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Abstract

The advancements in time-efficient data collec-
tion techniques such as active learning (AL)
have become salient for user intent classifica-
tion performance in task-oriented dialog sys-
tems (TODS). In realistic settings, however,
traditional AL techniques often fail to effi-
ciently select targeted in-distribution (IND)
data when encountering newly acquired out-of-
distribution (OOD) user intents in the unlabeled
pool. In this paper, we introduce a novel adap-
tive open-set AL framework viz., “AOSAL” for
TODS that combines a distance-based OOD
detector using an adaptive false positive rate
threshold along with an informativeness mea-
sure (e.g., entropy) to strategically select infor-
mative IND data points in the unlabeled pool.
Specifically, we utilize the adaptive OOD de-
tector to classify and filter out OOD samples
from the unlabeled pool, then prioritize the ac-
quisition of classified IND instances based on
their informativeness scores. To validate our
approach, we conduct experiments that display
our framework’s flexibility and performance
over multiple distance-based approaches and in-
formativeness measures against deep AL base-
lines on benchmark text datasets. The results
show that our AOSAL consistently outperforms
the baselines on IND classification and percent-
age of acquired IND samples, demonstrating its
ability to improve robustness of task-oriented
dialog systems.

1 Introduction

Recent advances in time-efficient data collection
techniques such active learning (AL) (Settles, 2009;
Ren et al., 2021) show the promise of significantly
improving the performance of task-oriented dia-
log system (TODS) for tasks related to user intent
classification (Zhang and Zhang, 2019; Wu et al.,
2024). The time-efficient AL techniques not only
improve the model accuracy of the TODS, but also
help reduce the annotation budget of human anno-

Figure 1: The challenges of traditional AL methods
when encountering OOD instances from newly collected
user intents in the unlabeled pool which includes low
classification score and wasted annotation budget.

tators when querying the most informative samples
that accelerate training performance.

In real-world applications, however, existing
AL methods often struggle to select in-distribution
(IND) data from unlabeled pools containing out-
of-distribution (OOD) user intents, leading to in-
efficiencies in the learning process. Figure 1 il-
lustrates the challenge of employing standard AL
frameworks in a TODS application, where an un-
labeled dataset of collected user intents are noisy
due to instances that are OOD. Typical queries
using e.g., uncertainty (Lewis, 1995) and diversity-
based methods (Nguyen and Smeulders, 2004) are
prone to selecting a high number of OOD instances,
which in turn can waste the annotation budget of
the human annotator. Consequently, this can lead
to low classification performance, and more con-
cretely, incorrect dialog responses if there are insuf-
ficient amount of IND samples selected for training,
as shown in the example scenario in Figure 2.

Previous works have investigated robust AL
frameworks in the context of open-set recogni-
tion (Scheirer et al., 2012). The work in (Yang
et al., 2024) develops a progressive active learn-
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Help me book a table for two at Joe’s 
Diner for 7:00pm.

TODS

Intent Classification (IND) Intent Classification (OOD) Sentiment Analysis (OOD)

Hello! How can I assist you today?

I would like to buy two tickets for the 
Harry Potter movie at 7 pm tonight.

I’ve heard great things about Joe’s 
Diner. I can’t wait to try their food!

User User User

TODS

Sure thing! I have reserved a table 
for two at Joe’s Diner for 7:00 PM. 

You got it! I booked two tickets for 
the Harry Potter movie at 7:00 PM.

TODS

Sure thing! I have reserved a table 
for you at Joe’s Diner.

TODS

Restaurant Booking Domain

Figure 2: Example scenarios of task-oriented dialog systems (TODS) handling user intents in a restaurant booking
domain. TODS can provide incorrect and unwarranted responses when encountering OOD intents.

ing framework that implements an OOD detector
for filtering OOD instances in the unlabeled pool.
Although other works have proposed similar meth-
ods related to open-set active learning (Du et al.,
2021; Park et al., 2022; Ning et al., 2022), these
works are mainly applied in the computer vision
space, and are unsuited for NLP tasks in TODS. In
addition, while AL frameworks in the NLP space
such as CAL (Margatina et al., 2021) and Coun-
terAL (Deng et al., 2023) address OOD generaliza-
tion challenges, they are not practical to open-set
AL where the unlabeled dataset contains a mixture
of IND and OOD samples. Given the emergence
and applicability of TODS in various application
domains e.g., healthcare, banking, there presents
a need to develop robust AL strategies that avoid
OOD instances while also acquiring informative
IND instances that improve model training.

In this paper, we present a novel adaptive open-
set AL framework viz., “AOSAL” for TODS that
combines an adaptive distance-based OOD detector
with informative sampling measures (e.g., uncer-
tainty, diversity) to effectively acquire IND samples
in the unlabeled pool. Our OOD detector features a
normalized score function that classifies unlabeled
samples based on their distance to each class in the
IND labeled space. We enable our OOD detector
to be sensitive to distribution shifts by employing
an adaptive threshold that is controlled by using
a predetermined false positive rate (FPR) over the
OOD detection performance. Based on the prioriti-
zation of classified pseudo-IND samples, we then
leverage sampling measures for selecting the most
informative instances for annotation. In addition,
we demonstrate the flexibility of our AOSAL ap-
proach to multiple distance-based functions (Podol-
skiy et al., 2021; Frogner et al., 2015) and informa-
tive measures (Lewis, 1995).

