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Abstract

Recent dialogue systems rely on turn-based
spoken interactions, requiring accurate Auto-
matic Speech Recognition (ASR). Errors in
ASR can significantly impact downstream di-
alogue tasks. To address this, using dialogue
context from user and agent interactions for
transcribing subsequent utterances has been
proposed. This method incorporates the tran-
scription of the user’s speech and the agent’s
response as model input, using the accumu-
lated context generated by each turn. However,
this context is susceptible to ASR errors be-
cause it is generated by the ASR model in an
auto-regressive fashion. Such noisy context can
further degrade the benefits of context input, re-
sulting in suboptimal ASR performance. In this
paper, we introduce Context Noise Representa-
tion Learning (CNRL) to enhance robustness
against noisy context, ultimately improving di-
alogue speech recognition accuracy. To maxi-
mize the advantage of context awareness, our
approach includes decoder pre-training using
text-based dialogue data and noise representa-
tion learning for a context encoder. Based on
the evaluation of speech dialogues, our method
shows superior results compared to baselines.
Furthermore, the strength of our approach is
highlighted in noisy environments where user
speech is barely audible due to real-world noise,
relying on contextual information to transcribe
the input accurately.

1 Introduction

Automatic Speech Recognition (ASR) is central in
accurately interpreting human speech, serving as
a fundamental resource for numerous subsequent
downstream tasks. The advent of robust ASR mod-
ules, such as wav2vec2.0 (Baevski et al., 2020)
and Whisper (Radford et al., 2023), has signifi-
cantly enhanced the capabilities of ASR systems,
facilitating their integration into a wide array of
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research and application domains. The integration
of ASR modules into various works highlights the
pivotal role of ASR in enhancing human-computer
interaction, signifying a notable development in
interactive technologies.

Despite the successful advancement of the ASR
system, its inaccuracy poses significant risks to the
efficacy of downstream tasks, such as speech-to-
text translation (Liu et al., 2020; Le et al., 2024;
Tang et al., 2021) and spoken language understand-
ing (Serdyuk et al., 2018; Arora et al., 2022; Huang
and Chen, 2020). These tasks predominantly rely
on the textual output generated by ASR systems,
highlighting the importance of accuracy in the ini-
tial speech recognition process. Especially for the
dialogue system, the quality of the ASR system is
paramount to ensure seamless interaction between
user and dialogue agent, as models trained on writ-
ten conversations perform poorly on spoken data
(Kim et al., 2021). To minimize the impact of
ASR error on the dialogue model, various endeav-
ors have been made. Jiang et al. (2023) used an
ASR correction module which employs multiple
ASR models, while others focused on augmenting
data with plausible ASR errors (Park et al., 2023;
Wang et al., 2020; Tian et al., 2021). However the
limitation is evident as they primarily focus on the
robustness of dialogue models, which may not ad-
dress the core issue compared to directly rectifying
ASR models.

Conversely, incorporating a context encoder for
dialogue history to improve the ASR model has
been proposed, resulting in notable performance en-
hancements (Ortiz and Burud, 2021; Shenoy et al.,
2021; Hou et al., 2022; Hori et al., 2020). Neverthe-
less, since the context is transcribed at each turn by
the ASR model, it may contain errors, potentially
disrupting the use of contextual information.

In this work, we present a novel Context Noise
Representation Learning (CNRL) method to en-
code accurate contextual information, even from
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noisy ASR transcriptions. This approach aims to
improve the performance of speech recognition
in Task Oriented Dialogue (TOD) by minimizing
the impact of ASR errors in dialogue history as
context. Furthermore, we explore the advantages
of decoder pre-training in context-aware ASR sys-
tems, emphasizing their improved robustness in
noisy environments. The overall training pipeline
can be decomposed by three steps: 1) Decoder pre-
training on text-based dialogue data between user
and agent. 2) ASR fine-tuning with speech encoder
and context encoder jointly. 3) CNRL on context
encoder to minimize the impact of ASR-noise con-
text. Our contributions are as follows:

• We propose a novel training pipeline for di-
alogue speech recognition that leverages the
dialogue history between user and agent.

