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Abstract

Despite the challenges posed by data sparsity in
discourse parsing for dialogues, unsupervised
methods have been underexplored. Leverag-
ing recent advances in Large Language Models
(LLMs), in this paper we investigate an unsu-
pervised coherence-based method to build dis-
course structures for multi-party dialogues us-
ing open-source LLMs fine-tuned on conversa-
tional data. Specifically, we propose two algo-
rithms that extract dialogue structures by iden-
tifying their most coherent sub-dialogues: DS-
DP employs a dynamic programming strategy,
while DS-FLOW applies a greedy approach.
Evaluation on the STAC corpus demonstrates a
micro-F1 score of 58.1%, surpassing prior un-
supervised methods. Furthermore, on a cleaned
subset of the Molweni corpus, the proposed
method achieves a micro-F1 score of 74.7%,
highlighting its effectiveness across different
corpora.

1 Introduction

Understanding multi-party dialogue structure is
crucial for various natural language tasks like di-
alogue comprehension, summarization, and senti-
ment analysis (Joty et al., 2019; Li et al., 2019;
He et al., 2021; Feng et al., 2022). The goal is
to extract a coherent discourse structure from a
dialogue transcript, wherein pairs of clause-like
texts are linked through rhetorical relations. To
obtain a good understanding of the coherent dis-
course structures in dialogues, the Segmented Dis-
course Representation Theory (SDRT) (Asher and
Lascarides, 2003) framework proposes to annotate
dialogues with dependency graphs, where edges
link text spans labeled with semantic-pragmatic re-
lations. An example dialogue derived from the
Strategic Conversations corpus (STAC) (Asher
et al., 2016) corpus is shown in Figure 1, with

* This work was done during a visit to the University of
British Columbia.

(1) A: Would either of you trade
ore for wheat and/or wood

(2) B: Nope

(3) C: I could give you a sheep
for it?

(4) A: Need wood/wheat

(5) A: Sheep I can get

(6) C: Sorry can't do that
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QAP

Figure 1: A dialogue instance from the STAC corpus (id
pilot04_6), illustrating user utterances on the left and
the corresponding ground-truth dialogue structure and
relations on the right. The graph reveals three distinct
sub-dialogues: (1, 2), (1, 3, 4, 5), and (1, 3, 4, 6).

nodes denoting discourse units and edges relation
types (i.e., Question-Answer Pair (QAP), Question-
Elaboration (Q-Elab), Contrast, and Result).

Multi-party dialogues pose greater challenges
compared to two-party dialogues, due to the in-
volvement of numerous speakers, each contribut-
ing uniquely with more speech turn interactions
and structural particularities (Asher et al., 2016).
Nevertheless, this complexity allows for the seg-
mentation of dialogues into independent conversa-
tional flows that share a common overarching topic.
These conversational flows exhibit distinct inter-
nal progression and structure, thereby permitting
them to be regarded as sub-dialogues (Fernández
et al., 2008; Frampton et al., 2009; Sun et al., 2016).
As a result, the discourse structure of multi-party
dialogues can be predicted by decomposing dia-
logues into coherent sub-dialogues, where each
sub-dialogue reflects the flow of conversation, start-
ing with an initial utterance and concluding when
no further elaboration occurs. For instance, the di-
alogue in Figure 1 comprises three sub-dialogues:
(1, 2), (1, 3, 4, 5), and (1, 3, 4, 6). However, ex-
ploring all possible sub-dialogues to identify the
coherent ones is unrealistic because it involves ana-
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lyzing all possible ordered sequences of utterances
within a dialogue, leading to exponential growth
that makes exhaustive analysis impractical.

Supervised evaluation of dialogues is challeng-
ing due to data sparsity (Li et al., 2022). To address
this issue, some studies have proposed unsuper-
vised (Li et al., 2023) and semi-supervised (Badene
et al., 2019b,a; Nishida and Matsumoto, 2022; Li
et al., 2024a) methods. These methods typically
predict the best discourse pair given a discourse
unit, while overlooking the previous context. How-
ever, we advocate that identifying sub-dialogues
can offer a broader context to better understand the
thematic coherence within a dialogue, thus building
a more accurate discourse structure.

In this paper, we propose an unsupervised, sub-
dialogue-oriented method for extracting “naked”
discourse structures without discourse relations in
multi-party dialogues. Although without relations,
discourse structures alone have been shown to be
crucial features for tasks such as content selection
(Louis et al., 2010) and summarization (Xiao et al.,
2020; Xu et al., 2020). Precisely, we introduce
two algorithms: Multi-Party Dialogue Structure
Extraction based on Dynamic Programming (DS-
DP) and Multi-Party Dialogue Structure Extraction
based on Flow Conversation Analysis (DS-FLOW),
designed to decompose dialogues into coherent
sub-dialogues. DS-DP identifies the most coherent
(partial) sub-dialogues ending in each discourse
unit by applying a dynamic programming strategy.
In contrast, DS-FLOW greedily predicts for each
discourse unit the most likely coherent subsequent
utterances, followed by a process that ensures the
completeness of the resulting discourse structure.
In both algorithms, we use perplexity as a metric to
evaluate sub-dialogue coherence. To compute per-
plexity scores, we draw inspiration from work on
Pre-trained Language Models (PLMs) and Large
Language Models (LLMs) fine-tuned on conver-
sational data implicitly capturing dialogue quality
(Mehri and Eskénazi, 2020; Bruyn et al., 2022).

We utilize open-source models, as proprietary
models are limited to text-based prompts and do not
permit analysis of output probabilities. In practice,
we compare the performance of two open-source
LLMs: a chatbot trained by fine-tuning LLaMA
on user-shared conversations Vicuna-13B (Chiang
et al., 2023) and a general-purpose model Mistral-
7B (Jiang et al., 2023). We evaluate our method on
the STAC corpus (Asher et al., 2016) and a revised
subset of the Molweni corpus (Li et al., 2020). The

results demonstrate the effectiveness of our solu-
tion, as it outperforms prior unsupervised methods.
Specifically, we achieve a micro-F1 score of 58.1%
on STAC and 74.7% on Molweni, demonstrating
its robustness across different corpora.

The contributions of this paper are twofold. First,
we propose a fully unsupervised method for ex-
tracting graph structures of multi-party dialogues,
which is the first of its kind to the best of our knowl-
edge. Second, we introduce and evaluate two novel
algorithms that leverage open-source LLMs to de-
compose dialogues into coherent sub-dialogues,
enabling a more fine-grained analysis of discourse
structures.

