntu Chat Corpus (Lowe
et al., 2015). It contains 10, 000 documents with in
average 8 utterances. We follow its original separa-
tion: 9, 000 training, 500 validation, and 500 test-
ing. Both corpora are annotated under the SDRT
(Asher and Lascarides, 2003) and have the same
relations (|R| “ 16). We employ the traditional
evaluation metrics, namely, the micro-averaged F1
scores for link attachment (E) and full structure
(F ). All our experiments are conducted on T0
model (Sanh et al., 2022) with the 3B checkpoint,
without any modification to the architecture. Most
hyper-parameters in fine-tuning follow the sugges-
tions in Raffel et al. (2020) (details in Appendix A).

4.3 Results and Analysis

The left part in Table 1 shows the parsing results on
STAC and Molweni. Despite the simplicity of the
Seq2Seq modeling, the fine-tuned T0 model can
well perform dialogue discourse parsing, reaching
66–80 F1 on the naked structure and 47–60 F1 on
the full structure. The outputs are well-aligned with
the desired formats and only in rare cases do we ob-
serve erroneous generation (see below). Both nat-
ural and augmented formats produce satisfactory
results on Molweni (link F1ą 81, full F1 ą 57),
whereas on STAC, we observe a more pronounced
performance difference. The natural scheme is a
succinct format that utilizes EDU markers in target
sequences. This abridgment may cause ambiguity.
In fact, the utterances in STAC are short (4.4 to-
kens/sentence) and similar texts can occur (e.g., the
same answer from different speakers towards the
same question). In comparison, augmented scheme
replicates all tokens including speaker markers in
the target sequence, helping to reduce ambiguity.
Aligned with our observation, Paolini et al. (2021)
also reported performance drops when using an
abridged format for the entity and relation extrac-
tion task.

On the other hand, we observe a few problems
originating from the Seq2Seq-DDP design, such
as hallucinated or missed EDUs during generation,
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as shown on the right part in Table 1. Since no
explicit constraints are placed on the model’s out-
put, there is potential for the model to produce
invalid EDUs. However, this does not happen of-
ten: natural scheme generates 3% hallucinated and
1.7% missed EDUs on STAC (resp. 0.4% halluci-
nated and 0 missed on Molweni); while augmented
scheme bypasses this issue completely. These er-
roneous outputs happen typically in longer docu-
ments when the number of speech turns exceeds
thirty. In practice, we apply refinement rules in
post-processing (included in Appendix B) to effec-
tively eliminate this kind of generation.

5 Improve Seq2Seq-DDP Model with
Transition-based Algorithm

An inherent drawback of the basic Seq2Seq-DDP
system is the weak supervision in long sequences.
The longer the document, the harder it is for the
model to retrace previous predictions, as evidenced
by the hallucinated or forgotten EDUs. Addition-
ally, the act of consecutive output requires extra at-
tention to some properties such as counting, which
LLMs struggle with (Kojima et al., 2022). To pro-
vide more guidance during the generation and by-
pass the counting issue, we improve the Seq2Seq
model with transition-based algorithms. The new
Seq2Seq-DDP+Transition system takes a single
EDU at each step and predicts an action correspond-
ing to a set of links involving that EDU.

5.1 Methodology

Transition-based System The system we con-
sidered is closely related to the deterministic de-
pendency parsing algorithm (Nivre, 2003, 2008).
It starts with the dummy root e0 on the stack, all
the EDUs in the buffer, and an empty set F . The
parse ends once the buffer is empty and F contains
triples of all EDUs (Equation 3). The transitions
are composed of two actions: link action creates
a right-arc from one EDU in the stack to the first
EDU (i.e., target) in the buffer; assign action labels
the arc. The target EDU in the buffer is then moved
to the stack and a new round of transition will be
conducted on the next EDU in the buffer.

