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Abstract

Active participation in a conversation is key to
building common ground, since understanding
is jointly tailored by producers and recipients.
Overhearers are deprived of the privilege of per-
forming grounding acts and can only conjecture
about intended meanings. Still, data generation
and annotation, modelling, training and evalua-
tion of NLP dialogue models place reliance on
the overhearing paradigm. How much of the
underlying grounding processes are thereby for-
feited? As we show, there is evidence pointing
to the impossibility of properly modelling hu-
man meta-communicative acts with data-driven
learning models. In this paper, we discuss this
issue and provide a preliminary analysis on
the variability of human decisions for request-
ing clarification. Most importantly, we wish to
bring this topic back to the community’s table,
encouraging discussion on the consequences of
having models designed to only “listen in”.

1 Is Grounding “Supervisable”?

“What are you looking at?” asked Bob. “Magpies
are building a nest outside!” Alice replied. If you
were Bob, how would you continue that conversa-
tion? He could for instance say “Awesome!” or “I
saw that”. Whatever you say, it will probably differ
from how he continued: “Building what?”. The
decision to request clarification depends on mutual
understanding, which is contingent on e.g. the cur-
rent situation, the familiarity between interlocutors
and the previous utterances. Or, more formally,
it depends on the clarification potential of these
utterances (Ginzburg, 2012) and how they are as-
similated into their common ground (Clark, 1996).

The one-to-many property of dialogue continu-
ations is well-known in NLP (Zhao et al., 2017;
Yeh et al., 2021; Towle and Zhou, 2022; Liu et al.,
2023). There is a combinatorial explosion of possi-
bilities for any interaction (Bates and Ayuso, 1991;
Dingemanse and Enfield, 2023), and individual

there is a maple tree to the left, fairly big with an owl in the 
upper left and a cat on the bottom left of the frame

which way is owl and cat looking

what size is the cat? maple tree is 
on the bottom or to the horizon?

how big are cat and owl?

tree hole facing which direction?

Figure 1: Variability of clarification requests produced
by three overhearers in comparison to the original one,
in an instance of the instruction-following CoDraw dia-
logue game (CC BY-NC 4.0), with cliparts from Zitnick
and Parikh (2013).

human behaviour may vary at each point. This vari-
ability is hard to measure, since arguably no two
people will ever be in the exact same situation with
the same conversation history to react to (Yeomans
et al., 2023).

Still, the prevailing end-to-end deep learning
methods commonly rely on supervised learning
(SL) from a sample of human behaviour instantiat-
ing the reaction of a single human at each observed
context. Besides the issue of multiplicity of valid
continuations, this paradigm faces another concep-
tual contention: dialogue models are trained to
react upon a conversational history produced by
someone else. In other words, they act as overhear-
ers1 of a dialogue in which they did not participate.

The suitability of data-driven methods and fixed
corpora for modelling strategies and conversational
grounding phenomena like Clarification Requests
(CR) has been questioned (Schatzmann et al., 2005;
Benotti and Blackburn, 2021b). Static datasets of
human observations have empirically failed to pro-
vide enough information to define a human-like CR
policy (Testoni and Fernández, 2024; Madureira
and Schlangen, 2024). Moreover, chat-optimised

1We will use this term to also mean reading or seeing signs.
Also called observers by Georgila et al. (2020).
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LLMs mostly do not engage in grounding acts and,
when they do, it does not fully align with human
behaviour (Kuhn et al., 2022; Deng et al., 2023;
Shaikh et al., 2023). The latter is not necessarily a
problem: one can use other effective methods when
it comes to building applications. But the first is:
grounding is essential for human communication,
and lack of it can lead to undesired breakdowns
(Benotti and Blackburn, 2021a).

Since modelling human dialogue strategies and
the use of meta-communivative acts remains an
unsolved problem, we hereby wish to re-open the
discussion on the consequences of overhearing, fo-
cusing on two grounding devices: backchannels
and interactive repair (Fusaroli et al., 2017).