2 Related Work

Multi-Party Dialogue Discourse Parsing Vari-
ous methodologies have been proposed for parsing
multi-party dialogues. Perret et al. (2016) devel-
oped an Integer Linear Programming approach pre-
dicting non-tree structures by encoding linguistic
principles as constraints. Wang et al. (2021) pre-
sented the Structure Self-Aware model, using an
edge-centric graph neural network to learn repre-
sentations of discourse unit pairs directly. Bennis
et al. (2023) introduced BERTLine, a discourse
parsing model leveraging a multi-task setup to
jointly predict discourse attachments and relation
labels, achieving state-of-the-art performance. Mao
et al. (2024) proposed the Hierarchical Graph Fu-
sion Network, using hierarchical graph neural net-
works to encode contextual levels like utterances,
dialogue topics, and user preferences. While ef-
fective, these approaches rely on annotated data,
posing challenges due to limited resources. To ad-
dress data sparsity, recent studies have explored
unsupervised and semi-supervised strategies using
PLMs and LLMs. For instance, Li et al. (2023)
proposed extracting dependency trees from PLM
attention matrices using unsupervised metrics or
semi-supervised strategies with small validation
sets. Instead, Li et al. (2024a) designed a semi-
supervised pipeline to predict structures and re-
lations sequentially via self-training. In another
study, Chan et al. (2023) used zero- and few-shot
prompting techniques to assess ChatGPT on dis-
course parsing, but achieved abysmal results. In
contrast, the method proposed in this paper requires
no annotation, using fully unsupervised approaches
to extract discourse structures in multi-party dia-
logues. Furthermore, unlike the unsupervised ap-
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proach proposed by Li et al. (2023), our solution
can also extract graph structures rather than being
limited to dependency trees.

LLMs for Dialogue Evaluation Prior research
has highlighted the inherent ability of PLMs and
LLMs to implicitly capture dialogue quality, mak-
ing them suitable for evaluating dialogues. Mehri
and Eskénazi (2020) and Bruyn et al. (2022) in-
troduced the FED and FULL metrics, respectively,
to assess open-domain dialogue systems utilizing
PLMs and LLMs without requiring ground-truth re-
sponses or supervised training data. These metrics
evaluate dialogue quality by estimating the likeli-
hood of a model generating follow-up utterances
aligned with different dimensions of dialogue qual-
ity after a given system response. The strong corre-
lation observed between metric scores and human
judgments suggests that PLMs and LLMs have
acquired meaningful representations of dialogue
quality aligned with human perceptions. Similarly,
Zhang et al. (2024) analyzed LLMs as automatic
dialogue evaluators, inspired by the remarkable per-
formance of LLMs fine-tuned using the instruction-
tuning approach (Zhang et al., 2023). Their study
involved multidimensional evaluation of propri-
etary and open-source LLMs for assessing dialogue
quality across various dimensions. Results indicate
that appropriately aligned and utilized LLMs can
effectively serve as generalized automatic dialogue
evaluators, complementing human judgments. Mo-
tivated by these findings, in this paper we evaluate
sub-dialogues by leveraging LLMs’ capabilities
in generating coherent dialogues and adhering to
relevant instructions.

Sub-Dialogue Detection Sub-dialogues are ex-
tensively studied in computational tasks, notably
within Dialogue State Tracking (DST) (Sun et al.,
2016; Lee et al., 2021), aiming to understand deci-
sions in multi-party conversations. In this frame-
work, a dialogue session is deconstructed into a
series of sub-dialogues, each consisting of consecu-
tive multi-turn exchanges focused on a shared topic.
Departing from conventional DST approaches, in
this paper we adopt sub-dialogue delineation to
extract the underlying structure of multi-party dia-
logues. Specifically, our method involves unsuper-
vised evaluation of multi-party dialogue discourse
units, leveraging insights from LLMs fine-tuned on
conversational data.

3 Method

In this section, we first formally describe the di-
alogue parsing task. We then describe two algo-
rithms for sub-dialogue extraction. The first relies
on a dynamic programming strategy and is for-
mally denoted as Multi-Party Dialogue Structure
Extraction based on Dynamic Programming (DS-
DP). Conversely, the second algorithm, grounded
in the analysis of conversation flows, is formally
named Multi-Party Dialogue Structure Extraction
based on Flow Conversation Analysis (DS-FLOW).

3.1 Problem Formulation

Let D = (e1, e2, . . . , en) be a dialogue consisting
of n Elementary Discourse Units (EDUs), each
representing the smallest unit of discourse. In the
SDRT framework, a dialogue D can be represented
as a Directed Acyclic Graph (DAG), denoted as
DAG(D), wherein EDUs are connected with di-
rected edges. Dialogue discourse parsing aims to
automatically derive a DAG that best represent the
SDRT structure of a dialogue. In our proposal,
the construction of DAG(D) involves creating
m sub-dialogues Sub1(D), . . . , Subm(D), where
each sub-dialogue possesses an intrinsic structure
SSubj(D) ⊆ DAG(D). Thus, discourse structure
extraction can be reframed as linking EDUs within
D to form the most coherent sub-dialogues, such
that DAG(D) =

⋃m
j=1 SSubj(D). Note that the

following properties hold:

• We assume the absence of backward links in the
final DAG as an utterance cannot depend, either
anaphorically or rhetorically, on subsequent ut-
terances within a dialogue, as they are previously
unknown (Afantenos et al., 2012; Li et al., 2023).

• Each sub-dialogue must include an edge originat-
ing from the initial EDU e1. This means that:

∀j ∈ {1, . . . ,m} ∃(e1, ek) ∈ SSubj(D)

This constraint is justified by the fact that all
EDUs, except e1, must have at least one incom-
ing edge from a previous node, and recursively
following these edges backward leads to e1. In
SDRT, the DAGs have unique roots, so that every
single EDU is reachable from the first EDU, i.e.,
the axiom (Perret et al., 2016).

• Sub-dialogues can overlap, allowing certain
edges to be part of multiple sub-dialogues, jus-
tified by the fact that speaker interventions may



300

contribute to different themes within one dia-
logue. For instance, the edge (e3, e4) in Figure
1 appears in two sub-dialogues. In sub-dialogue
(e1, e3, e4, e5), this edge leads to speaker A’s
elaboration in e5 on their inquiry in e4, which
was prompted by speaker C’s question in e3.
In sub-dialogue (e1, e3, e4, e6), the edge (e3, e4)
leads to speaker C’s declination in e6 of speaker
A’s inquiry in e4.

3.2 DS-DP Algorithm

This algorithm uses dynamic programming to ef-
ficiently explore the space of all possible sub-
dialogues within a dialogue. As a first step, given
a dialogue D as input, the algorithm maps it into
a fully-connected graph with only forward links
G = (V,E). In this graph, V represents the set
of EDUs within the dialogue, and E includes all
potential links in the dialogue’s structure. The DS-
DP algorithm aims to extract from G the paths
corresponding to the most coherent (partial) sub-
dialogues starting from the initial EDU and ending
in each subsequent EDU, based on a coherence met-
ric denoted as eval. To this end, it defines two ma-
trices of size (|V|−1)×(|V|−1)×(|V|−2), which
we call M co and Mpred. Here, M co[i][j][k] denotes
the maximum coherence of a sub-dialogue passing
through node i, ending in node j, with k preced-
ing nodes before node i. Similarly, Mpred[i][j][k]
stores the previous node to achieve the maximum
coherence value of the sub-dialogue ending in
node j, passing through node i, and considering
k preceding nodes before node i. Taking the uni-
direction property into account, only the upper right
half of the matrices contain valid values; no values
are stored in the lower left part of the matrices. For
initialization, the assignment

∀j M co[0][j][0] = eval(e1, ej)

is set, rooted in the recognition that the only sub-
dialogues without preceding nodes are those pro-
gressing from the initial node to any subsequent
node. As a result, for each EDU ei (i > 1), the al-
gorithm computes the most coherent sub-dialogues
starting from e1 and ending in ei, with k intermedi-
ate nodes (k ∈ [1, i− 1]). Specifically, each EDU
ei may either directly connect to e1 or include up to
i− 1 edges within its most coherent sub-dialogue.