States. A state ci keeps track of which EDU is
being processed through the index i, the established
pairs Eăi, and associated relations Făi up to i. We
define the following states:

‚ C is the set of all possible states.
‚ cs “ pe0, ϵ, ϵq is the initial state, where two ϵ

are the empty sets E and F .
‚ Ct “ tc P C|c “ pen, E, F qu is the set of the
final states.
Actions. Given an intermediate state ci “

pei, Eăi, Făiq, we implement ai which contains a
link action Lp¨q and an assign action Ap¨q:

Lpei, Făiq “ tek Ñ ei, 0 ď k ă iu (7)

Apei, Ei, Făiq “ tpek Ñ eiq ÞÑ rki, r P Ru (8)

The transition function ϕ gives an updated state
ci accordingly:

ϕpci, pek Ñ eiq, pek Ñ eiq ÞÑ rkiq

“pei, Eăi ‘ pek Ñ eiq, Făi ‘ rkiq

“pei, Ei, Fiq (9)

Our transition system is a quadruple S “

pC, cs, T, Ctq where C, cs, and Ct are the states
defined previously. T is the set of transitions, each
of which is a function ϕ : C Ñ C. The pars-
ing path K is a sequence composed of actions
and states: K “ tcs, a0, c1, a1, ..., ci, ai, ..., cnu

where for i P r1, ns, ci`1 “ ϕpci, aiq, and where
ai “ Li Y Ai, cn “ Ct.

Representation Scheme Our goal is to en-
code the parsing path K into input and output
strings. Specifically, each state-action pair pci, aiq
is mapped to an input-output pair pxi, yiq. Similar
to Seq2Seq-DDP, we design output strings close
to natural language. We illustrate two input-output
pairs in the natural scheme, where the predicted
action (underlined) is appended to the next state:

x1: [e0] [Dave: has anyone got a sheep,] is root;
[e1] [Dave: I can trade wheat or clay.] is
ynat1 : Elaboration of [e0]

x2: [e0] [Dave: has anyone got a sheep,] is root;
[e1] [Dave: I can trade wheat or clay.] is
Elaboration of [e0]; [e2] [Tomm: Surprisingly I am
bereft of sheep.] is
ynat2 : QA-pair of [e0].

We also implement a new format called focused
scheme that utilizes special tokens ˚˚ to emphasize
the target EDU (ei) and a pipe token | to separate
the text with prediction, as depicted in Figure 2.

Decoding and Sliding Window Strategy Com-
pared to the previous system, decoding the struc-
tured output from a transition-based model is easier:
the generation is incremental with no mismatched
or hallucinated EDUs. At each stage, we split ŷ on
token of to obtain ek and rki.



7

Seq2Seq-DDP
+Transition

 **[e0] Dave: has anyone got a sheep,

2
  [e0] Dave: has anyone got a sheep, | root; 
  ** [e1] Dave: I can trade wheat or clay

root

Elaboration of [e0]

QA-pair of e0
  [e0] Dave: has anyone got a sheep, | root; 
  [e1] Dave: I can trade wheat or clay | Elaboration of [e0]; 
  ** [e2] Tomm: Surprisingly I am bereft of sheep.

2

1

3

1

3

Figure 2: Seq2Seq-DDP+Transition system with focused scheme. It takes as input the previous state, the predicted
action, and the next EDU; as output, actions for the current state. In blue: current input (ci); in red: current output
(ai); in grey: parsed input (Căi).

The input grows longer as we continue adding
the predicted structures. To comply with the maxi-
mum input length of pretrained models, we employ
a sliding window strategy that reserves the closest
EDUs for the next stage of prediction. Naturally,
the closest EDUs are most relevant to the target
EDU, so we frame a window with a set maximum
length and slide it to the right at each stage. We
set the window length to 18, as this is the longest
link attachment in the validation set. The model is
required to focus only on the target EDU ei and its
nearest preceding neighbors in the context ci3.

5.2 Experiments and Analysis

We test our new system by fine-tuning T0-3B on
STAC and Molweni datasets, results are shown in
the first two rows in Table 2. Clearly, the transition-
based system outperforms its Seq2Seq-DDP coun-
terpart on all metrics: 5–8 and 1–3 points improve-
ments on STAC and Molweni, respectively.

In the last four rows, we compare with the SOTA
models (Shi and Huang, 2019; Liu and Chen, 2021;
Chi and Rudnicky, 2022; Li et al., 2023c). Most
of which use pre-trained language models such
as RoBERTa to provide contextualized represen-
tations and task-specific techniques for decoding.
Tellingly, our approach obtains new SOTA results
on Molweni, surpassing the latest model proposed
by Li et al. (2023c). We also achieve comparable
results on STAC. Moreover, our approach is not
limited to tree-style structures. Discourse-aware
Seq2Seq models are capable of producing graphs
(see Section 6). Although SOTA models use rela-
tively small language models (110M - 340M param-
eters), it is important to point out that full compara-
bility is challenging due to the numerous ways our
approaches differ. First, the complexity of the pars-
ing systems: SOTA models are built upon heavily