2 Overhearers in a Conversation

As Clark (1996) defined it, in addition to speak-
ers and addressees,2 a conversation can have side-
participants, who are part of it but at a given mo-
ment are neither of the those two, and overhearers,
who are spectators without any rights or responsibil-
ities, e.g. a silent audience or a minute-taker who
lacks the opportunity to interfere (Peters, 2010).
They are further divided into bystanders, if one is
aware of their presence, or eavesdroppers, who lis-
ten secretly (or at a later time). There is evidence
that the very process of understanding differs be-
tween addressees and overhearers: while interlocu-
tors actively construct mutual understanding with
each other, overhearers only passively consume the
product of that process (Schober and Clark, 1989).

Speakers can design their utterances while tak-
ing different attitudes towards overhearers when
they are aware of their presence (Clark, 1992; Liu
et al., 2016), but covert overhearers are not ac-
knowledged at all in the conversation, and can only
conjecture about the intended meanings (Clark,
1992). Although the grounding acts they witness,
like backchannels, and the availability of multiple
perspectives may indeed aid their comprehension
(Tolins and Fox Tree, 2016; Tree and Mayer, 2008),
the original interaction was opportunistically pro-
duced to be understood against the original partici-
pants’ common ground (Schober and Clark, 1989).

In their corpus analysis of common ground in
multi-party interactions, Eshghi and Healey (2007)
showed evidence that overhearers reach lower lev-
els of understanding than ratified side participants,
who in their turn are not very different from di-

2Or producers and recipients.

rect addressees, in what they call collective states
of understanding. Related to that, Georgila et al.
(2020) showed that observers and participants per-
ceive interactions differently and the experiments
by Fox Tree (1999) provided evidence that over-
hearers can more easily comprehend instructions
while listening to dialogues than to monologues.
Clark (1992) even argued that most psycholinguis-
tic subjects are actually overhearers, so theories of
language processing may actually be theories of
overhearing, due to their lack of interactivity.

Separating addressees from side participants and
accommodating overhearers are salient problems
in research on multi-party dialogue (Jovanovic
and op den Akker, 2004; Ginzburg and Fernán-
dez, 2005; Traum et al., 2018; Parisse et al., 2022;
Ganesh et al., 2023).

3 Are NLP Models Only Listening In?

More than a decade ago, Rieser and Lemon (2011)
already discussed the limitations of using super-
vised approaches for learning dialogue strategies.
They flagged up three concerns: textual data does
not contain the underlying uncertainty measures,
instances are treated as local point-wise estimates
(instead of the sequences they really are) and ex-
ploration of novel strategies is not possible, since
the model has access only to the outcomes of the
chosen dialogue trajectory originally perpetrated
by the humans. This reflects the (offline) over-
hearering paradigm: a person or agent interpreting
a pre-existing conversation and deciding what to
do if they were in the original participants’ shoes.

In NLP, this paradigm is widely used in various
modelling steps. Let us look closer at four main
practices, which may have cascaded effects.

Data Collection Given the extra cost of coor-
dinating the presence of more than one subject
for generating dialogical data, especially in crowd-
sourcing campaigns, many strategies have been
proposed to bypass that with overhearing. For
instance, this happens when the data collection
procedure is framed as a dialogue continuation
task (Frommherz and Zarcone, 2021). To name
a few related to grounding, we have Zhou et al.
(2022) who extracted dialogue contexts from ex-
isting datasets and presented them in a two-stage
approach for some workers to generate common
ground inferences and, separately, others generated
a continuation as a response. Variations of over-
hearing manifest in techniques to generate CRs or
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their responses (Aliannejadi et al., 2021; Gao et al.,
2022; Addlesee and Eshghi, 2024) and are even
embedded in data collection tools that allow dia-
logues to be constructed without persistent workers
(Cascante-Bonilla et al., 2019).

Annotation and Analysis Corpus studies of in-
teractive linguistic use can only be performed from
an overhearer perspective, without full evidence of
what participants intended and understood or the
reasons for their decisions (Brennan, 2000; Bren-
nan et al., 2005). This is particularly challenging
for research on common ground. For instance, Ro-
dríguez and Schlangen (2004) and Schlöder and
Fernández (2015) were confronted with the limi-
tations of overhearers having only indirect access
to the intentions of interlocutors when annotating
CRs, partly remediating that by making a long
dialogue context available. Niekrasz and Moore
(2010) annotated references to conversation partici-
pants, joint actions that also serve to build common
ground, emphasising that annotators were overhear-
ers instructed to judge the speaker’s intended pur-
pose. Other annotations of grounding acts and
common ground states had to rely on overhearers
(Markowska et al., 2023; Zhang et al., 2023; Mo-
hapatra et al., 2024).