• We demonstrate the effectiveness of CNRL
by comparing it to various baseline models,
showing a relative 13% reduction in Word
Error Rate (WER) compared to the current
state-of-the-art ASR model (Radford et al.,
2023).

• In evaluations conducted in highly noisy en-
vironments, our model exhibits robust tran-
scription accuracy, achieving up to a 31.4%
reduction in WER compared to the baseline.

2 Related work

2.1 Context-aware speech recognition
Several studies have shown that leveraging contex-
tual information in dialogue scenarios can enhance
ASR performance. Shenoy et al. (2021) used a
context carry-over mechanism to enhance the re-
current model’s accuracy. Hou et al. (2022) pro-
posed utilizing a context encoder in RNN-T ar-
chitecture, adopting the semantic embedding of
dialogue context from BERT (Devlin et al., 2019).
Hori et al. (2020) targeted considering long-context
by sliding-window fashion. Wang et al. (2023) and
Wang et al. (2024) proposed an audio-augmented
retriever to directly transcribe and track the dia-
logue state. These Context-Aware ASR(CA-ASR)
models have a potential drawback: the context gen-
erated for each turn is based on ASR transcriptions,
which inevitably contain errors, potentially degrad-
ing context-awareness. In this paper, we introduce
the CNRL method, which trains only the context
encoder independently. The goal is to enable the

context encoder to produce similar encoding for
noisy (ASR output) contexts to match clean con-
text.

2.2 Decoder pre-training

Compared to pre-training encoder layers (Baevski
et al., 2020; Hsu et al., 2021; Chen et al., 2022), pre-
training the decoder for ASR has received compar-
atively less attention. Notably, in scenarios where
input speech is flawed or incomplete, the decoder
can still play a crucial role in transcribing user utter-
ances by leveraging contextual language modeling.
To harness the decoder’s capabilities, the use of
external datasets like phoneme-to-grapheme paired
data (Masumura et al., 2020) or text data (Gao et al.,
2021) has been suggested. This approach enables
the model to benefit from numerous external, non-
paired data sources. Tsunoo et al. (2023) trained
decoder for both ASR task and language modeling
task, enabling improved linguistic understanding
and leading to better ASR performance. Follow-
ing these works, we pre-trained the decoder for a
context-aware ASR model using voluminous text-
only data. Specifically, we focus on turn-based
dialogue data between user and agent, where each
utterance is highly related to each other.

2.3 Noise Representation Learning

Noise in input data is inevitable in various forms
across many datasets. Training models with such
data negatively impacts their generalization per-
formance. To address this challenge, numerous
studies have adopted contrastive learning to en-
hance model robustness. Ma et al. (2023) improved
named entity recognition performance by employ-
ing a token-level dynamic loss function and con-
trastive learning, leveraging noisy data and account-
ing for noise-distribution changes during training.
Xu et al. (2023) enhanced contrastive learning
through a dimension-wise method to mitigate fea-
ture corruption in sentence embeddings. Sun et al.
(2023) used a K-NN graph to identify confident
samples and applied mixup supervised contrastive
learning to create robust representations, leading to
improved relation extraction performance. Zheng
et al. (2023) utilized both class-wise and instance-
wise contrastive learning in their novel represen-
tation learning module. In this work, we adopt
representation learning to enhance context aware-
ness when noisy ASR transcriptions are used for
context. The proposed CNRL is integrated solely
with the context encoder in the CA-ASR model to
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Figure 1: The architecture of a Context-Aware ASR(CA-ASR), featuring separate speech and context encoders to
process the user’s current speech sit and dialogue history Ci

t , respectively. These representations are concatenated
and fused using a modality fusion layer and transcribed to the predicted user utterance pit by the transformer decoder.
The predicted user utterance will be added to context (pit −→ ui

t) for the next turn (t + 1). After the training, the
context encoder can improve itself by our CNRL method, detailed in Figure 2 and Section 3.3.

minimize training costs.