3In the oracle structures in test set, the longest edge dis-
tance is 13, so this approach does not affect any distant edges.

engineered architecture and require specific decod-
ing strategies such as the Maximum Spanning Tree
(MST). Our approach, on the other hand, directly
leverages the standard encoder-decoder models and
does not require any architecture modification. Sec-
ond, scaling up encoder-only models does not al-
ways result in improvements in downstream appli-
cations. These models are also more difficult to de-
ploy. Megatron-BERT (Shoeybi et al., 2019) with
1.3B and 3.9B parameters, for instance, are not pub-
licly available. For generative models consisting
of decoder networks, scaling tends instead to be
closely associated with improved performance on
many tasks (Ganguli et al., 2022).

Compared to Seq2Seq-DDP, the improved sys-
tem does not suffer from EDU mismatch in the
source and generation. However, the model some-
times predicts repetitive structures, such as “Ac-
knowledgment of [e2] Acknowledgment of [e2]”.
In reality, failure cases are few: only 13 cases (1%)
in all 1.2k triples in the development set. This
occurs typically when the oracle output contains
multiple incoming edges and the model tries to
predict a graph structure.

6 Further Investigation

6.1 Masked Labels and Abridged Output
We investigate the influence of label semantics.
The semantics of rhetorical relation types can be
different in a pre-trained model. To prevent the
model from understanding the relation through la-
bel semantics, we replace these words with special
tokens, such as “rel1” and “rel2”, to the model
vocabulary. This format is called ylmask:

ynat: [e0] is root ; [e1] is Elaboration of [e0] ; [e2]
is QA-pair of [e0]. (baseline)
ylmask: [e0] is root ; [e1] is rel4 of [e0] ; [e2] is rel0
of [e0]. (label masked)
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STAC Molweni

System Link (∆) Full (∆) Link (∆) Full (∆)

Natural (ours) Seq2Seq-DDP+Transition 70.8 ˘ 0.9 (Ò 5.2) 55.1 ˘ 1.0 (Ò 8.2) 83.5 ˘ 0.2 (Ò 2.1) 60.3 ˘ 0.1 (Ò 2.5)
Focused (ours) Seq2Seq-DDP+Transition 72.3 ˘ 0.6 (Ò 5.5) 56.6 ˘ 0.6 (Ò 4.6) 83.4 ˘ 0.6 (Ò 1.0) 60.0 ˘ 0.5 (Ò 0.9)

Shi and Huang (2019) GRU+Pointer˚ 72.9 ˘ 0.4 54.2 ˘ 0.5 77.9 ˘ 0.4 54.1 ˘ 0.6
Liu and Chen (2021) RoBERTa+Pointer 72.9 ˘ 1.5 57.0 ˘ 1.0 79.0 ˘ 0.4 55.4 ˘ 1.8
Chi and Rudnicky (2022) RoBERTa+CLE: 73.0 ˘ 0.5 58.1 ˘ 0.7 81.0 ˘ 0.7 58.6 ˘ 0.6
Li et al. (2023c) BERT+Biaffine+Pointer 73.0 58.5 83.2 59.8

Table 2: Parsing results with our Seq2Seq-DDP+Transition models (top) and replicated SOTA models (bottom)
on STAC and Molweni test sets. Scores are averaged micro-F1. Teal Ò shows performance gains compared to
Seq2Seq-DDP systems. Pointer˚: pointer network (Vinyals et al., 2015). CLE:: Chu-Liu-Edmonds algorithm (Chu,
1965; Edmonds et al., 1967).

Additionally, to analyze the impact of sequence
representations, we design abridged formats (yabr)
for natural and augmented schema:

ynat: [e0] is root ; [e1] is Elaboration of [e0] ; [e2]
is QA-pair of [e0]. (baseline)
yabr: [e0] root; [e1] [e0] rel4; [e2] [e0] rel0.