We perform experiments to validate our AOSAL
framework over four NLP benchmark related to in-
tent classification (Larson et al., 2019; Gangal et al.,

2020), and sentiment analysis (Maas et al., 2011;
Aslam et al., 2020), comparing its performance
against several deep AL baselines that are based on
uncertainty, diversity, and hybrid-based approaches.
Experimental results suggest that our AOSAL ap-
proach consistently outperforms the baselines on
metrics such IND classification accuracy, and per-
centage of acquired IND/OOD samples.

The remainder of the paper is organized as fol-
lows: Section 2 describes related work. In Sec-
tion 3, we detail the AOSAL methodology. In Sec-
tion 4, we detail the experimental setup and provide
the main results against AL baselines. An analysis
to test the robustness of AOSAL is presented in
Section 5. Section 6 discusses the limitations of
our approach, and finally, Section 7 concludes our
work.

2 Related Work

2.1 Active Learning

Recent advancements in active learning have lever-
aged pool-based sampling (Settles, 2009), where an
agent can select and query a large set of instances
to the oracle (i.e., human annotator) from the un-
labeled pool. Common methods on the selection
process, or query strategy, based on how informa-
tive a given sample is, include uncertainty (Lewis,
1995; Settles, 2009) and diversity (Nguyen and
Smeulders, 2004; Sener and Savarese, 2018) meth-
ods. Uncertainty strategies such as Entropy (Settles,
2009) and Least Confidence (Lewis, 1995) aim to
select a set of instances from the unlabeled pool
in cases where the model is least confident in its
prediction. While uncertainty can maintain low
computational complexity, diversity-based meth-
ods such as Coreset (Sener and Savarese, 2018)
and clustering-based methods (Nguyen and Smeul-
ders, 2004) select samples that better represent the
distribution of the unlabeled pool.

The advent of deep learning in AL has en-
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abled batch-mode active learning (Kirsch et al.,
2019), where the sampling of unlabeled instances
in batches are sent to the oracle for labeling. Au-
thors in (Kirsch et al., 2019) extend Bayesian Ac-
tive Learning by Disagreement (BALD) (Houlsby
et al., 2011), by presenting BatchBALD, which alle-
viates the time complexity of calculating the mutual
information between an individual sample and the
model parameters. Batch-model AL has also engen-
dered recent work in hybrid-based approaches (Yin
et al., 2017; Zhdanov, 2019; Ash et al., 2020; Shui
et al., 2020). The work in (Ash et al., 2020) devel-
ops BADGE, a hybrid query strategy that robustly
selects samples by leveraging both the prediction
uncertainty and diverse samples from the halluci-
nated gradient space of the model. Despite such
advancements, these methods often fail to improve
IND classification performance and limit the ora-
cle’s annotation budget when there is a distribution
mismatch between the labeled and the unlabeled
set. Thus, traditional active learning methods are
not feasible for training agents within TODS sys-
tems used in real-world applications.

2.2 Open-Set Active Learning
Previous works have aimed to develop AL meth-
ods in the context of open-set recognition (Scheirer
et al., 2012) that is more suitable for realistic sce-
narios where there presents a distribution mismatch
in the unlabeled pool (Kothawade et al., 2021; Du
et al., 2021; Ning et al., 2022; Park et al., 2022;
Safaei et al., 2024; Yang et al., 2024). The work
in (Du et al., 2021) develops CCAL, which uti-
lizes contrastive learning to extract semantic and
distinctive features in the unlabeled pool. The au-
thors propose an AL error when selecting invalid
(OOD) samples, which are segmented between
valid and invalid query errors. Other works such
as in (Kothawade et al., 2021) develop a unified
AL framework that addresses OOD samples in the
unlabeled pool by utilizing submodular conditional
mutual information that jointly models the similar-
ity between the query set and batch of unlabeled
samples and their dissimilarity between a condi-
tioning set.

More recent work on open-set AL further ad-
dresses distribution mismatches by utilizing OOD
samples for training in the unlabeled pool. For
instance, progressive active learning (PAL) (Yang
et al., 2024) samples both pseudo-IND and pseudo-
OOD samples to simultaneously train the ID clas-
sifier and a proposed OOD detector using a one-

vs-all classifier. Authors in (Park et al., 2022)
demonstrate that balancing between purity (i.e.,
distinguishing between collected IND and OOD
instances), and informativeness (i.e., uncertainty,
diversity) consistently improves the classifier ac-
curacy under various noise (OOD) ratio in the
unlabeled pool. Similarly, other works such as
LfOSA (Ning et al., 2022) and EOAL (Safaei et al.,
2024) leverage both known (IND) and unknown
(OOD) data instances to effectively informative
IND samples while avoid OOD samples during AL
rounds. Despite these advancements, the majority
of methods from existing work in open-set AL are
mainly tailored to the computer vision domain.