The pseudo-code of the DS-DP algorithm for ma-
trix construction is presented in Algorithm 1. It iter-
ates through each k value within the range from 1 to
|V|−2. For each k, it systematically traverses each

Algorithm 1 DS-DP - Matrix Construction
Input: G = (V,E)
Output: Updated M co matrix and M pred matrix
1: for k ← 1 to |V | − 2 do
2: for i in V do
3: for j in V do
4: if j > i then
5: for each node u with an edge into i do
6: if M co[u][i][k − 1] ̸= NULL then
7: val← eval(k − 1 EDUs, u, i, j)
8: if val better than M co[i][j][k] then
9: M co[i][j][k]← val

10: M pred[i][j][k]← u
11: end of all loops and conditions

node i according to the topological order defined
on G. Subsequently, for each node i, it explores all
possible successor nodes j. During this traversal, it
examines each node u that has an edge directed to-
wards i. The condition M co[u][i][k−1] ̸= NULL
indicates that node u has been previously visited,
implying the feasibility of reaching node i from u
by considering k − 1 preceding nodes along the
path. This condition ensures the consideration of
only those nodes u that are accessible from i and
can therefore serve as intermediary nodes to reach
j with k − 1 previous nodes. Upon satisfying this
condition, the algorithm evaluates the coherence of
the sub-dialogue ending at j, including k − 1 pre-
ceding nodes, u, and i. If this assessment yields a
coherence value superior to the one currently stored
in M co[i][j][k], the matrix is updated with the new
coherence value, and the predecessor information
is recorded in Mpred[i][j][k]. To identify a sub-
dialogue starting from the initial node and ending
in a specified node ej , it is sufficient to examine all
non-null entries in the M co matrix while keeping j
constant. Subsequently, the sub-dialogue character-
ized by the highest coherence value is considered.
The final DAG is then constructed by combining
the identified sub-dialogues. An illustration of the
application of DS-DP to the dialogue depicted in
Figure 1 is provided in Appendix E.

From a complexity analysis perspective, the DS-
DP algorithm comprises four nested loops for ma-
trix construction and two nested loops for structure
prediction. The first three outermost loops in Al-
gorithm 1 iterate O(|V |) times each, resulting in
a time complexity of O(|V |3). The last innermost
loop processes all incoming edges of the current
node, which has a time complexity of O(|V |). For
structure prediction, each node j requires iteration
over j− 1 values (since each path ending in node j
can have a maximum length of j − 1), resulting in
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a time complexity of O(|V |2). Consequently, the
overall time complexity of DS-DP is dominated
by the matrix construction process, which has a
worst-case time complexity of O(|V |4).

Coherence Evaluation Coherence, defined by
the seamless flow and logical progression inherent
in conversational interactions, stands as a pivotal
criterion for assessing dialogues. Within the text
analysis context, perplexity emerges as a valuable
metric for evaluating the coherence of textual con-
structs (Colla et al., 2022). Consequently, we adopt
perplexity as the eval metric to quantitatively mea-
sure how effectively a sub-dialogue maintains its
logical structure and natural progression. Drawing
from earlier studies indicating that LLMs capture
elements of dialogue quality (Mehri and Eskénazi,
2020; Bruyn et al., 2022), we employ them to es-
timate the joint probability of each sub-dialogue
SubD = (e1, . . . , el) of a dialogue D. The per-
plexity score is calculated as

Pe(SubD) = exp

(
−1

l

l∑
i=1

logP (ei|e<i)

)
and provides insights into the model’s level of cer-
tainty or uncertainty in predicting the unfolding
discourse. Lower perplexity scores indicate higher
coherence, demonstrating the model’s proficiency
in comprehending the logical flow of conversation.

3.3 DS-FLOW Algorithm

While DS-DP constructs sub-dialogues by identi-
fying the most likely antecedents of a given EDU,
DS-FLOW mainly focuses on capturing the most
fluent successive utterances of a given EDU. Specif-
ically, it consists of three steps: (i) In the first step,
for each EDU excluding the final one, the algo-
rithm predicts the most probable subsequent EDU
that elaborates upon it. Notably, previous incoming
links to EDUs are utilized to inform these predic-
tions. We evaluate sub-dialogue coherence using
the perplexity metric, as discussed in DS-DP. (ii)
In the second step, a filtering mechanism is applied
to recognize the conclusion of conversational seg-
ments. This step addresses the issue that not all
utterances are elaborated upon further, resulting
in certain nodes lacking outgoing links. (iii) The
third step involves a backward analysis to address
potential orphan EDUs (i.e., EDUs without incom-
ing edges) due to the filtering process or the lack
of links predicted in the first step. For each orphan
EDU ei, the analysis selects a parent out of all

sub-dialogues ending in an EDU ej where i > j.
An illustration of the application of DS-FLOW

to the dialogue depicted in Figure 1 is provided
in Figure 2. It elucidates the following steps: the
initial identification of an outgoing link for each
EDU, the subsequent filtration of links (e2, e4) and
(e5, e6), and the selection of sub-dialogues (e1, e3)
and (e1, e3, e4, e5) in the backward analysis due to
the absence of incoming links for e3 and e5 in the
first two steps, thereby augmenting the final DAG
with edges (e1, e3) and (e4, e5).

From a complexity analysis perspective, the DS-
FLOW algorithm constructs a DAG with |V | = n
nodes from a dialogue containing n EDUs through
three sequential steps. Initially, it predicts the sub-
sequent EDU for each dialogue segment by lever-
aging prior connections, achieving a linear time
complexity of O(|V |). Following this, it filters seg-
ments that terminate without additional elaboration,
also operating in linear time O(|V |). Subsequently,
in its third step, DS-FLOW undertakes a backward
analysis to assign appropriate parents to orphan
EDUs from previously identified sub-dialogues. In
the worst-case scenario, this involves evaluating
each orphan against all preceding EDUs, resulting
in a time complexity of O(|V |2). Consequently, the
overall time complexity of DS-FLOW is O(|V |2).

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

STEP 1

STEP 2

STEP 3

Figure 2: An example of DS-FLOW execution.

Filtering Mechanism An approach to imple-
menting the filtering mechanism entails employ-
ing instruction-tuned LLMs as automatic dialogue
evaluators (Zhang et al., 2024), prompting these
models to generate responses for potential dialogue
continuations. Specifically, given a pair of EDUs,
the LLM is tasked with evaluating whether the sec-
ond EDU (i.e., the next sequential EDU in the dia-
logue) builds upon the first one. However, as noted
by Zhang et al. (2024) and confirmed through our
own experimentation, the text generated by open-
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source LLMs can become problematic, featuring
content that is nonsensical or inaccurate (Rawte
et al., 2023). Consequently, we follow the method
outlined by Gupta et al. (2022), employing an im-
plicit scoring mechanism. Specifically, when pre-
sented with an instruction prompt input1, we fo-
cus on the output probabilities associated with the
words “Yes” and “No” as generated by the LLM. In
this context, we compute the probability

P (ei → ej) =
P (Finaltoken=“Y es”)

P (Finaltoken=“Y es”)+P (Finaltoken=“No”)

where we evaluate the likelihood of having an EDU
ej as a subsequent utterance following the EDU ei.
In the DS-FLOW algorithm, we discard outgoing
links with a probability lower than 0.5. The eval-
uation of the filtering mechanism’s performance
revealed that it filters a limited number of links
with commendable reliability. Additional details
are provided in Appendix C.