3 Methodology

3.1 Preliminary

We define Di
t as the turn-based dialogue dataset

for turn t in the i-th dialogue, which in-
cludes the speech input sit, the correspond-
ing text labels uit (transcriptions) of user utter-
ances, and the turn-based dialogue history Ci

t =
(ui1, r

i
1, ..., u

i
t−1, r

i
t−1), accumulating up to turn

t − 1, where rit represents the agent’s response
at turn t. Each dialogue instance at the k-th turn,
denoted as (uik, rik), comprises a single-turn con-
versation consisting of both a user utterance and
an agent response. During inference, the predicted
utterance (transcription) from model pit is used in-
stead of uit for user utterance to form context Ci

t .
The CA-ASR model integrates the user’s speech

and dialogue history. For each turn t, the model pre-
dicts the current user utterance uit from the speech
input sit and the context Ci

t . The dialogue history
comprises text logs from both the user and the
agent, where the user’s speech is transcribed in
real-time, while the agent’s responses are given in

text format. To transcribe the user’s speech at turn
t, the model draws upon past conversations from
turn 1 to t− 1. Utilizing an encoder-decoder archi-
tecture for the CA-ASR model, dedicated encoders
initially process each input type—speech and text.
These encodings are then concatenated and fused
through a modality fusion layer, yielding a fused
representation. Subsequently, the fused representa-
tion is passed through a decoder layer to transcribe
the user utterance. Figure 1 illustrates the CA-ASR
architecture, highlighting the interaction between
user utterances and agent responses.

3.2 Decoder pre-training for Dialogue

We adopt a pre-training method specifically target-
ing decoders in the CA-ASR model. This method
employs an encoder-decoder architecture, where
the model takes the text-form dialogue history Ci

t

as input. For the output, since the decoder is eventu-
ally used for transcribing user utterances, it aims to
predict the next user utterance uit. Additionally, the
utilization of text data as input enables the training
process to use external text datasets, further enhanc-
ing the decoder’s performance. We demonstrate
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Figure 2: Context Noise Representation Learning:
The noisy context including user utterances generated
by the CA-ASR model during inference (pit), and the
ground truth context with clean user utterances (ui

t), are
encoded by the context encoder. The noisy encoding is
adjusted to closely match the ground truth encoding in
the context encoding vector space.

this efficacy in Section 5.2 . This approach enables
the decoder to anticipate the subsequent user utter-
ance based on contextual information derived from
the dialogue history. This training method is partic-
ularly effective because dialogues in TOD are more
predictable from the dialogue history than other
types of conversations. In typical user-agent inter-
actions, the agent often asks specific questions, and
the user responds with relevant answers, making
the dialogue structure more consistent and easier
to predict.

When integrated into the CA-ASR model and
fine-tuned for ASR tasks, the pre-trained de-
coder can significantly enhance transcription per-
formance. By leveraging its ability to anticipate
user responses from the agent’s response (or the
entire dialogue history), the decoder contributes to
more accurate and robust transcription results, even
with imperfect input speech, such as noisy audio
signals.

3.3 Context Noise Representation Learning

During inference, the CA-ASR model uses con-
text from previous transcriptions of user utterances
and agent responses. However, inaccuracies in the
ASR-generated transcriptions can degrade the ad-
vantage of using context, as training typically uses
only ground truth context for each turn. To address
this, we introduce CNRL. This method involves
an additional training step where the model tran-

scribes and utilizes noisy transcriptions to train the
context encoder in a representation learning man-
ner, as illustrated in Figure 2. The context encoder
is fine-tuned to generate similar encoding for noisy
input context as it does for the ground truth con-
text. This method focuses solely on enhancing the
context encoder, maintaining training efficiency.