Our AOSAL framework for robust TODS is
novel because it: (i) detects OOD instances (e.g.,
user intents) using distance-based approaches cou-
pled with an adaptive threshold to maintain a low
false positive rate in text-based datasets, and (ii) uti-
lizes measures over unlabeled instances classified
as IND for improving IND accuracy on the labeled
set. In addition, we demonstrate that our AL frame-
work can be extended to multiple distance-based
approaches and informative measures.

3 Methodology

In this section, we describe the problem formula-
tion for open-set AL and then detail the overview
and components of our proposed AOSAL frame-
work.

3.1 Problem Formulation

We define a TODS problem for identifying user
intents as a K-class classification task. An IND
labeled dataset DL has an input space X and a
corresponding output label space Y ∈ {1, . . . ,K}
of K IND classes, which are independently and
identically distributed (i.i.d.) from DL. The full
dataset is defined as DL = {(xi, yi)}NL

i=1, where
NL is the length of the initial labeled training set.

We denote an unlabeled dataset as DU for the
purposes of re-training the TODS over newly col-
lected user intents. Formally, the unlabeled dataset
is defined as DU = {(xj)}NU

j=1, where NU is
the length of the unlabeled set. We also denote
NL << NU , highlighting the substantially larger
pool of unlabeled dataset DU compared to DL. In
real-world AL scenarios, there often presents a dis-
tribution mismatch in the unlabeled pool due noisy,
OOD class samples. Thus, we define our problem
to an open-set AL in a pool-based setting, where
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Figure 3: Main Architecture of our AOSAL framework. A pre-trained BERT model encodes samples unlabeled
from the unlabeled pool and classifies them using the OOD detector. Classified IND samples are queried using an
informative measure and fed to the annotator for updating the labeled set and updating the FPR-controlled threshold.

the unlabeled pool contains a both IND and OOD
input samples (i.e., DU = X IND ∪ XOOD) with
a label space YIND and YOOD, respectively, and
YIND ∩ YOOD = ∅. In simple terms, a sample
xj ∈ DU may belong to an IND or OOD class in
the unlabeled dataset.

Within the AL loop, an AL strategy queries a
batch of samples of size b from DU to form into a
query set Q, which can consist a mixture of IND
and OOD samples (i.e., Q = DIND

U ∪ DOOD
U ).

This query set is then fed to the human annotator
(i.e., oracle) for labeling and updating the initial
training set DL.

3.2 Adaptive Open-Set Active Learning

We present our novel adaptive open-set AL
(AOSAL) framework that couples an adaptive
distance-based OOD detector with informativeness
measures for efficiently managing OOD instances
in the unlabeled pool. We display the main ar-
chitecture of our AOSAL approach in Figure 3.
Unlike previous AL frameworks for NLP (Mar-
gatina et al., 2021; Deng et al., 2023), we utilize
the unlabeled OOD instances that are queried to the
oracle for annotation to improve our distance-based
OOD detector with an adaptive threshold controlled
by a pre-defined false positive rate (FPR). In the
following, we formalize the main components of
AOSAL and detail the full sampling procedure in
the AOSAL cycle.

3.2.1 Distance-based OOD Detector
To address the challenge of efficiently utilizing an-
notation resources in AL contexts, we have de-
veloped a distance-based OOD detector. This de-
tector classifies an unlabeled sample xj as either
in-distribution (IND) or out-of-distribution (OOD)
based on an adaptive threshold. The classification

decision is made according to the following rule:

Classify(xj) =

{
accept, if S(xj) ≤ λ,

reject, if S(xj) > λ
(1)

where, λ is the threshold in the range [0, 1] and
xj denotes the j-th unlabeled sample in DU . The
threshold separates IND samples, which score at
or below the threshold, from OOD samples, which
score above it. The scoring function S(xj) is de-
signed to measure the proximity of xj to the nearest
class in the labeled dataset DL.

The scoring function S(xj) is conceptualized
to enhance the selection of IND samples from the
unlabeled dataset DU by calculating the minimal
distances between xj and each class represented in
DL. It is defined as:

S(xj) = min
k∈K

d(xj , µxk
), (2)

where, µxk
represents the mean feature vector

of class k from the set of classes K in DL. This
approach ensures that the scoring function remains
adaptable across various distance metrics, each po-
tentially having different mathematical properties
and score ranges.

To facilitate uniformity in classification regard-
less of the absolute scale of distance values, we
normalize the scores to a [0, 1] range:

S(xj) =
S(xj)

maxxj∈DU
(S(xj))

. (3)

This normalization not only standardizes the
score across various distance metrics but also aligns
with the thresholding approach to identify between
IND and OOD samples. In our experiments, we
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utilize the Mahalanobis distance (Podolskiy et al.,
2021) and Wasserstein distance (Frogner et al.,
2015) to compute S(xj), which are chosen for their
robustness in capturing the geometric nuances of
data distributions. The specific formulas and their
application are detailed further in the Appendix
A.1, ensuring a comprehensive exposition of our
distance-based OOD detection methodology.