3.4 Additional Constraints

The proposed approaches for analyzing sub-
dialogues within a dialogue face a challenge of
preserving semantic coherence. Specifically, cer-
tain sub-dialogues may lack coherence, such as
examining the link between the first and last EDUs
in a long dialogue, which is unlikely to constitute a
valid connection. To illustrate this challenge, con-
sider the following dialogue excerpt:

(e1) A: Did you enjoy the movie last night?

(e2) B: Yeah, the plot twist was unexpected.
. . .

(ep−1) A: What did you think about the ending?

(ep) B: Oh, it was great!

where p is a large number. In this scenario, a valid
link exists between e1 and e2. However, when
examining individual pairs of EDUs, ep may erro-
neously be deemed as coherent with e2 in relation
to e1, despite their temporal separation and seman-
tic incongruity within the ongoing conversation. To
mitigate the issue of incoherent sub-dialogues, we
advocate for including a hard constraint on the dis-
tance between two EDUs under scrutiny. As done
by Bennis et al. (2023), when assessing the poten-
tial linkage between an EDU ej and one of its pre-
ceding ei, we impose the condition j > i ≥ j− 10.
By analyzing the development sets from the STAC
and Molweni corpora, we observed that fewer than

1The prompt is detailed in Appendix B.

1.9% of the links fail to meet the specified con-
dition. By limiting the distance between EDUs,
we reduce computational complexity and enhance
the likelihood of extracting relevant information
from nearby EDUs, thereby improving the coher-
ence of sub-dialogues. Additionally, we propose
integrating a penalization factor Pdist(d), where d
represents the number of intervening speech turns
between two EDUs. This factor increases the per-
plexity associated with a sub-dialogue as the tempo-
ral distance between the two EDUs to be linked in-
creases. By prioritizing proximity between EDUs,
the incorporation of the penalization factor aims to
account for the potential degradation of coherence
over time. Specifically, we adopt

√
d as the penal-

ization factor for perplexity scores. This penalty
is applied by multiplying the perplexity score of a
sub-dialogue by the output of Pdist(d).

4 Experimental Setup

Corpora We conduct experiments on two com-
monly used SDRT-annotated dialogue corpora: (i)
STAC (Asher et al., 2016). This corpus contains
1161 multi-party dialogues arising from interac-
tions within an online version of the game “The
Settlers of Catan”. Given the unsupervised na-
ture of our method, we evaluate it on the test set,
which consists of 109 documents, amounting to
1129 EDU pairs. (ii) Molweni (Li et al., 2020).
Derived from the Ubuntu Chat Corpus (Lowe et al.,
2015), this corpus centers around technical discus-
sions concerning the Ubuntu system. Due to quality
issues with the original annotations (Li et al., 2023),
we employ the “Molweni-clean” version proposed
by Li et al. (2024a), which consists of 50 docu-
ments, encompassing 373 EDU pairs. Detailed
corpus statistics are presented in Table 1.

Evaluation Metrics To assess the performance
of the proposed approaches, we report the micro-F1,
recall, and precision for the generated structures.

Compared Methods We contrast our method
with the straightforward yet strong unsupervised
LAST baseline (Schegloff, 2007), which links each
EDU with the preceding one. Moreover, we com-
pare it with the method proposed by Li et al. (2023),
currently the only known unsupervised approach
in the literature proficient at predicting discourse
structure, albeit without explicitly extracting DAGs.
Finally, to draw insights from modern LLMs, we
present results from ChatGPT (gpt-3.5-turbo ver-
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Corpus #Doc #Turn/doc #Tok/doc #Spk/doc

STAC 109 10.6 42.5 3.0
Molweni-clean 50 8.5 91.1 3.2

Table 1: Key statistics of corpora: number of documents
(#Doc), averaged speech turns, tokens, and speakers per
document (#Turn/doc, #Tok/doc, #Spk/doc).

sion), Vicuna, and Mistral in a zero-shot setting.

Implementation Details We use the Vicuna-13b
and Mistral-7b models from the Hugging-Face
library (Wolf et al., 2020). We employ the lm-
evaluation-harness2 framework for computing per-
plexity scores. We replace speaker names with
markers (e.g., John → “spk1”) to match the infer-
ence setup in the employed models.

5 Results and Analysis

5.1 DS-DP and DS-FLOW Performance
Table 2 shows the performance of the DS-DP and
DS-FLOW algorithms on the STAC and Molweni-
clean corpora. Precisely, the results for each model
include the vanilla version, as well as versions in-
corporating the penalization factor (Pdist(d)) and
the speech turn limitation (STL). Generally, algo-
rithms utilizing vanilla models perform worse com-
pared to those with constraints; however, they show
potential in predicting distant links, as discussed in
the following Section 5.3. Applying the STL con-
straint consistently enhances performance across
all metrics. For instance, DS-FLOW on STAC
shows an increase in the micro-F1 score for Vicuna
(from 47.2% to 47.7%) and Mistral (from 46.2% to
46.7%). Similarly, DS-DP on STAC improves for
Vicuna (from 54.3% to 54.4%) and Mistral (from
53.8% to 54.8%). Comparable improvements are
observed on Molweni-clean. These findings sug-
gest that while the STL constraint yields marginal
improvements, it reduces complexity by limiting
the analysis to fewer sub-dialogues, facilitating a
cohesive sub-dialogue examination. Despite pre-
dicting complex links with vanilla LLMs and the
STL constraint, temporal disparity lowers preci-
sion scores (see Section 3.4). When applying the
penalization factor Pdist(d), significant improve-
ments are noted, as shown in the third row of each
group in Table 2. The factor Pdist(d) improves
results by discouraging longer-distance links and
favoring shorter ones, which are more prevalent, as
discussed in Section 5.3. Consequently, the best

2https://github.com/EleutherAI/lm-evaluation-harness

performance on STAC is achieved with the DS-
FLOW algorithm using STL and Pdist(d). Simi-
larly, the optimal performance on Molweni-clean
is obtained with the DS-DP algorithm using STL
and Pdist(d).

Leveraging the dynamic programming strategy,
DS-DP analyzes a larger number of sub-dialogues
compared to the greedy approach employed by DS-
FLOW, tending to select more short links. This is
highlighted by the best performance on Molweni-
clean, which involves fewer long-distance links
compared to STAC. Conversely, DS-FLOW better
predicts longer-distance links, achieving the best
performance on the STAC corpus. Overall, when
comparing average micro-F1 scores of DS-DP and
DS-FLOW under optimal settings across both cor-
pora, DS-DP slightly outperforms DS-FLOW with
scores of 66% versus 65.5%, respectively3.

Regarding backbone LLMs, Vicuna consistently
outperforms Mistral across all settings, highlight-
ing the advantage of models fine-tuned on conver-
sational data for dialogue analysis tasks. However,
Mistral demonstrates satisfactory performance, val-
idating the efficacy of the proposed algorithms.