Modelling Prototypical data-driven models
trained with supervised learning to process
dialogue, and possibly continue it, can, by design,
be regarded as overhearers. This fact was made
clear, for instance, in the CR model by Schlangen
(2004). Traum (2017) differentiated between the
perspective of an observer in dialogue modelling
and of a participant in dialogue management,
stating that the main difference lies in the
decision-making process of the latter, although
some specific applications also exist for the first.

Evaluation In human evaluation, overhearer ex-
periments (Whittaker and Walker, 2005) are very
common, even though it limits the judgements
and measurements to user’s perceptions of the dia-
logue (rather than the actual behaviour) (Whittaker
and Walker, 2005; Foster and White, 2005; Moore,
2011) and restricts assessment of metrics like ef-
fectiveness and efficiency (Paksima et al., 2009).
It has historically been a ubiquitous approach due
to advantages like having control on one aspect
of the evaluation while avoiding navigational and
timing aspects of real interactions (Villalba et al.,
2017), avoiding interference from ASR and other

technical problems (Buß et al., 2010), allowing the
collection of feedback about alternative system re-
sponses (Walker et al., 2004) and avoiding natural
language interpretation problems (Wärnestal et al.,
2007). Demberg et al. (2011) contrasted text over-
hearers with speech overhearers, pointing out that
reading dialogues is artificially simplified, since
participants can go back to difficult portions and
choose the pace, and the two setups may also im-
pact how evaluators rate the system. The available
context may also have to be adjusted (Spanger et al.,
2010). Cercas Curry and Rieser (2019) explicitly
addressed the limitations of evaluation by overhear-
ing and advocated for interaction with users. For a
recent overview of works that use similar forms of
static evaluation, see (Finch and Choi, 2020).

As we have seen, the overhearing paradigm
(fairly silently) permeates fundamental phases of
dialogue modelling. The choice of this paradigm
used to be a salient concept, with authors showing
awareness of its limitations when it was employed.
Kousidis and Schlangen (2015) even modelled a rat-
ified side participant and had evaluators “overhear
the overhearer”. In recent publications, however,
it is often taken for granted, as if it was the only
natural way to go. What can be the consequences
when it comes to cognitive models of conversa-
tional grounding?

4 Variability in Human Grounding Acts

As humans speak, they can provide positive and
negative evidence of mutual understanding (Clark
and Brennan, 1991; Roque and Traum, 2008), but
modelling their timing and decision-making is chal-
lenging. Traum (2017) claimed that “it can be very
difficult to efficiently capture regularities in behav-
ioral patterns that lead to similar, but not identical
structures”. In connection to that, people may take
various paths in similar conversational situations
(Bates and Ayuso, 1991). It is thus an open ques-
tion how far data-driven supervised learning can
get given the inherent variability of explicit (not to
mention the latent) collateral signs of grounding.

Backchannels, a positive evidence of grounding,
were demonstrated to involve individual variability,
and even idiosyncrasy, possibly due to personality,
gender or randomness (Huang and Gratch, 2012;
Blomsma et al., 2024). Although those works
showed some regularity in their timing, the SotA
for the backchannel prediction task is not very high
(.66 weighted F1) (Liermann et al., 2023).
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original
overhearer 1
overhearer 2
overhearer 3

no CR
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Figure 2: Variability in the decision of when to request clarification, comparing the decision of the original player
with those of three overhearer annotators over 90 instances (horizontal axis) of the CoDraw game. Each cell is a
data point and columns correspond to decisions on the same instance.