3.2.2 Adaptive Threshold
Classifying OOD instances using a constant thresh-
old value creates significant challenges in main-
taining high OOD accuracy in real-world settings.
This is particularly evident in newly collected unla-
beled data in TODS applications, where IND and
potential OOD samples can cause a distribution
shift. Consequently, this can lead to high false pos-
itives (i.e., detecting OOD samples as IND) and
ultimately negatively impact the annotation budget
as more OOD samples are naturally acquired.

To address this, we implement an adaptive
threshold mechanism controlled by a pre-defined
false positive rate (FPR), which is essential for
maintaining classification integrity under varying
data conditions. The FPR is defined as the ratio
of IND instances mistakenly classified as OOD to
the total number of true negative instances. It is
calculated as:

FPR =
FP

FP + TN
(4)

where, FP is the number of false positives, (i.e.,
IND samples incorrectly classified as OOD), and
TN is the number of true negatives, IND (i.e., sam-
ples correctly classified as IND).

To maintain system accuracy and adapt to new
data, the adaptive threshold λ is adjusted based on
the FPR, which is calculated as:

λ = FPR(Dval, α) (5)

where, Dval the validation set with a mixture of la-
beled IND and OOD samples (i.e.,Dval = DIND

L ∪
DOOD

L ), and α is the predetermined FPR rate. The
benefit of ensuring an adaptive threshold is consis-
tent with the pre-defined FPR that mitigates the
risk of the OOD detector from producing high
false positives on the unlabeled dataset during AL
acquisition. Furthermore, λ is dynamically cali-
brated to ensure that the proportion of false posi-
tives does not exceed α. This dynamic adjustment
is conducted through a meticulous analysis of the

model’s scoring outputs on each validation sample
xval ∈ Dval. The threshold λ is then set such that:

α =
|{xval ∈ DL : S(xval) > λ and yval = 0}|

|{xval ∈ DL : yval = 0}|
(6)

where, S(xval) is the score function applied to each
validation sample, and yval indicates the sample’s
label, with a label of 0 signifying an IND sample.

The validation set plays a crucial role in accu-
rately updating the adaptive threshold for effective
OOD detection in TODS. The informativeness met-
ric derived from calculating uncertainty or diver-
sity on the validation set is utilized to fine-tune the
model and threshold. Furthermore, the validation
set is continuously updated with newly annotated
OOD samples, ensuring that the OOD detector re-
mains up-to-date and capable of handling evolving
data patterns. This mechanism enhances the ro-
bustness and reliability of TODS, enabling them
to maintain high accuracy in OOD detection under
varying situations and adapt to dynamic data shifts.

3.3 AOSAL Sampling Procedure

The overall AL sampling process for our proposed
AOSAL framework is shown in Algorithm 1. We
start by training a deep learning model Mθ onDL at
the initial iteration t = 0 to obtain Mθt . During the
validation, we leverage our distance-based OOD
detector that computes a score from Equation 3
over samples on the validation set. The normalized
scores from the OOD detector are then used to set
the initial threshold λt based on a pre-defined FPR
α over the validation set Dval.

Within our AL loop, we extract the features for
each unlabeled sample in DU computed by Mθt

as input to our OOD detector using a normalized
distance-based function from Equation 3 that com-
putes the distance based scores for classification.
After classifying the samples based on Equation 1,
we ignore the classified OOD samples and focus
on acquiring IND samples using informative mea-
sures (e.g., uncertainty, diversity). Following this,
human annotators refine these classifications, and
the resulting samples consisting of both IND and
potential OOD are updated in either the IND train
set or the OOD validation set.

The iteration of the model is updated at t = t+1,
and the threshold is adjusted using the OOD detec-
tor with a controlled false positive rate (FPR) at α.
This process is repeated until the annotation budget
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Algorithm 1 Adaptive Open-Set Active Learning
with Distance-Based OOD Detection
Require: Labeled IND dataset DIND

L , labeled
OOD dataset DOOD

L , unlabeled pool DU , val-
idation set Dval, model Mθ, encoder function
Φ, acquisition size b, labeling budget B, total
query set Q, threshold function FPR, infor-
mativeness measure U , current iteration t.