5.2 Unsupervised Method Comparison

We compare our top-performing DS-DP and DS-
FLOW settings with other unsupervised methods.
Precisely, we consider the following benchmarks4:
(i) LAST baseline predicts local attachments be-
tween adjacent EDUs. Despite its high perfor-
mance on STAC and Molweni (Muller et al., 2012),
it can only extract a single sub-dialogue and can-
not detect sub-dialogue structures like our method.
(ii) The unsupervised method by Li et al. (2023),
which extracts dependency trees from BART model
attention matrices (Lewis et al., 2020), fine-tuned
through the Sentence Ordering (SO) task. (iii)
ChatGPT in a zero-shot setting with a novel prompt
for multi-party dialogue discourse parsing, achiev-
ing a micro-F1 score of 52% on STAC, significantly
improving over the 20.5% reported by Chan et al.
(2023). The prompt is detailed in Appendix H.
(iv) Vicuna-13b and Mistral-7b models, prompted
identically to ChatGPT in a zero-shot setting.

Table 3 shows the comparison results. Using
Vicuna-13b, the DS-DP and DS-FLOW algorithms
excel on the STAC corpus, achieving micro-F1

3Qualitative analysis of generated structures is presented
in Appendix G.

4See Appendix D for additional results pertaining to a
smaller Vicuna model.



304

STAC Molweni-clean
Model Algorithm F1 P R F1 P R

Vicuna-13b

DS-DP 54.3 52.9 55.8 71.5 68.0 75.3
DS-DP + STL 54.4 53.3 55.7 72.0 68.9 75.3
DS-DP + STL + Pdist(d) 57.3 55.1 59.7 74.7 70.1 79.9
DS-FLOW 47.2 40.0 57.4 58.1 48.1 73.2
DS-FLOW + STL 47.7 40.0 59.0 59.3 49.3 74.5
DS-FLOW + STL + Pdist(d) 58.1 57.1 59.2 72.9 69.1 77.2

Mistral-7b

DS-DP 53.8 52.2 55.5 71.1 68.8 73.7
DS-DP + STL 54.8 53.0 56.6 71.5 68.6 74.5
DS-DP + STL + Pdist(d) 56.7 53.4 60.4 74.1 69.1 79.9
DS-FLOW 46.2 39.3 55.9 57.0 49.0 68.1
DS-FLOW + STL 46.7 39.5 57.3 57.3 49.5 68.1
DS-FLOW + STL + Pdist(d) 57.0 56.5 57.4 71.0 66.5 76.1

Table 2: Experiment results of proposed approaches on STAC and Molweni-clean corpora. STL: Speech turn
limitation. Pdist(d): Penalization factor. F1: Micro-F1. P: Precision. R: Recall.

Corpus
Baseline PLM ChatGPT Vicuna-13b Mistral-7b

LAST BART-SO ZS ZS DS-DP DS-FLOW ZS DS-DP DS-FLOW

STAC 56.8 57.2 52.0 22.8 57.3 58.1 30.2 56.7 57.0
Molweni-clean 76.9 - 65.6 35.2 74.7 72.9 36.7 74.1 71.0

Table 3: Micro-F1 scores on STAC and Molweni-clean for the LAST baseline, unsupervised PLM, LLMs within a
zero-shot (ZS) setting, and proposed approaches.

scores of 57.3% and 58.1%, respectively, surpass-
ing LAST baseline and BART-SO model. It is note-
worthy that the BART-SO model is previously fine-
tuned with the SO task on STAC. When employing
a vanilla BART model, the performance decreases
to 56.6%, representing a 2.6% lower result com-
pared to our method. In comparison, our solution
does not require domain-specific data or a fine-
tuning process, rendering it easily adaptable to any
scenarios. Using Mistral-7b, DS-FLOW outper-
forms LAST but not BART-SO. On the Molweni-
clean corpus, DS-DP and DS-FLOW algorithms
lag behind LAST, which achieves 76.9% due to
a larger amount of adjacent links in the corpus.
Even the strategy proposed by Li et al. (2024a),
involving cross-domain training on STAC, only
attains a micro-F1 score of 75.6% on the Molweni-
clean corpus, thus trailing behind the LAST base-
line. Consequently, a micro-F1 score of 74.7%
(for the DS-DP algorithm incorporating the Vicuna
model) may be deemed satisfactory in a fully un-
supervised setting. Owing to reproducibility chal-
lenges encountered with the BART-SO model on
the Molweni-clean corpus, a comparative analy-
sis with our algorithms is not feasible. Finally,
in zero-shot settings, Vicuna and Mistral perform
abysmally (from −47% to −61% compared to DS-
DP and DS-FLOW). ChatGPT outperforms both
open-source models, while still falling behind our

proposed unsupervised algorithms. Mistral excels
at generating structured responses, while Vicuna
struggles with lengthy dialogues but outperforms
Mistral in our algorithms on both corpora.

5.3 Link Length Analysis

The LAST baseline’s limitation is its inability to
predict indirect links. To assess the accuracy of
our algorithms in predicting distant links, we in-
vestigate the performance concerning different link
lengths. Figure 3 shows recall scores for differ-
ent link lengths for DS-FLOW and DS-DP using
Vicuna on STAC and Molweni-clean, respectively.
We test different settings, including vanilla Vicuna
and STL individually for both algorithms. For
DS-FLOW on STAC, using vanilla Vicuna accu-
rately predicts long-distance links up to distances
of 12 and 13 but increases false positives, as dis-
cussed in Section 5.1, affecting precision. Adding
STL (DS-FLOW+STL) improves performance for
shorter links (distances 1, 2, and 3) and predicts
long-distance links up to distance 10. Incorpo-
rating Pdist(d) with STL (DS-FLOW+STL+PF)
achieves over 90% recall for direct links and main-
tains some ability to predict long-distance links,
though performance drops for links over distance
6. Long-distance links (≥ 6) are rare in STAC,
under 5% of all links. For DS-DP on Molweni-
clean, like DS-FLOW on STAC, both vanilla Vi-
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cuna and STL (DS-DP+STL) predict indirect links
but not those longer than 4. Including Pdist(d)
(DS-DP+STL+PF) achieves nearly perfect recall
for direct links, with slight performance drops for
links at distances 2 and 3 compared to DS-DP+STL.
Long-distance links (≥ 4) are rare in Molweni-
clean, under 3% of all links. The LAST baseline
achieves perfect recall for direct links but fails on
long-distance links. In terms of precision and F1

scores, the STL+PF setting demonstrates higher
precision for short-distance links but somewhat
lower precision for direct links. All settings experi-
ence a decline in F1 scores as link length increases.
An exception is observed for DS-FLOW using the
vanilla Vicuna on STAC, which maintains relatively
high F1 scores for links at distances of 12 and 13.
Further evaluation results are in Appendix A.
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Figure 3: Recall scores for different link lengths. The
left plot shows three settings with DS-FLOW on STAC;
the right plot depicts the same settings for DS-DP on
Molweni-clean. Both algorithms use Vicuna as LLM.
STL: Speech turn limitation. STL+PF: Speech turn
limitation in combination with penalization factor.

6 Discussion

Despite its significantly lower parameter count
compared to the Vicuna-13b model, we used the
Mistral-7b model for our algorithms’ assessment
owing to its superior performance relative to larger
models like LLaMa 2-13b (Touvron et al., 2023b)
and LLaMa 1-34b (Touvron et al., 2023a) across
multiple benchmarks.