(abridged)

yaug: [ Dave: has anyone got a sheep, | e0 | root = e0
] [ Dave: I can trade wheat or clay | e1 | Elaboration
= e0 ] [ Tomm: Surprisingly I am bereft of sheep. |

e2 | QA-pair = e0 ] (baseline)
yabr: e0 | root = e0 ; e1 | Elaboration = e0 ; e2 |

QA-pair = e0. (abridged)

For the abridged version of natural representa-
tion, we transform the output into a triple px, y, rq

where x and y are respectively the dependent and
head of an EDU pair; r is the masked relation type.
It reads: EDU x is linked to EDU y with relation
r. This is the expected output F from document D
(Equation 3), but such an extremely short lineariza-
tion creates the most challenging representation:
the model not only needs to learn the semantics of
masked labels but also the implicit output pattern.
For the abridged version of augmented representa-
tion, we do not repeat the input utterance and only
keep EDU markers. The pipe (|) tag still denotes
the start of the area of interest. Without the original
text sequence, the abridged scheme requires extra
reasoning to map the text with EDU markers.

We present the results of masked labels and
abridged output in Table 3. On STAC, masking
out the labels substantially hurt the performance
with ´2.5 points in link prediction and ´9.6 in full.
This demonstrates that label semantics are useful,
especially for datasets containing smaller training
examples. In terms of abridged output, both natu-
ral abridged and augmented abridged formulations
underperform the baselines significantly (´12 and
´9.7 points on full prediction). Interestingly, we
do not observe a similar performance drop on Mol-

weni. Label-masked models obtain similar results
as the natural baseline. The differences in link and
full gains are not significant: p ą 0.7, p ą 0.4.
The most challenging abridged formulation also
continues to perform well on Molweni. We think
the amount of supervision is key. Molweni con-
tains 9, 000 documents in the training set whereas
STAC only « 900. In terms of utterance length
and token number, STAC is also very limited (see
Table 5). These results are informative, indicating
that a more “natural language”–like output gener-
ally brings more accurate predictions, especially
when the amount of training data is low. On the
other hand, sufficient supervision enables us to use
the simpler paradigm of a text-to-text model suc-
cessfully.

6.2 Pretrained LLMs and Model Sizes

We compare three LLMs in the T5 family: T5 (Raf-
fel et al., 2020), Flan-T5 (Chung et al., 2022), and
T0 (Sanh et al., 2022). In Table 4, we find that
the model performance improves as the model size
increases, which in line with the observations in
Zhang et al. (2023). In terms of different models
in the T5 family, there is a notable difference be-
tween models with and without instruction finetun-
ing such as FLAN (Wei et al., 2022). For models of
the same size, the performance of the Flan-T5 and
T0 is comparable (link 68.5 vs. 69.2; full 50.4 vs.
50.2), and both greatly exceed the performance of
the original T5 model (`8 points in link attachment
and `10 points in full prediction). Even the much
smaller Flan-T5-base model (250M) outperforms
T5-3B on link prediction by 2 points. This is not
surprising: Chung et al. (2022) demonstrate that
on some challenging BIG-Bench tasks (Srivastava
et al., 2023), Flan-T5-11B outperforms the same
size T5 by double-digit performances. This proves
that instruction tuning can significantly enhance
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STAC Molweni

Sequence representation Link (F1) Full (F1) Link (F1) Full (F1)

Natural baseline 69.2 ˘ 0.5 50.2 ˘ 0.7 83.2 ˘ 1.4 58.6 ˘ 0.8
Label masked Ó ´2.5 ˘ 0.9 Ó ´9.6 ˘ 0.4 Ò `0.3 ˘ 0.4 Ò `0.6 ˘ 0.5
Label masked + abridged Ó ´2.7 ˘ 0.2 Ó ´12.4 ˘ 3.0 Ò `1.3 ˘ 1.0 Ò `0.6 ˘ 0.2

Augmented baseline 70.0 ˘ 0.8 54.2 ˘ 0.4 84.5 ˘ 0.4 59.0 ˘ 1.0
Abridged Ó ´2.6 ˘ 0.9 Ó ´9.7 ˘ 0.4 „ ˘0.9 Ò `0.7 ˘ 1.1

Table 3: Sequence representation study on STAC and Molweni development sets. Red Ó, teal Ò, and „ symbols
refer to resp. lower, higher, and same scores compared to the baselines.