1: Train Mθt=0 on DIND
L for multi-classification

2: λt=0 ← FPR(Dval, α) ▷ Set initial threshold
(Eq. 5)

3: while |Q| < B do
4: for each xj in DU do
5: µxk

← Φ(xk), k = {1, ...,K}
6: sxj ← S(Φ(xj), µxk

) ▷ From Eq. 3
7: if sxj ≤ λ then ▷ IND label
8: A← {(xIND

j , ŷIND
j )}

9: end if
10: end for
11: for each xj in A do
12: Q← argmax

xj∈U
U(xj), |Q| = b ▷ Select

b instances with highest informative scores.
13: end for
14: DIND

L ← DIND
L ∪ {QIND \DU} ▷

Update train set with acquired IND samples
15: DOOD

val ← DOOD
val ∪{QOOD\DU} ▷ Update

validation set with acquired OOD samples
16: Train the model Mθt+1 on DIND

L

17: Update λ using Eq. 5 on updated Dval
18: t← t+ 1
19: end while
20: return Mθt , λt ▷ Return updated model and

threshold

B is exhausted, ensuring continuous refinement of
the model’s performance and the threshold.

4 Experiments and Results

In this section, we provide our experimental setup
for open-set AL on benchmark NLP datasets and
provide the main results of our AOSAL approach
against baseline AL datasets.

4.1 Datasets

We validated our AOSAL framework over NLP
datasets related to topic classification and senti-
ment analysis. These datasets are integral for vali-
dating the model’s efficacy in handling both IND
and OOD samples within varied textual contexts.
For topic classification, we test over the CLINC-

Full (Larson et al., 2019) dataset with 150 classes
and Real Out-of-distribution Sentences From Task-
Oriented Dialog (ROSTD) (Gangal et al., 2020)
dataset with 12 classes, which both include OOD
samples. For sentiment analysis, we utilize the
Stanford Sentiment Treebank (SST)-2 (Aslam et al.,
2020) dataset with only 2 classes each for the posi-
tive and negative sentiments. In our experiments,
we set one dataset to the IND class and the other
dataset to the OOD class. For instances where
CLINC-Full and ROSTD are assigned to the IND
class, we join the remaining OOD samples along
with the assigned OOD dataset. We provide the full
dataset description and partitions in Appendix A.2.

4.2 Baselines and Implementation Details
We compare our approach against five AL baselines
that include state-of-the-art approaches for differ-
ent query strategies. Specifically, we test an uncer-
tainty sampling method, namely Entropy (Joshi
et al., 2009), for which samples with the lowest
confidence in the model’s predictive probability
are selected. For diversity sampling, we test our
approach against BERT−KM from the works
of (Yuan et al., 2020), where they performs k-
means clustering over the L2-normalized BERT
embeddings to select diverse samples in the un-
labeled feature space. For hybrid sampling, we
compare our approach against BADGE (Ash et al.,
2020), which is known to be an AL state-of-the-art
method. In addition to state-of-the-art AL meth-
ods, we include CAL (Margatina et al., 2021) that
selects “contrastive” unlabeled samples based on
their feature similarity and divergent predictive
probability. Lastly, we include Random sampling
as a baseline for randomly acquiring instances in
the unlabeled pool.

We implement our approach using a pre-trained
BERT model (Devlin et al., 2019) from the Hug-
gingFace library 1 as the backbone model for each
approach in our experiments. While we opted to
use BERT due to its reliable performance on nat-
ural language understanding tasks, our AOSAL
framework can be extended to multiple model ar-
chitectures for intent classification (Liu et al., 2019;
Lan et al., 2019; He et al., 2021).

For each dataset, we use 10% of the train set as
our initial labeled setDL and use 10% of OOD sam-
ples and label them in the validation set for OOD
detection. In addition, we set the noise ratio (i.e.,

1HuggingFace BERT model available at: https://
huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
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percentage of OOD samples in the unlabeled pool)
to 30%. This noise ratio presents a realistic consid-
eration of the amount of noise that can be present
in the unlabeled pool. During each AL iteration,
we fine-tune DL with newly acquired IND samples
from the unlabeled pool DU . We set the oracle
labeling budget B to 25% percent of DU for a total
number of 5 AL rounds. We pre-trained the base
model over 5 epochs on CLINC-Full for training.
We run experiments for each AL method 5 times
over each dataset and report the average IND accu-
racy and the percentage of IND/OOD samples in
the acquisition size |Q| for each AL iteration. We
provide additional detail on the model implementa-
tion using BERT and relevant hyperparameters in
Appendix A.3.

4.3 Main Results
The main results over the CLINC-Full (IND) and
the SST-2 (OOD) dataset are shown in Figure 4.
Figures 4a and 4b show the average test accuracy
(90.1% (±0.01)) and the average acquired IND
(661.38 (±6.66)) of our AOSAL approach across
all AL iterations compared to the baselines, re-
spectively. When averaging across all AL budgets,
our approach shows significant improvement in ac-
quiring IND samples compared to Entropy (57.82
(±6.11)). The relatively low test accuracy perfor-
mance for uncertainty methods such as Entropy
(87.3% (±0.004)) may be the result of selecting in-
stances in the unlabeled pool that are least confident
in its prediction, which causes Entropy to acquire
more OOD instances, thus wasting the annotation
budget.