Although our algorithms exhibit polynomial
complexity, employing exceedingly large models
increases the computational time required for calcu-
lating perplexity in extended dialogues5. Presently,
the state-of-the-art lacks alternative unsupervised
metrics with efficient time complexity for evaluat-
ing dialogue quality. Metrics such as FED (Mehri
and Eskénazi, 2020) and FULL (Bruyn et al., 2022)
entail computing multiple log-likelihood values for

5Detailed insights into the algorithm execution times are
provided in Appendix F.

dialogue assessment, contrasting with perplexity,
which mandates the computation of a singular log-
likelihood value6. We leave the comparison among
these metrics for future investigations.

7 Conclusion and Future Work

In this paper, we introduce an innovative, fully un-
supervised method for extracting discourse struc-
tures in multi-party dialogues. To this end, we
leverage open-source LLMs and introduce two al-
gorithms, DS-DP and DS-FLOW, to detect coher-
ent sub-dialogues within a dialogue. On the STAC
and Molweni-clean corpora, we achieve micro-F1

scores of 58.1% and 74.7%, respectively, demon-
strating the efficacy of our solution in constructing
dialogue structures without the need for labeled
data. In the future, we intend to enhance the co-
herence evaluation metric, particularly addressing
cognitive aspects as in Li et al. (2024b), and ex-
plore applying LLMs for unsupervised prediction
of rhetorical relation types to deduce full discourse
structures. Furthermore, we aim to improve al-
gorithm link selection by incorporating linguisti-
cally motivated constraints as in Perret et al. (2016).
Lastly, we plan to evaluate our architectural choices
across diverse corpora and discourse parsing tasks
to further validate their efficacy in assessing dia-
logues in real-world scenarios.
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A Further Evaluation Results for Link
Length Analysis

To further evaluate our approaches, we analyze the
precision and F1 scores for link lengths using DS-
FLOW and DS-DP with Vicuna on the STAC and
Molweni-clean corpora. As in Section 5.3, we ex-
plore different settings. Figure 4 shows that the
STL+PF setting, which includes both the STL con-
straint and the penalization factor, provides the best
precision scores for links with distances ranging
from 2 to 5 in STAC and from 2 to 3 in Molweni-
clean. This setting improves the evaluation of short-
distance links, resulting in fewer false positives, but
slightly lower precision (∼ 3%) for direct links due
to the penalization factor. Additionally, although
STL and vanilla settings predict long-distance links,
they introduce several false positives. For instance,
DS-FLOW with vanilla Vicuna on STAC predicted
incorrect links with distances ranging from 14 to
31. Figure 5 highlights that in both corpora, all
settings show decreasing F1 scores as link lengths
increase, except for DS-FLOW with vanilla Vicuna
on STAC, which achieves an F1 score of 40% for
links of length 13 and 13% for links of length 12.
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Figure 4: Precision scores for different link lengths. The
left plot shows three settings with DS-FLOW on STAC;
the right plot depicts the same settings for DS-DP on
Molweni-clean. Both algorithms use Vicuna as LLM.
STL: Speech turn limitation. STL+PF: Speech turn
limitation in combination with penalization factor.

B Filtering Mechanism Prompt Template

Drawing inspiration from the prompt utilized by
Zhang et al. (2024) for evaluating dialogue quali-
ties, we devise a new prompt specifically tailored
to the task of predicting potential dialogue con-
tinuations, as depicted in Figure 6. We adapt the
instruction template to align with the format used
by Vicuna and Mistral in their instruction-tuning
process.
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Figure 5: F1 scores for different link lengths. The left
plot shows three settings with DS-FLOW on STAC;
the right plot depicts the same settings for DS-DP on
Molweni-clean. Both algorithms use Vicuna as LLM.
STL: Speech turn limitation. STL+PF: Speech turn
limitation in combination with penalization factor.

### Context:
[Here is a dialogue utterance]
### Response:
[Here is the potential continuation]
### Instruction:
Please evaluate whether the response is a plausible 
continuation of the given utterance within a dialogue 
context and provide a definitive answer Yes or No.
### Your Answer:
[Here is LLM's output in terms of "Yes" or "No"]

Figure 6: An example of how open-source LLMs can be
prompted to determine if an utterance could potentially
follow a preceding one.

C Filtering Mechanism Evaluation

We assessed the performance of the filtering mecha-
nism under the optimal setting for the DS-FLOW al-
gorithm, specifically leveraging the STL constraint,
the penalization factor, and the Vicuna-13b model
as the backbone on the STAC corpus. The follow-
ing scenarios were considered:

• True Positives: Links that should be filtered
and are correctly identified as such by the
LLM (112 instances).

• False Positives: Links that should not be fil-
tered but are incorrectly identified as filtered
by the LLM (52 instances).

• True Negatives: Links that should not be fil-
tered and are correctly identified as such by
the LLM (698 instances).

• False Negatives: Links that should be filtered
but are incorrectly identified as not filtered by
the LLM (604 instances).
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STAC Molweni-clean
Model Algorithm F1 P R F1 P R

Vicuna-7b

DS-DP 53.8 51.7 56.0 69.6 66.4 73.2
DS-DP + STL 54.4 52.3 56.6 69.9 66.7 73.5
DS-DP + STL + Pdist(d) 56.9 53.2 61.3 73.2 67.6 79.9

DS-FLOW 46.0 38.6 56.9 57.6 47.7 72.7
DS-FLOW + STL 46.4 39.3 56.6 58.5 48.7 73.2
DS-FLOW + STL + Pdist(d) 56.3 55.1 57.5 72.8 68.4 77.7

Table 4: Experiment results of proposed approaches on STAC and Molweni-clean corpora for Vicuna-7b. STL:
Speech turn limitation. Pdist(d): Penalization factor. F1: Micro-F1. P: Precision. R: Recall.

Based on these outcomes, we calculated the Ac-
curacy, Precision, Recall, and F1 scores, as detailed
in Table 5. The filtering mechanism exhibits good
reliability, demonstrated by a Precision score of
68.2%. However, it only filters out a small number
of incorrect potential continuations, resulting in a
Recall score of 15.6%, which in turn affects the
F1 score. The overall Accuracy score of 55.3% is
consistent with the algorithm’s performance on the
STAC corpus. Enhancing the filtering mechanism
is expected to improve the algorithm’s performance,
a subject we plan to address in future work.

Metric Value (%)

Precision 68.2
Recall 15.6
Accuracy 55.3
F1 25.1

Table 5: Performance metrics of the filtering mechanism
under the optimal setting for the DS-FLOW algorithm,
leveraging the STL constraint, the penalization factor,
and the Vicuna-13b model on the STAC corpus.

D Experimental Analysis with Smaller
Vicuna Model

To analyze how performance changes with LLM
model size, we conduct supplementary analyses
using a smaller version of Vicuna, comprising 7b
parameters. As shown in Table 4, akin to Vicuna-
13b (see Table 2), both algorithms exhibit optimal
performance when incorporating both the STL con-
straint and the penalization factor, with a slight
improvement observed when integrating the STL
constraint compared to the vanilla version. Re-
garding the best settings, the results indicate that
with the downsized LLM, the micro-F1 scores are
slightly lower, with DS-FLOW achieving 56.3%
and DS-DP achieving 73.2%, compared to Vicuna-
13b, which achieved 58.1% on STAC and 74.7%

on Molweni-clean, respectively. This suggests that
employing a larger LLM could potentially yield
superior outcomes.