Pre-trained model #Params Link (F1) Full (F1)

T5-large 738M 59.3 ˘ 0.6 36.4 ˘ 0.6
T5-3B 3B 60.7 ˘ 1.3 40.5 ˘ 0.9

Flan-T5-base 250M 63.0 ˘ 0.5 36.7 ˘ 0.1
Flan-T5-large 780M 67.2 ˘ 1.4 46.6 ˘ 1.8
Flan-T5-xl 3B 68.5 ˘ 0.5 50.4 ˘ 0.1

T0-3B 3B 69.2 ˘ 0.5 50.2 ˘ 0.7

Table 4: Study of different models in the T5 family on
STAC development set (natural scheme). The best and
second-best scores are bolded and underlined.

the model’s ability to learn complex language tasks,
such as dialogue discourse parsing, thereby advanc-
ing it towards human-like language reasoning.

6.3 Richer Output Structures
We observe some distinctive features in the pre-
dicted structures such as directed acyclic graphs
with Seq2Seq models. This is an exciting and
big advantage over other SOTA models (Shi and
Huang, 2019; Liu and Chen, 2021; Wang et al.,
2021a; Chi and Rudnicky, 2022; Li et al., 2023a)
that can only generate trees using MST algorithms
in decoding (Eisner, 1996; Chu, 1965; Edmonds
et al., 1967). Among all the proposed schemes,
the focused scheme in Seq2Seq-DDP+Transition
system achieves the highest performance in captur-
ing multiple incoming edges, with a precision rate
of 13% for graph structures. Other schemes such
as natural and augmented also correctly predict
around 10% graph structures. This is non-trivial:
these structures are few and difficult to learn (« 5%
of nodes, ă 7% of links in STAC; none in Mol-
weni) and demonstrate interesting and unique struc-
tures in dialogues.

6.4 Different Document Lengths
Since long documents can pose challenges for
Seq2Seq models, we analyze the parsing perfor-
mance under different document lengths, as shown

Figure 3: STAC (left) and Molweni (right) Full parsing
performance under different Seq2Seq models and docu-
ment lengths. x axis: #EDUs in a document. y axis: F1.

in Figure 3. On STAC, we split the length range
into five even buckets between the shortest (2
EDUs) and longest (37 EDUs) document, result-
ing in 60, 25, 16, 4, and 4 data points per bucket.
On Molweni, we split the documents into three
buckets with 276, 154, and 70 data points in each
group. Both the Seq2Seq-DDP and Seq2Seq-
DDP+Transition systems exhibit a decline in per-
formance with longer documents. However, our
transition-based models (“Trans-*”) show a supe-
rior ability to handle long documents compared to
their counterparts, as validated across both datasets.

7 Conclusion

We investigate an effective transformation ap-
proach for the DDP task by leveraging Seq2Seq
LLMs. We adopt the pretrained encoder-decoder
model T0 and fine-tune it to produce structured se-
quences. Without using any specific parsing mod-
ule or modifying LLM architecture, our Seq2Seq-
DDP system performs reasonably well on STAC
and Molweni datasets. Excitingly, our Seq2Seq-
DDP+Transition system yields comparable results
with task-specific SOTA models, with richer dis-
course structures. Building on this work, we intend
to explore various generative model architectures
and sequence representations, and eventually ex-
tend our method to other discourse parsing tasks.



10

Limitations

Longer documents tend to be more difficult to parse
due to the growing number of possible discourse
parse trees and the inherent drawbacks such as
counting in LLMs. Our Transition-based systems
mitigate this issue to some extent by using a sliding
window strategy that focuses only on the closest
EDUs.

In terms of decoding speed and performance,
end2end systems demonstrate lower F1 score but
faster inference compared to transition-based sys-
tems. On the development set of STAC, the infer-
ence time for the end2end system is 2.5 seconds
per document, whereas the transition-based system
takes around 1.8 seconds per sequence, summing
up to around 20 seconds for a complete document
prediction.
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B Seq2Seq-DDP System Examples of
Erroneous Generation

Table 6 presents a few concrete examples of
the error generations using Seq2Seq-DDP system.
Specifically, we find that in natural scheme, 38
EDUs from 19 documents are hallucinated; 22
EDUs are not predicted (missed) in 11 documents,
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Train Development Test

Dataset #Doc #Sent #Token #Doc #Sent #Token #Doc #Sent #Token

STAC 911 10k 47k 97 1k 5k 109 1k 5k
Molweni 9000 79k 945k 500 4k 52k 500 4k 52k

Table 5: Data statistics for STAC and Molweni corpora. The numbers of documents, utterances, and tokens in
training, development, and test sets are listed.