In the scope of diversity- and hybrid-based meth-
ods, AOSAL shows comparable test accuracy per-
formance to BADGE (90% (±0.00)) and BERT-
KM (91.1% (±0.01)). While our AOSAL ap-
proach significantly shows higher acquired IND
compared to BADGE (388.40 (±3.94)) and BERT-
KM (462.96 (±8.62)), the high test accuracy re-
sults may indicate the benefit of acquiring a diverse
set of samples in the unlabeled pool for improv-
ing model performance. In addition, CAL shows
surprisingly low performance in both IND test ac-
curacy (87.8% (±0.01)) and average acquired IND
(76.56 (±10.65)) when handling OOD instances
from the SST-2 dataset.

Furthermore, AOSAL shows comparable results
in acquired IND to Random sampling (676.71
(±2.32)) and an improvement in IND test accu-
racy performance (89.8% (±0.01)). Since Random

AL sampling follows a uniform distribution, it out-
performs all baseline approaches when the amount
of OOD instances in the unlabeled pool is consid-
erably low (i.e., noise ratio at 30%). Despite this,
the acquired IND performance does not always
translate to high IND test accuracy, as indicated
in Figure 4a (89.8% (±0.01)). This is because the
samples acquired may not always be informative
in terms of uncertainty and diversity for effectively
improving model performance.

Similar results on the consistency of AOSAL
are shown in Figure 5. AOSAL shows compara-
ble average performance to the baselines across all
AL iterations in terms of IND test accuracy (91.2%
(±0.01)) in Figure 5a and acquired IND (681.20
(±4.90)) in Figure 5b. Compared to the base-
lines such as Entropy (470.13 (±61.09)), Random
(678.52 (±2.28)), and CAL (426.217 (±35.91)),
our AOSAL approach shows a higher amount of
acquired IND averaged across all AL iterations.
This in turn translates to comparable or higher ac-
curacy on the IND test set. While the IND test
accuracy results are comparable to other baselines
such as BADGE (91.8% (±0.01)) and BERT-KM
(91.8% (±0.00)), our AOSAL approach maintains
a comparable accuracy as well as average acquired
IND performance to BADGE (662.683 (±10.31))
and BERT-KM (702.122 (±4.98)) when encoun-
tering a variety of OOD instances in the unlabeled
pool.

5 Analysis

5.1 Ablation Study

We conduct an ablation study to check the AOSAL
framework under varying budgets, analyzing how
different distance metrics and OOD detection can
influence IND accuracy. We compare six configura-
tions of our framework, including AOSAL-CONST,
which uses a constant threshold, and others such as
AOSAL-NO-OOD, AOSAL-MAH-DIV, AOSAL-
WAS-DIV, AOSAL-MAH-UNC, and AOSAL-
WAS-UNC that use an adaptive FPR threshold,
but differ in their application of Mahalanobis or
Wasserstein distances and the incorporation of un-
certainty and diversity metrics. To ensure fair and
meaningful comparisons across all experimental
settings, we utilize CLINC-Full as the IND data
and SST-2 as the OOD data, with a fixed false
positive rate (FPR) of 95%. This standardization
helps maintain consistent experimental conditions
throughout the study. Figure 6 shows that the con-
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(a) CLINC (IND) and SST-2 (OOD) on IND test accuracy. (b) CLINC (IND) and SST-2 (OOD) on acquired IND.

Figure 4: Test accuracy results and averaged acquired IND on the each AL method over the CLINC-Full (IND) and
SST-2 (OOD) dataset. Each method was ran 5 times with different seeds and the average accuracies were reported.

(a) CLINC (IND) and ROSTD (OOD) IND test accuracy. (b) CLINC (IND) and ROSTD (OOD) on acquired IND.

Figure 5: Test accuracy results and averaged acquired IND on the each AL method over the CLINC-Full (IND) and
ROSTD (OOD) dataset. Each method was ran 5 times with different seeds and the average accuracies were reported.

figurations lacking OOD detection i.e., AOSAL-
NO-OOD demonstrates a significant drop in the
model’s performance, highlighting the crucial role
of effective OOD detection mechanisms in enhanc-
ing the overall accuracy of the system. This anal-
ysis confirms the robustness and versatility of our
AOSAL framework in adapting to different oper-
ational constraints and validates the utility of ad-
vanced distance measures for OOD detection in the
AL environment.

5.2 Threshold Analysis

We conducted a detailed threshold analysis to eval-
uate the impact of various FPR thresholds on IND
accuracy. Our study systematically explored the
performance implications of different FPR levels
including 90%, 95%, and 97% across multiple
datasets. The dataset configurations, detailed in
Table 1, included CLINC-Full as the IND dataset
paired with ROSTD and SST-2 as OOD datasets.
These combinations were selected to rigorously

Figure 6: Ablation study on the IND test accuracy over
the CLINC-Full (IND) and SST-2 (OOD) dataset using
different AOSAL variants.

evaluate the robustness of our AOSAL approach
across diverse scenarios. The results clearly indi-
cate that the IND accuracy is sensitive to the FPR
threshold set. For the CLINC-Full and ROSTD
dataset configuration, the IND accuracy peaks at a
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IND ACC (%)

FPR (%) CLINC (IND)
ROSTD (OOD)

CLINC (IND)
SST-2 (OOD)

90 95.71 (±0.00) 95.28 (±0.01)
95 95.93 (±0.01) 96.14 (±0.01)
97 96.15 (±0.00) 95.31 (±0.00)

Table 1: IND accuracy at different FPR thresholds for
CLINC-Full (IND), ROSTD (OOD), and SST-2 (OOD).