E An Example of DS-DP Algorithm
Execution

Figure 7 illustrates the application of DS-DP to
the dialogue depicted in Figure 1. The algorithm
begins by calculating perplexity scores for sub-
dialogues of length 2 during the initialization phase.
It then progresses to compute the perplexity scores
for sub-dialogues of length 3. Specifically, when
k = 1, the algorithm analyzes all pairs of EDUs
(ei, ej) with i > 1 and j > i. Given the constraint
that sub-dialogues must start from the initial EDU
(see Section 3.1), every pair of sequential EDUs
has the initial EDU as the preceding one.

For k = 2, the algorithm computes sub-
dialogues of length 4. For the cells M co[3][4][2],
M co[3][5][2], and M co[3][6][2], there is only one
possible sub-dialogue, and the algorithm computes
their perplexity scores. When evaluating the sub-
dialogue passing through e4 and ending in e5, the
algorithm analyzes the incoming links in e4. Ac-
cording to the input graph, e4 has incoming links
from e1, e2, and e3. Since there is no sub-dialogue
passing through e1, ending in e4, and involving
k − 1 = 1 EDU, e1 is disregarded. Instead, the al-
gorithm considers e2 and e3 as intermediary EDUs
to conclude in e5 through e4. Thus, it analyzes two
sub-dialogues (A): (e1, e2, e4, e5) and (e1, e3, e4,
e5). The algorithm computes the perplexity scores
for both sub-dialogues and retains the one with the
lowest perplexity, e.g., (e1, e3, e4, e5). The same
method applies to sub-dialogues passing through
e4 and ending in e6 (B), and those passing through
e5 and ending in e6 (C). Consider the selection of
sub-dialogues (e1, e3, e4, e6) and (e1, e2, e5, e6).

For k = 3, the algorithm examines pairs of
EDUs that can involve three preceding EDUs, such
as (e4, e5), (e4, e6), and (e5, e6). The first two pairs
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Figure 7: An example of DS-DP execution. For brevity, we use the notation Pe(list of indexes) instead of
Perplexity(list of EDUs) within the cells. Underlined texts denote selected sub-dialogues during the algorithm’s
execution.
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are constrained by preceding EDUs e1, e2, and e3.
For the pair (e5, e6), multiple triples can serve as
the preceding three EDUs. Here, the algorithm
considers EDUs with outgoing links towards e5,
namely e1, e2, e3, and e4. Only two EDUs, e3 and
e4, can reach e5 and involve two preceding EDUs.
Since the algorithm selected the sub-dialogue (e1,
e3, e4, e5) as the best option for passing through e4
and ending in e5 with two preceding EDUs, it does
not analyze the sub-dialogue (e1, e2, e4, e5, e6) and
just considers (e1, e3, e4, e5, e6). Conversely, the
only sub-dialogue passing through e3 and ending
in e5 with two preceding EDUs is (e1, e2, e3, e5),
leading the algorithm to analyze (e1, e2, e3, e5, e6).
Consider the selection of (e1, e3, e4, e5, e6).

For k = 4, the only pair of EDUs that can have
four preceding EDUs is (e5, e6), resulting in the
sub-dialogue (e1, e2, e3, e4, e5, e6). With this, the
algorithm completes the computation of the most
coherent sub-dialogues with lengths ranging from
2 to 6. Then, it iterates over the k value for each
EDU ei and selects the sub-dialogue ending in ei
with the minimum perplexity, examining only the
column i for each k. For example, to find the most
coherent sub-dialogue ending in e4, it evaluates the
perplexity scores of the following sub-dialogues:
(e1, e4), (e1, e2, e4), (e1, e3, e4), and (e1, e2, e3,
e4). In the context of the dialogue in Figure 1,
the algorithm selects (e1, e2) for e2, (e1, e3) for
e3, (e1, e3, e4) for e4, (e1, e3, e4, e5) for e5, and
(e1, e3, e4, e6) for e6, resulting in the final DAG:
{(e1, e2), (e1, e3), (e3, e4), (e4, e5), (e4, e6)}.

From the matrices, it is evident that there is a
significant number of empty cells (indicated in light
blue). For each k value, the algorithm only needs
to examine rows with indices greater than k, and
for each row i, only columns with indices greater
than i. This is justified by the assumption of not
having backward links within the final DAG to be
computed.

F Algorithm Execution Time Analysis

We assessed the execution times of the proposed
algorithms using the STAC and Molweni-clean cor-
pora. Although the DS-FLOW algorithm exhibits
a time complexity of O(|V |2), which is more fa-
vorable compared to the O(|V |4) complexity of the
DS-DP algorithm, our empirical analysis revealed
that the DS-DP algorithm computes discourse struc-
tures more efficiently, with execution times some-
times reduced by up to half. This discrepancy oc-

curs because, even though the DS-DP algorithm
has a O(|V |4) time complexity, it processes fewer
values than expected in the worst-case scenario
(as detailed in Appendix E). Furthermore, the DS-
FLOW algorithm requires LLM computation for
both filtering and perplexity calculations, while the
DS-DP algorithm uses an LLM solely for evaluat-
ing sub-dialogue coherence.

G Qualitative Analysis in STAC and
Molweni-clean

In Figures 8-19, we present several concrete exam-
ples generated by the optimal approaches for STAC
(utilizing DS-FLOW with the STL constraint and
penalization factor, and Vicuna-13b as the back-
bone) and Molweni-clean (employing DS-DP with
identical settings). Specifically, we show three
well-predicted examples (depicted in Figures 8, 9,
and, 10 for STAC, and Figures 14, 15, and 16 for
Molweni-clean) and three badly predicted exam-
ples (depicted in Figures 11, 12, and 13 for STAC,
and Figures 17, 18, and 19 for Molweni-clean).
Some patterns observed in predicted structures in-
clude: (i) the algorithms struggle to predict very
long-distance links, favoring shorter links with dis-
tances of 2, 3, and 4; (ii) direct links are often
predicted even when the appropriate indirect in-
coming links for EDUs are accurately identified.

Our qualitative analysis has identified multiple
instances wherein the application of perplexity
for dialogue evaluation presents limitations. To
exemplify this issue, consider the following dia-
logue excerpt from the STAC corpus (id s1-league3-
game3_16):

(e1) A: can anyone trade ore? I have more wood
to trade

(e2) B: do you have clay, by any chance?
(e3) A: sorry, no
(e4) C: i can do that kieran
(e5) A: how many can you trade?
(e6) A: 2 for 2?
(e7) C: just got one, sorry
(e8) A: ok cool

In this instance, our algorithms evaluated the
links (e5, e7) as more likely than (e5, e6), despite
both links being valid: (e5, e7) with a QAP relation
and (e5, e6) with a Continuation relation. This dis-
crepancy is likely because a direct answer like e7
seems more contextually relevant as a response to
e5, thus overshadowing the Continuation link to e6.
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The perplexity metric tends to favor more imme-
diate and clear connections, which can sometimes
misrepresent the actual flow of dialogue. This lim-
itation indicates that relying solely on perplexity
for dialogue evaluation may overlook nuanced con-
versational dynamics, underscoring the need for
supplementary metrics to fully capture dialogue
coherence and relevance.