To create the training set for CNRL, we first
generate noisy transcriptions using the CA-ASR
model with the ASR training set (See Section 4.1)
divided into 10 folds. In each fold, 90% of the
training set is used to train the CA-ASR model,
and the remaining 10% is used to generate noisy
ASR transcriptions. By iterating through all 10
folds, we obtain a complete noisy context training
set. The dataset for CNRL comprises pairs of noisy
and ground truth contexts, each containing multiple
conversation turns. Each turn pairs a user utterance
with an agent response, except for the initial turn,
which consists only of the user’s utterance.

We trained context encoder with cosine embed-
ding loss:

loss(x, y) =

{
1− cos(x1, x2), if y = 1

max(0, cos(x1, x2)− margin), if y = −1

(1)

Where x1 is the encoding vector from the context
encoder within the ASR-generated context and x2
is the encoding from ground truth context. y is the
label that indicates these two (x1 and x2) are of
the same class(y = 1) or not(y = −1). Since we
trained the context encoder to generate a similar
output encoding for the noisy input (x1) to match
the clean ground truth (x2), we set y = 1 for train-
ing. During training, x1 gets close to x2 on context
encoding vector space, ensuring the context en-
coder produces similar encoding for a given noisy
context. By using CNRL, the context encoder can
maintain accurate context information, leading to
improved speech recognition accuracy.

4 Experimental setup

4.1 Datasets

The DSTC11 Challenge Dataset The DSTC11
(Soltau et al., 2022) dataset is derived from the
MultiWoZ 2.1 (Eric et al., 2020) by adding speech
recordings and synthesized voices generated by
a TTS model. The training set is built using the
TTS model, while the evaluation sets are recorded
by human volunteers. Each dialogue consists of
audio files of user utterances paired with corre-
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sponding agent responses. In every dialogue, the
user initiates the conversation, making the first user
utterance has no preceding context.

Since the official transcription for the DSTC11
test split (test-dstc11.human-verbatim) is not pub-
licly available, we evaluate our experiments on the
DSTC11 development split with human recording
(dev-dstc11.human-verbatim)1 as test set. Addi-
tionally we randomly sampled 3000 audios from
the training set and used them as our development
set during training.

The DSTC11 training set consists of 8,434 dia-
logues comprising 56,750 user utterances synthe-
sized by four TTS voices, generating a total of
227,000 audio files. Our development set, ran-
domly sampled from the training set, contains 3000
user utterances and is excluded from the training
data. The test set includes human recordings of
7,374 user utterances from 1,000 dialogues. The
average audio duration is 3.31 seconds for the train-
ing and development sets and 5.35 seconds for the
test set.
Evaluation in Noisy Environments Environmen-
tal noise is a significant challenge for ASR systems
in real-world scenarios. However, contextual in-
formation can mitigate this issue. To test our ASR
system’s resilience to real-world noises, we use the
ESC-50 dataset (Piczak, 2015), which includes 50
classes of common urban noises, such as drilling
and sirens. Noise samples are randomly selected
from 2000 audio files and injected into our test
set at Signal-to-Noise Ratios (SNR) of 20dB and
0dB, representing soft and hard noise conditions,
respectively. This evaluation replicates challenging
acoustic environments to test the ASR system’s ro-
bustness rigorously. Note that the noisy audio is
used exclusively for evaluation, not training. Our
goal is to show that contextual information can
be helpful in noisy environments where the audio
signal is significantly degraded.
Decoder pre-training To facilitate the use of con-
text information, we first trained CA-ASR’s de-
coder using exclusively text-based data before ASR
fine-tuning. For this purpose, we employ large
datasets of turn-based dialogue text, combining the
Schema-Guided Dialogue (SGD) (Rastogi et al.,
2020) dataset with the DSTC11 text dataset to pre-
train the decoder. SGD consists of over 20,000
task-oriented conversations between human and

1https://storage.googleapis.com/gresearch/
dstc11/dstc11_20221102a.html

virtual assistant. From 8434 English dialogues
from DSTC11 and approximately 16,000 English
dialogues from the SGD training dataset, we use
about 260,000 turn conversations. To evaluate the
effect of decoder pre-training, we varied the vol-
ume of text data used for this process. The effects
of these variations are detailed in Table 2.