Findings on the variability of human decisions to
initiate a CR, a negative sign of grounding, are still
sparse. Stoyanchev et al. (2013) measured an abso-
lute agreement of 39% among three annotators for
scripted dialogues with missing ASR information.
As another reference, Shaikh et al. (2023) reported
a Cohen’s κ of 48.45 for clarification in emotional
support conversations, which, they claimed, may
even be inflated. The task of deciding when to
request clarification in collaborative instruction fol-
lowing is under active investigation, but models’
performance is still suboptimal (Shi et al., 2022;
Li et al., 2023; Madureira and Schlangen, 2023;
Mohanty et al., 2023). Recent works on the multi-
modal CoDraw dialogue game (Kim et al., 2019)
argued that this may be due to the variability in
human decisions and the limitations of using su-
pervised learning (Testoni and Fernández, 2024;
Madureira and Schlangen, 2024).

5 A Brief Analysis of Regularity in CRs

In CoDraw, an instruction follower receives instruc-
tions to reconstruct a scene using cliparts (as in
Figure 1). Only the instruction giver sees the target
scene. Madureira and Schlangen (2023) identified
all CRs (around 11% of the instruction follower’s
utterances) and defined the task of deciding when
to request clarification, where models reached only
up to .41 binary F1. What is missing as evidence
for the claim that data-driven models cannot fully
succeed in learning a “when policy” from human
data is the actual human performance on this NLP
task, i.e. what overhearers predict.

For an initial analysis, we collected a conve-
nience sample with three annotators performing a
similar task as the trained models: given a dialogue
history and the current state of the reconstructed
scene, decide which actions to take and, if needed,
request clarification (details in Appendix). We ran-
domly selected a sample with 90 instances; in half
of them, the original player had produced a CR.

The average binary F1 of overhearers with re-
spect to the original decision was .51, not much

above what SotA models achieve. But the propor-
tion of CRs widely ranged from 36 to 85%. Among
the three annotators, the Krippendorff’s α was 0.10
and the mean pairwise Cohen’s κ was 0.18. That is
already low, but if we consider the original decision
as a fourth annotator, measures are even lower: α
was 0.02 and κ was 0.06. This indicates that there
was slightly more agreement among overhearers
than among addresses and overhearers, but in gen-
eral there was little agreement on deciding when a
CR should be realised. Figure 2 presents the main
binary decision (whether to request clarification or
not) for each of the 90 annotation instances, serving
to provide a visual overview of such variability.

In terms of surface forms, the average BLEU
score was 0.11 (std= 0.10) using the original CR as
a source and the produced utterances as a reference.
The mean cosine similarity between the embedding
of the produced and the original CRs was 0.38,
0.29 and 0.36 for the three overhearers. Figure 1
shows an example of how diverse the produced
clarifications can be, both in form and in content,
even when all subjects made the same decision to
clarify at a given point.

These are preliminary insights from a pilot study.
Further standardised experiments with a larger sam-
ple must be conducted. Still, the results are al-
ready useful to strengthen the argument that, like
backchannelling, human CR decisions lack regular-
ity and overhearers have a much harder task trying
to interpret and act upon someone else’s ground-
ing acts. Decisions depend on how interlocutors
distribute grounding costs, as per the principle of
least collaborative effort (Clark and Brennan, 1991).
Besides, there might be adaptive behaviours that
models are not capturing (Dideriksen et al., 2023).

To continue this investigation, we propose dis-
tinguishing between the clarification potential
(Ginzburg, 2012; Benotti, 2009) and the clarifica-
tion need. The first is a larger set of possibilities for
clarification of a given utterance, while the latter
refers to the decision of whether and what to clarify
taken by a given individual operating with that ut-
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terance and identifying something worth clarifying.
Or, in other words, the clarification need, which
is in the agent, refers to what was asked among
all that could be asked. It is challenging to design
experiments that can capture the clarification need
among individuals, in particular due to the diffi-
culty in replicating a given dialogue context for
different subjects if they are not acting as overhear-
ers. A possible next step is to turn the CR decision
into an acceptability task, regarding it as a contrast.
For each instance, the annotator would see a set of
CRs. The actual CR observed in the data should
ideally be accepted, but possibly others too. If the
original CR falls into the empirical potential, there
should be a plausible need for it at that point. Such
experiment could also aim to measure uncertainty
at each turn.