H Dialogue Parsing Task Prompt
Template

To enhance the competitive performance of Chat-
GPT in the multi-party dialogue discourse parsing
task, we undertake manual design efforts to refine
the prompt. This refinement, illustrated in Figure
20, builds upon the prompt proposed by Chan et al.
(2023). Specifically, we provide a more explicit
delineation of the task requirements by specifying
the extraction of a DAG, in contrast to the broader
objective pursued by Chan et al. (2023), which in-
volved predicting all potential discourse relations
between utterances. Furthermore, drawing on in-
sights from the findings of Chan et al. (2023), who
demonstrated improved performance with the in-
clusion of descriptions for discourse relations, we
develop more comprehensive descriptions within
the prompt. This refined prompt has been con-
sistently used in zero-shot experiments conducted
with the Vicuna and Mistral models.
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Prediction = Ground truth

e1 e2 e3 e4 e5 e6 e7

Figure 8: STAC - DS-FLOW - Well predicted example: pilot02_12. #EDUs : 7.

Prediction

e1 e2 e3 e4 e5 e6 e7 e8

Ground truth

e1 e2 e3 e4 e5 e6 e7 e8

Figure 9: STAC - DS-FLOW - Well predicted example: pilot02_21. #EDUs : 8. In red: False positive edges; in
light blue: False negative edges.

Prediction

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19

Ground truth

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19

Figure 10: STAC - DS-FLOW - Well predicted example: pilot02_13. #EDUs : 19. In red: False positive edges; in
light blue: False negative edges.

Prediction

e1 e2 e3 e4 e5 e6 e7 e8 e9

Ground truth

e1 e2 e3 e4 e5 e6 e7 e8 e9

Figure 11: STAC - DS-FLOW - Badly predicted example: s2-league4-game2_6. #EDUs : 9. In red: False positive
edges; in light blue: False negative edges.

Prediction

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Ground truth

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Figure 12: STAC - DS-FLOW - Badly predicted example: pilot02_6. #EDUs : 10. In red: False positive edges; in
light blue: False negative edges.
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Prediction

Ground truth

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

Figure 13: STAC - DS-FLOW - Badly predicted example: s2-league4-game2_31. #EDUs : 14. In red: False
positive edges; in light blue: False negative edges.

Prediction = Ground truth

e1 e2 e3 e4 e5 e6 e7

Figure 14: Molweni-clean - DS-DP - Well predicted example: 8031. #EDUs : 7.

Prediction

Ground truth

e1 e2 e3 e4 e5 e6 e7

e1 e2 e3 e4 e5 e6 e7

Figure 15: Molweni-clean - DS-DP - Well predicted example: 6037. #EDUs : 7. In red: False positive edges; in
light blue: False negative edges.

Prediction

Ground truth

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

e8 e9 e10 e11 e12e1 e2 e3 e4 e5 e6 e7

Figure 16: Molweni-clean - DS-DP - Well predicted example: 8026. #EDUs : 12. In red: False positive edges; in
light blue: False negative edges.

Prediction

Ground truth

e1 e2 e3 e4 e5 e6 e7

e1 e2 e3 e4 e5 e6 e7

Figure 17: Molweni-clean - DS-DP - Badly predicted example: 5033. #EDUs : 7. In red: False positive edges; in
light blue: False negative edges.
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Prediction

e1 e2 e3 e4 e5 e6 e7 e8 e9

Ground truth

e1 e2 e3 e4 e5 e6 e7 e8 e9

Figure 18: Molweni-clean - DS-DP - Badly predicted example: 8039. #EDUs : 9. In red: False positive edges; in
light blue: False negative edges.

Prediction

Ground truth

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

e8 e9 e10 e11 e12e1 e2 e3 e4 e5 e6 e7

Figure 19: Molweni-clean - DS-DP - Badly predicted example: 8018. #EDUs : 12. In red: False positive edges;
in light blue: False negative edges.

Here is a multi-party dialogue: 
[Multi-party dialogue]
Assume that each utterance represents a node within a graph. Your task is to predict the relations between these
utterances based on a provided list of relations. The resulting graph should adhere to the structure of a Directed Acyclic
Graph (DAG), wherein edges have a direction, meaning they go from one node to another. A key characteristic of a DAG is
that it does not contain cycles, i.e., there are no sequences of edges that form a closed loop. This implies that it is not
possible to start from a node, follow the edges, and return to the starting node. It is crucial to emphasize that each node
representing an utterance must have at least one incoming edge to ensure that the resulting graph maintains coherence
and fosters a connected discourse.

Relations:
1) Comment: This relation type typically indicates that one utterance provides a comment or opinion on the content of
another utterance. It shows a speaker's perspective or evaluation of the preceding statement.
2) Clarification Question: In this relation, one utterance poses a question seeking clarification or additional information about
the content of another utterance. It implies a request for further explanation.
3) Elaboration: Elaboration signifies that one utterance expands upon or provides more details about the content of another
utterance. It is used to enhance understanding by offering additional information or context.
4) Continuation: This relation suggests that one utterance continues the topic or discussion from a previous utterance. It
signifies a logical progression in the conversation. 
5) Explanation: Explanation pertains to one utterance offering an explanation or clarification in response to a question or
confusion expressed in another utterance. It aids in providing clarity.
6) Conditional: A conditional relation implies that one utterance presents a condition or hypothetical scenario related to the
content of another utterance. It often involves "if-then" statements.
7) Question-Answer Pair: This relation indicates that one utterance contains a question, and another utterance follows with
an answer to that question. It demonstrates a direct question-and-answer interaction.
8) Alternation: Alternation shows that two utterances present alternative options or choices. It is used when discussing
multiple possibilities or courses of action.
9) Q-Elab: Q-Elab signifies that one utterance asks a question, and another utterance follows with an elaboration or further
explanation of the question or its context.
10) Result: Result indicates that one utterance discusses the outcome or consequence of the content presented in another
utterance. It shows a cause-and-effect relation.
11) Background: In this relation, one utterance provides background information or context that is relevant to the content of
another utterance. It helps set the stage for the discussion.
12) Narration: Narration signifies that one utterance presents a narrative or storytelling element, often in response to a
question or to share an anecdote.
13) Correction: Correction shows that one utterance corrects or revises the content of another utterance. It is used to rectify
errors or inaccuracies.
14) Parallel: Parallel relations occur when two or more utterances share similar or related content, often in a parallel or
analogous manner. It emphasizes similarities or comparisons.
15) Contrast: Contrast signifies that one utterance presents content that is in contrast or opposition to the content of another
utterance. It highlights differences or contradictions in the conversation.

Figure 20: Prompt template employed for LLMs in a zero-shot setting for the multi-party dialogue discourse parsing
task on the STAC and Molweni-clean corpora.


	Introduction
	Related Work
	Method
	Problem Formulation
	DS-DP Algorithm
	DS-FLOW Algorithm
	Additional Constraints

	Experimental Setup
	Results and Analysis
	DS-DP and DS-FLOW Performance
	Unsupervised Method Comparison
	Link Length Analysis

	Discussion
	Conclusion and Future Work
	Further Evaluation Results for Link Length Analysis
	Filtering Mechanism Prompt Template
	Filtering Mechanism Evaluation
	Experimental Analysis with Smaller Vicuna Model
	An Example of DS-DP Algorithm Execution
	Algorithm Execution Time Analysis
	Qualitative Analysis in STAC and Molweni-clean
	Dialogue Parsing Task Prompt Template