4.2 Model configuration
Baselines We compare our CA-ASR model against
several baselines, including those reported in
DSTC11 (Soltau et al., 2022) and the current state-
of-the-art ASR model Whisper (Radford et al.,
2023). Additionally, we present a model that uses
wav2vec2.0 (Baevski et al., 2020) as the encoder
and BART (Lewis et al., 2019) as the decoder.
This model shares the same architecture as the CA-
ASR model, except for removing the context en-
coder and modality fusion. For transcription post-
processing, we normalize common English patterns
(e.g., "I’ve" to "I have"), remove punctuation, and
normalize digits to ensure a fair comparison be-
tween models.
Context-Aware ASR Compared to the baselines,
the CA-ASR model leverages previous user utter-
ances and agent responses as textual input to en-
hance transcription accuracy. To encode this con-
textual information, CA-ASR uses the BART en-
coder as the context encoder. The speech encoder
is wav2vec2.0 with the checkpoint wav2vec2-large-
960h2, and the pretrained BART encoder and de-
coder with the checkpoint bart-large3 are utilized
as the context encoder and the CA-ASR decoder,
respectively. Given that the maximum token length
for BART-large is limited to 1024, we truncate the
context to the last 1024 tokens if necessary.

For modality fusion, the wav2vec2.0 speech en-
coder and the BART context encoder each pro-
duce hidden representations with dimensions of
token×1024. Since the BART decoder requires an
encoder hidden state with a dimension of 1024, we
concatenate these hidden representations along the
1024 dimension. This concatenated representation
is then passed through a linear layer (1024, 1024)
with ReLU activation to create a fused represen-
tation. This fused representation is subsequently
fed into the BART decoder to transcribe the user
utterance.

Total parameter size of our model is 774M, con-
sisting of 315M for the speech encoder, 203M for

2https://huggingface.co/facebook/wav2vec2-large-960h
3https://huggingface.co/facebook/bart-large
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the BART context encoder, 254M for the BART
decoder, and 1M for the linear fusion layer.

4.3 Training configuration
Our training pipeline consists of three sequential
steps: decoder pretraining, ASR fine-tuning with
audio masking, and CNRL. We evaluate the effect
of each step in the subsequent Result & Analysis
section.
Decoder pre-training We initially adopt the BART
encoder-decoder model to pre-train the decoder,
which is subsequently used for ASR fine-tuning.
The optimization is performed using the AdamW
algorithm (Loshchilov and Hutter, 2017) with
(β1, β2) = (0.9, 0.999), learning rate of 5e-5,
weight decay of 1e-5, and a batch size of 32. We
select the best model based on the lowest valida-
tion loss over 10 epochs of training, spanning 50
hours. The encoder functions as the context en-
coder, while the decoder serves as the transformer
decoder in the CA-ASR model. Utilizing Cross-
Entropy loss, we aim to input the dialogue history
with the agent’s response, which is the last turn,
into the encoder and generate the user’s response
as the output from the decoder.
ASR fine-tuning In ASR fine-tuning stage, a
speech encoder (wav2vec2.0) is attached to the pre-
trained BART decoder from decoder pre-training.
We adopt a batch size of 64 and an Adam optimizer
with a learning rate of 2e-5. Across 10 epochs
of training for 20 hours, the model with the low-
est WER on development set at the end of each
epoch was chosen as the best model for the speech
encoder.
Audio masking Motivated by other multi-modal
ASR study (Shi et al., 2022), a small portion of
the speech data is obscured by masking to reduce
the model’s reliance on speech input. Specifically,
10% of speech data are randomly chosen for mask-
ing, and each selected data is masked for 20% of
its total duration. Note that this configuration of
masking probability and duration was empirically
determined to yield optimal results in our exper-
iments, with the proportion of masked data and
masking length varied between 10% to 30% and
10% to 50%, respectively. To implement the mask-
ing process, we segment each audio into discrete
chunks of 1-second duration. These chunks serve
as the minimum unit for the masking, e.g. in an
audio input with a duration of 10 seconds, two
randomly chosen chunks would be masked. Un-
less otherwise specified, all results of the CA-ASR