Error x y ŷ

Hallu xnat: . . . [e13] Gaeilgeoir: I’ll
try again [e14] nareik15: cool :)
[e15] Gaeilgeoir: I’m definitely
giving wheat [e16] Gaeilgeoir: I
have no sheep :)

ynat: . . . [e14] is Acknowledge-
ment of [e13] ; [e15] is Continua-
tion of [e13] ; [e16] is Elaboration
of [e15].

ŷnat: [e14] is Acknowledgement
of [e12] ; [e15] is Result of [e14] ;
[e16] is QA-pair of [e15] ; [e17] is
Contrast of [e16].

Miss xnat: [e0] ztime: morning.
[e1] Shawnus: hey [e2] Shawnus:
good morning . . . [e28] ztime:
damn [e29] Shawnus: mis-
placed/ [e30] Shawnus: ?
[e31] somdechn: Need to undo
are you? [e32] ztime: no.
[e33] ztime: you took the spot I
was looking at. [e34] ztime: no
it’s fine. [e35] Shawnus: hahaha
[e36] somdechn: Got to be mean
here.

ynat: [e0] is root; [e1] is Acknowl-
edgement of [e0] ; [e2] is Elabora-
tion of [e1] ; . . . [e29] is Clarifica-
tion_question of [e28] ; [e30] is
Correction of [e29] ; [e31] is
Clarification_question of [e28] ;
[e32] is QA-pair of [e29] ; [e33] is
Explanation of [e32] ; [e34] is
QA-pair of [e31] ; [e35] is Com-
ment of [e32] ; [e36] is Comment
of [e32].

ŷnat: [e0] is root; [e1] is Acknowl-
edgement of [e0] ; [e2] is Contin-
uation of [e1] ; . . . [e29] is Com-
ment of [e28] ; [e30] is Comment
of [e28] ; [e30] is Comment of
[e28] ; [e30] is Comment of [e28] ;
[e30] is Comment of [e28]

Count xaug: [ ztime: morning ]
[ Shawnus: hey ] [ Shawnus:
good morning ] . . . [ ztime:
damn ] [ Shawnus: misplaced/ ] [
Shawnus: ? ] [ somdechn: Need
to undo are you? ] [ ztime: no.. ]
[ ztime: you took the spot I was
looking at. ] [ ztime: no it’s fine ]
[ Shawnus: hahaha ] [ somdechn:
Got to be mean here. ]

yaug: [ ztime: morning | e1 | root
= e0 ] [ Shawnus: hey | e1 | Ac-
knowledgement = e0 ] [ Shawnus:
good morning | e2 | Elabo-
ration = e1 ] . . . [ Shawnus:
misplaced/ | e29 | Clarifica-
tion_question = e28 ] [ Shawnus:
? | e30 | Correction = e29 ]
[ somdechn: Need to undo are
you? | e31 | Clarification_question
= e28 ] [ ztime: no. | e32 | QA-
pair = e29 ] [ ztime: you took the
spot I was looking at. | e33 | Ex-
planation = e32 ] [ ztime: no
it’s fine. | e34 | QA-pair = e31 ]
[ Shawnus: hahaha | e35 | Com-
ment = e32 ] [ somdechn: Got to
be mean here. | e36 | Comment =
e32 ]

ŷaug: [ ztime: morning | e1 | root
= e0 ] [ Shawnus: hey | e1 | Ac-
knowledgement = e0 ] [ Shawnus:
good morning | e2 | Continua-
tion = e1 ] . . . [ Shawnus: mis-
placed/ | e25 | QA-pair = e24 ]
[ Shawnus:? | e25 | Continua-
tion = e24 ] [ somdechn: Need
to undo are you? | e25 | Clarifi-
cation_question = e24 ] [ ztime:
no. | e25 | QA-pair = e24 ] [ ztime:
you took the spot I was looking at.
| e25 | Explanation = e24 ] [ ztime:
no it’s fine. | e25 | Acknowledge-
ment = e24 ] [ Shawnus: hahaha |

e25 | Comment = e24 ] [ Shawnus:
hahaha | e27 | Comment = e24 ]
[ Shawnus: hahaha | e27

Table 6: Error generation examples in STAC corpus. x, y, ŷ refer to resp. source input, target output, and generated
output. “Hallu”: hallucinated EDU in teal; “Miss”: missing EDUs in cyan; “Count”: wrong counting of EDU index
in orange. False predictions are in red.
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