6 Discussion

Mutual understanding is crafted by “interacting
minds” (Dingemanse et al., 2023). In dialogue,
“interlocutors share or synchronise aspects of their
private mental states and act together in the world”
(Brennan et al., 2010). On the other hand, we have
shown that the current NLP methodology mostly
limits us to learning how overhearers predict dis-
course representations without the actual joint de-
cision making facet, due to the way that data is
produced and annotated, the assumptions behind
training mechanisms and the evaluation protocols,
each adding a layer of overhearing.

What can be a better setup to learn human di-
alogue behaviour, realising it as a truly interac-
tive process? One needs to move on from one-off
supervised learning to sequential models that not
only understand dialogues but also participate in
them.3 Reinforcement learning provides that fram-
ing with a fully accessible and explorable environ-
ment (Rieser and Lemon, 2011), but somewhat cir-
cularly requires a good simulation of an user or in-
terlocutor (Schatzmann et al., 2005; Georgila et al.,
2006; Li et al., 2020). Although LLMs can serve as
speaker simulators, so far they cannot fully model
all dialogue phenomena. Another possibility are
hybrid combinations of supervised and reinforce-
ment learning (Henderson et al., 2008), as well
as further improvements in techniques like RLHF,

3See (Min et al., 2022) for a related discussion on the
limitations of imitation learning and behaviour cloning for
embodied agents. See also (Ortega et al., 2021) for a discus-
sion on supervised learning and the sequential aspect of an
interaction.

PPO and DPO. But independently of the learning
regime, data-driven approaches, which rely on ex-
tracting latent patterns and regularities in a corpus,
stumble upon the individual variability of some di-
alogue phenomena, so that tasks may be ill-defined
in datasets. Besides, although transcribed dialogue
contain clues about the decision making during a
conversation, they provide only limited evidence of
what participants understood or intended, or their
internal states (Brennan et al., 2005), which are
pertinent for modelling some dialogue decisions
and meta-communicative acts.

Indeed, interfaces do not necessarily have to con-
form to human behaviour, as long as they can sus-
tain graceful interaction (Hayes, 1980). But from
a cognitive perspective, the current NLP resources
do not seem to satisfactorily meet our needs for
modelling grounding mechanisms. To study the
human mind, do we want cognitive models of how
meaning and common ground are constructed or
only of how they can be reverse engineered from
someone else’s interactions?

To conclude With this argumentative paper, we
wish to encourage more studies on the variability of
human grounding acts and its impact in modelling
human dialogue strategies. Besides, we advocate
making the overhearing paradigm explicit when-
ever it is used in future publications and discussing
how it can have influenced reported findings.
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A Appendix

Annotation Task The decisions from the over-
hearer perspective were performed by 3 annotators.
Two of them are student assistants employed in
our lab and one is a volunteer acquainted with the
first author. A simple GUI interface showed the
dialogue history (from 1 to 3 turns) up to the last
instruction giver instruction, the current state of the
reconstructed scene and the gallery of available cli-
parts. They could select up to 4 high level, discrete
actions (add, move, resize, flip, delete) and the cor-
responding cliparts from dropdown lists. Besides,
they could type a clarification request to continue
the dialogue if they wished (otherwise, the next ut-
terance field should be left blank). In future studies,
a full interface similar to the original game should
be used, i.e. giving the opportunity for cliparts to
be moved around and edited in the scene. Here, the
selection of actions was just used to enforce that the
overhearers reflected on the pertinent actions while
deciding whether to request clarification. Note that
the step of action taking makes annotators more
privileged than plain overhearers that just process
the dialogue, but it better approximates the decision
of the iCR-Action-Taker models in Madureira and
Schlangen (2024). In this case, they are overhear-
ers of the dialogue context, but try to minimally act
as a player doing the next step. The results work as
an upper bound for plain overhearers.

Additional Details The inter-annotator
agreement metrics were computed with nltk
using chencherry.method3 for smooth-
ing. The sentence embeddings for the
CR utterances were computed with model
sentence-transformers/all-MiniLM-L6-v2
from SentenceTransformers (Reimers and
Gurevych, 2019).
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