model include audio masking during training.
CNRL Setup We utilized the noisy context train-
ing set from the 10-folds described in Section 3.3.
The average WER for the noisy context was 6.53%
across the 10 folds. We filtered out transcriptions
with a WER exceeding 20% to prevent interference
with CNRL, resulting in the exclusion of 8.2% of
the noisy context training set. We evaluated the
effect of CNRL noisy context data by modifying
the dialogue turns and introducing arbitrary word
drops. For arbitrary word drop, we remove words
for user utterances from golden context by 10% of
change for each word and iterate it until we match
the WER for each dialogue up to 6.5%, which is
similar to WER with 10-folds. The training data
setups are listed below:

• S1: Arbitrarily remove words from the golden
context (user utterance only) to match an av-
erage WER of 6.5%.

• S2: Using the 10-fold training set, only the
last user utterance contains noisy text.

• S3: Using the 10-fold training set, all user
utterances may contain noisy text.

• S4: Combining S1 with S3. If a user utterance
for each turn does not contain noisy text, ar-
bitrary word drops are applied to increase the
noise.

Unless otherwise specified, subsequent experimen-
tal results with CNRL use the S4 setup. We use
a batch size of 128 and the Adam optimizer with
a learning rate of 5e-4. Training is conducted for
up to 5 epochs, selecting the epoch with the lowest
cosine embedding loss on our development set.

All experiments are conducted using 4 NVIDIA
A6000 GPUs.

5 Result & Analysis

5.1 Context Aware-ASR
Table 1 illustrates the WER across various models
and noise levels. The CA-ASR model significantly
improves performance on our test set, reducing
relative WER by 33.4% compared to the RNN-T
(Soltau et al., 2022) baseline (7.92% vs. 11.90%)
and by 14.2% compared to the wav2vec2.0 with
BART baseline, even without additional methods
like CNRL or decoder pre-training. This highlights
the advantage of using multi-modality with a con-
text encoder for dialogue speech recognition.
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Configurations Audio Noise Level

Model Modality Parameter size No Noise SNR:20dB SNR:0dB

DSTC11 RNN-T (Soltau et al., 2022) Speech 220M 11.90% - -
DSTC11 Whisper (Soltau et al., 2022)* Speech 1550M 8.50% - -
Whisper-large-v2 (Radford et al., 2023)** Speech 1550M 8.10% 8.45% 14.82%

Wav2Vec2.0+BART (baseline) Speech 569M 9.23% 11.89% 18.45%

CA-ASR (Ours) Speech+Text 774M 7.92% 8.23% 15.65%
+CNRL Speech+Text 774M 7.66% 8.10% 15.03%
+Decoder Ptr. Speech+Text 774M 7.39% 7.51% 13.33%
+Decoder Ptr. & CNRL Speech+Text 774M 7.04% 7.24% 12.65%

Table 1: WER comparison of various baselines and CA-ASR settings under different noise conditions. Our proposed
CA-ASR model is evaluated with and without Context Noise Representation Learning (CNRL) and Decoder
Pretraining (Decoder Ptr.) enhancements. * : reported. **: re-evaluated with our post-processing.