97% FPR setting, suggesting a balanced threshold
that avoids excessive false positives while main-
taining a high detection rate of in-domain samples.
Conversely, tightening the FPR to 95% shows a
slight dip in accuracy, which could imply an over-
restriction misses some IND instances. A similar
trend is observed in the CLINC-Full and SST-2
dataset configuration, reinforcing the importance of
carefully calibrating the FPR threshold according
to specific dataset characteristics and operational
requirements. This analysis underscores the sig-
nificance of the AOSAL’s adaptability to different
operational scenarios. By systematically evaluating
various FPR thresholds, we can identify the optimal
setting that balances the trade-off between main-
taining high in-domain accuracy and minimizing
false positives.

6 Limitations

Sensitivity to Hyperparameters. One of the key
challenges of our AOSAL framework is its de-
pendence on hyperparameter settings. The choice
of hyperparameters such as adaptive threshold
for FPR and informative parameters is critical for
achieving maximal learning efficiency. However,
reaching this balance is by nature difficult since
this directly affects the framework’s performance
in correctly distinguishing OOD samples. Getting
the wrong values for hyperparameters leads to
either underconfidence or overconfidence in
OOD instances and hence the model’s overall
performance. Future works can be directed
towards implementing more intelligent adaptive
hyper-parameter tuning methods that are sensitive
to changes in the data environment.

Model Performance with Sparse Data. Another
critical limitation arises when there is a lack of
data availability. With few input data points, our
framework cannot generate and calibrate the right
distance metrics for OOD detection. This can

hinder the accurate classification and enhancement
of OOD detection, especially in the initial stages
of training the model. There are potential ways to
tackle these challenges, such as improving data
augmentation methods and the use of synthetic
data generation to help improve the model’s
performance despite starting with minimal initial
data.

Scalability in Human-in-the-loop Setting. While
oracles enable AI models of TODS to train more
efficiently with fewer samples via annotations, this
process is not always scalable for annotators. This
challenge in a human-in-the-loop setting is partic-
ularly evident when oracles provide a significant
number of annotations for OOD samples within
each AL round due to large unlabeled pools. Al-
ternatively, previous works have created modeling
approaches in other domains such as computer vi-
sion (Ning et al., 2022; Yang et al., 2024; Safaei
et al., 2024) that train over both IND/OOD samples
and AL sampling techniques for automatically ex-
tracting OOD samples in the unlabeled pool. Con-
sequently, this effectively reduces the number of
annotations the oracle provides.

7 Conclusion

In this paper, we presented AOSAL which is an
AL framework that aims to improve the efficiency
and effectiveness of TODS. AOSAL combines a
distance-based OOD technique with an adaptive
FPR threshold and an informativeness measure
based on uncertainty and diversity. This integra-
tion enables AOSAL to improve the classification
of IND and OOD samples and thus focuses pri-
marily on the most useful IND examples from an
unlabeled data pool for training. The experimental
analysis we have conducted shows that AOSAL is
highly effective for dealing with complex datasets
in comparison to traditional active learning tech-
niques. These real-world applications have demon-
strated the practical usefulness and effectiveness
of the framework in enhancing not only the robust-
ness but also the accuracy of intent classification in
TODS by the AOSAL framework’s ability to selec-
tively acquire high-value IND training samples.

In future work, one can investigate advanced
data augmentation and synthetic data approaches
to facilitate training in data-deficient scenarios and
design adaptive hyperparameter optimization of the
system’s responsiveness to data variability.
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A Appendix

A.1 Generalization of Distance-based OOD
Detection Method

As introduced in Section 3.2.1, the distance score
function S(xj) is designed to be adaptable to
various distance metrics, accommodating different
mathematical properties and score ranges. Specif-
ically, for a K-class classification problem, we
maximize the selection of IND samples from DU

by computing the minimum distance between an
unlabeled sample xj and each class in the labeled
dataset DL. Herein, we demonstrate applicability
of our generalized distance-based OOD detector to
the Mahalanobis distance (Podolskiy et al., 2021)
and Wasserstein distance (Frogner et al., 2015).

Mahalanobis Distance. We utilize the Maha-
lanobis distance has shown to be useful for classi-
fying detecting OOD instances without the reliance
accessing OOD instances for training (Podolskiy
et al., 2021). This distance method is a way to de-
termine the closeness of an data sample to a set of
data samples that belongs to a class k.