Decoder pre-training further enhances the perfor-
mance of the CA-ASR model, significantly reduc-
ing relative WER by 6.7%, especially under severe
noise conditions (SNR:0dB) where the voice is
barely audible. This is expected since the decoder
is initially tuned to the dialogue domain, enabling it
to predict the user’s subsequent probable response
from the context even with incomplete speech in-
put.

The benefits are maximized when CNRL is ap-
plied, resulting in a relative WER reduction of
11.1% in clean conditions and 19.1% in noisy en-
vironments compared to the basic CA-ASR model.
Since CNRL is designed to make the context en-
coder resilient to context errors, it significantly en-
hances the model’s robustness against strong noise.

Under the noisy audio test set (refer to Sec-
tion 4.1), each model’s performance declines as
the noise level increases (SNR:20dB to SNR:0dB).
However, incorporating decoder pre-training and
CNRL significantly mitigates this performance
drop compared to the basic CA-ASR model
(12.65% vs. 15.65%).

While the Whisper model shows robust perfor-
mance under severe noise conditions (SNR:0dB),
our CA-ASR model with CNRL and decoder
pre-training demonstrates even greater robustness
(12.65% vs. 14.82%).

5.2 Decoder Pre-training for Dialogue

Table 2 demonstrates the effectiveness of pre-
training the decoder with varying the number of
turns and pre-training dataset sizes. Note that the
baseline model is the same as in Table 1, consisting
only of a speech encoder (wav2vec2.0) and a BART
decoder. As illustrated, pre-training the decoder on

Model Input Dialogue Decoder Pre-traing WER

baseline - BART(Lewis et al., 2019) 9.23%
baseline - + MultiWoZ 2.1 8.95%
baseline - + SGD 8.88%

CA-ASR single-turn BART 8.14%
CA-ASR single-turn + MultiWoZ 2.1 7.98%
CA-ASR single-turn + SGD 7.64%

CA-ASR multi-turn BART 7.92%
CA-ASR multi-turn + MultiWoZ 2.1 7.45%
CA-ASR multi-turn + SGD 7.39%

Table 2: WER across various accumulated datasets and
a number of turn-takings. Note that CNRL and noise
evaluation are not applied in this result to focus on the
efficacy of decoder pre-training.

the dialogue domain benefits both the speech-only
model (baseline) and the speech-text multimodal
model (CA-ASR). Compared to the best result of
baseline, the inclusion of the context encoder leads
to significant improvements, resulting in a relative
WER reduction of approximately 16.7% at best in
CA-ASR with multi-turn (8.88% vs. 7.39%). This
finding suggests that the efficacy of pre-training
the decoder is maximized when the model incor-
porates information from previous dialogues. Ad-
ditionally, the WER of CA-ASR with multi-turn
improves relatively by up to 6.7% as the dataset
size increases (adding SGD), indicating the utility
of incorporating external datasets as long as they
involve user-agent conversations. Moreover, mod-
els considering multiple turns of dialogue exhibit a
relatively 3.2% better WER compared to those con-
sidering a single turn, as shown in the comparison
of best results (7.64% vs 7.39%). This highlights
the importance of considering a longer context.
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Model (Modality) Audio Masking No Noise SNR:20db SNR:0db

baseline (Speech) No 8.94% 11.20% 18.02%
baseline (Speech) Yes 8.88% 10.58% 17.61%

CA-ASR (Speech + Text) No 7.45% 7.88% 14.28%
CA-ASR (Speech + Text) Yes 7.04% 7.24% 12.65%

Table 3: WER comparison between madality and audio
masking in clean and noisy samples. Each model’s
decoder is pre-trained with Multio-WoZ 2.1 and SGD,
and CNRL is additionally applied to CA-ASR.

5.3 Effect of Audio masking

Since audio masking can serve as data augmenta-
tion, we conducted additional experiments to com-
pare the performance improvement between the
baseline (speech-only) model and the CA-ASR
(multimodal) model. As shown in Table 3, au-
dio masking enhances ASR performance in both
the baseline and CA-ASR models. While the base-
line models exhibit marginal performance improve-
ments of about 0.6% in clean sample evaluations,
CA-ASR benefits from audio masking with a 5.5%
relative WER reduction. The improvement in CA-
ASR becomes more pronounced in noisy environ-
ments as noise levels increase. Although the WER
is highest at SNR:0dB, indicating the strongest
noise, the relative WER reduction is 11.4%, com-
pared to 8.12% at SNR:20dB. These results suggest
that while audio masking is beneficial in both clean
and noisy environments, its effect is maximized
when the model can utilize contextual information.

5.4 Context Noise Representation Learning

To investigate the impact of noise data on CNRL,
we conducted experiments using different types of
noise (S1-S4) as described in the CNRL setup in
Section 4.3. In Table 4, compared to the model
without CNRL, S1 (which arbitrarily removes
words) degraded performance, indicating that us-
ing only artificial noise is not beneficial for CNRL.
S2 and S3, which use real ASR noise from 10-
fold data generation, showed better performance,
with multi-turn noise (S3) outperforming single-
turn noise (S2).

In our evaluation, we found that S4, which
combines S1 with S3, performed the best, with
WERs of 7.04%, 7.24%, and 12.65% for No-
Noise, SNR:20dB, and SNR:0dB conditions, re-
spectively. For comparison, we evaluated our
model with ground truth context during inference
without CNRL, serving as the upper bound of our
experiment. As expected, using ground truth con-
text showed robust results across noise levels, while

CNRL. No Noise SNR:20db SNR:0db
No 7.39% 7.51% 13.33%
S1 7.53% 7.45% 13.45%
S2 7.30% 7.41% 12.94%
S3 7.22% 7.29% 12.83%
S4 7.04% 7.24% 12.65%
Ground Truth Context* 7.01% 7.25% 12.28%
full fine-tune w/ S4 7.24% 7.63% 13.50%

Table 4: CNRL result on different training data settings
(S1, S2, S3 and S4) including evaluation result with
ground truth context (*) and full fine-tuning result.

CNRL with S4 produced similar results with a
small margin. This demonstrates that CNRL en-
ables the context encoder to handle noisy contexts
effectively, generating representations close to the
ground truth.

We also experimented with training the full CA-
ASR model, not just the context encoder, using
S4 with corresponding audio for ASR fine-tuning.
Training the full model showed lower performance
gains than CNRL (7.04% vs. 7.24%) and required
much larger training costs. We believe this is be-
cause training all components with noisy data can
disrupt optimization. CNRL allows us to main-
tain ASR performance against noisy contexts while
keeping training efficient.

6 Conclusion

This study introduced Context Noise Representa-
tion Learning (CNRL) to improve context-aware
ASR systems, especially in noisy environments.
By integrating decoder pre-training with dialogue
data, ASR fine-tuning, and CNRL, we signifi-
cantly reduced transcription errors. Our training
pipeline demonstrated significant improvements in
dialogue speech recognition, even in noisy envi-
ronments where speech input is defective. Exper-
iments showed CNRL’s efficacy, reducing Word
Error Rate (WER) by up to 11.1% in clean con-
ditions and 19.1% in noisy settings. By making
the model more robust against noisy context, our
approach consistently outperformed baselines in
various settings.
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Limitations

Due to the scarcity of spoken turn-based dialogue
datasets, we could only validate our method on a
single dataset DSTC11. However validating on the
various test datasets would improve its credibility
if applicable.

Our primary goal is to enhance ASR perfor-
mance. However, these enhancements could be
even more valuable for downstream Dialogue State
Tracking (DST) tasks. Future work could explore
optimizing ASR specifically for DST applications
to further increase the impact and value of our con-
tributions.
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