Given an unlabeled sample xj from DU , the Ma-
halanobis distance can be calculated as:

d(xj) = min
k∈K

(Φ(xj)− µxk
)⊤Σ−1(Φ(xj)− µxk

),

(7)

where Φ(xj) is the embedding of the unlabeled
sample xj , µxk

is the mean of the multivariate
Gaussian distribution of class k ∈ {1, ...,K}, and
Σ represents the covariance matrix. The calcula-
tions of µk and Σ are computed as:

µxk
=

1

Nk

∑
k

Φ(x), (8)

Σ =
1

NL

∑
k

∑
i∈k

(Φ(xi)− µxk
)(Φ(xi)− µxk

)⊤,

(9)

where Nk is the number of training samples the
class k and NL is the total number of training
samples in the labeled set. While the range of
distances of the Mahalanobis distance is [0, ∞],
we transform the ranges Equation 7 to [0, 1] using
Equation 3.

Wasserstein Distance. Similarly, the Wasserstein
distance calculates the minimal cost of transporting

mass from the distribution of xj to that of each
class distribution k where the cost is defined by the
ground distance between the distributions (Frogner
et al., 2015). Given an unlabeled sample xj from
DU , the Wasserstein distance can be calculated as:

S(xj) = argmin
k∈K

W (Φ(xj), µxk
) (10)

W (Φ(xj), µk) = inf
γ∈Γ(PΦ(xj)

,Pµxk
)

(11)∫
∥Φ(xj)− µk∥2 dγ(Φ(xj), µxk

)

Here, Φ(xj) is the feature vector of xj , PΦ(xj)

and Pµk
represent the empirical distributions of

xj and class k, respectively, and Γ(PΦ(xj), Pµk
)

contains all feasible joint distributions γ where
the marginals are Pϕ(xj) and Pµk

. Waterstein dis-
tances have a non-negative range [0,∞], where 0
represents perfect similarity between distributions.
These distances can be normalized to the range [0,
1], using a transformation similar to Equation 3.

A.2 Dataset Details
In this section, we provide the dataset statistics of
each NLP benchmark dataset shown in Table 2.
In the following, we provide a brief description
for each of the dataset as it related to intent
classification.

CLINC-Full. The CLINC-Full dataset was
introduced by (Larson et al., 2019) which is
designed for intent classification across multiple
domains such as banking, home, travel, and
business. It contains a total of 23,700 queries, out
of which 22,500 are in-distribution (IND) queries
spanning 150 classes for intent classification tasks,
and 1,200 are out-of-distribution (OOD) samples
for out-of-scope prediction. This dataset is crucial
for assessing the model’s capability to classify
complex, real-world user intents and includes
numerous OOD scenarios to evaluate robustness in
model performance.

ROSTD. The Real Out-of-domain Sentences
From Task-Oriented Dialog (ROSTD) dataset,
proposed by (Gangal et al., 2020), is designed for
training and evaluating intent classification models
in task-oriented dialog systems with a focus on
out-of-distribution robustness. It contains 34,059
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Statistic CLINC-Full ROSTD SST-2
Train 16950 25218 54577
Valid 2700 3537 6822
Test 4050 5304 6822
OOD
samples

1200 4590 0

% of OOD samples
in unlabeled pool

7.87% 20.22% 0%

IND
classes

150 12 2

Table 2: Dataset statistics for CLINC-Full, ROSTD and SST-2.

queries across 12 classes, including in-distribution
queries and an additional 4,590 out-of-distribution
samples curated with human annotations. The
dataset aims to facilitate the development of
more robust dialog systems capable of handling
out-of-distribution utterances effectively.

SST-2. The Stanford Sentiment Treebank (SST-
2) (Aslam et al., 2020) is another well-established
benchmark for sentiment analysis, particularly for
tasks that involve considering sentence structure
and sentiment polarity. It consists of 67,314 sen-
tences for training, 855 for validation, and 1,821
for testing, all derived from movie review sentences
on Rotten Tomatoes. Each sentence is labeled as
positive, negative, or neutral.

A.3 Model Implementation &
Hyperparameters

In this section, we provide details of the model im-
plementation and hyperparameters used in our ex-
periments. We use a pre-trained BERT model (De-
vlin et al., 2019) from the HuggingFace li-
brary (Wolf et al., 2020) and integrated it in our
Python environment using PyTorch 2.0 and Py-
Torch Lightning. We train BERT using a batch size
of 32, learning rate of 5e−5, AdamW optimizer ep-
silon 1e−6 and weight decay of 0.001, and embed-
ding dimension of 768. For all datasets, we used a
maximum sequence length of 256. We pre-trained
the base model over 5 epochs on CLINC-Full and
1 epoch on ROSTD and SST-2. In the AL cycle,
we use the newly acquired samples from DU to
fine-tune BERT over the updated labeled set DL.
We ensure fair comparison among each AL method
by evaluating them 5 times using a different ran-
dom seed. Each experiment is run on an Nvidia
A100 80GB GPU. We use the open source materi-

als from (Huang, 2021; Ash et al., 2020; Margatina
et al., 2021) to implement the baseline AL meth-
ods from their respective source code repository on
GitHub.
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