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Abstract

State-of-the-art task-oriented dialogue systems
typically rely on task-specific ontologies for
fulfilling user queries. The majority of task-
oriented dialogue data, such as customer ser-
vice recordings, comes without ontology and
annotation. Such ontologies are normally
built manually, limiting the application of spe-
cialised systems. Dialogue ontology construc-
tion is an approach for automating that process
and typically consists of two steps: term ex-
traction and relation extraction. In this work,
we focus on relation extraction in a transfer
learning set-up. To improve the generalisation,
we propose an extension to the decoding mech-
anism of large language models. We adapt
Chain-of-Thought (CoT) decoding, recently de-
veloped for reasoning problems, to generative
relation extraction. Here, we generate multi-
ple branches in the decoding space and select
the relations based on a confidence threshold.
By constraining the decoding to ontology terms
and relations, we aim to decrease the risk of hal-
lucination. We conduct extensive experimenta-
tion on two widely used datasets and find im-
provements in performance on target ontology
for source fine-tuned and one-shot prompted
large language models.1

1 Introduction

State-of-the-art task-oriented dialogue (TOD) sys-
tems still rely on a fixed ontology to model their
scope (Nguyen et al., 2023; Hudeček and Dusek,
2023). A TOD ontology comprises three levels of
hierarchy: domains, slots and values. Domains
are general topics of interest, slots are types of in-
formation about entities in a domain, and values
are concrete instantiations of slots. Ontology thus
forms a hierarchy: it is a directed graph where slots
belong to domains and values in turn belong to
slots. Note that slots can be shared across domains,

1The code is avaibable under https://gitlab.cs.uni-duesseldorf.d
e/general/dsml/dialogue-ontology-relation-extraction-via-con
strained-chain-of-thought-decoding

and so can values. An ontology is typically a pre-
requisite for generating API calls that access the
underlying databases for entity retrieval. Further,
the ontology defines the dialogue state, which is
tracked by the system to determine the next actions
given the evolving discourse.

The dependency on an ontology poses a signif-
icant challenge in transferring existing TOD sys-
tems to new domains and use cases. Although
ontology-agnostic approaches do exist, their trans-
fer capabilities are limited and their performance
remains sub-par on novel data (Heck et al., 2022).

Large quantities of domain-specific TOD data,
e.g. customer service recordings, are frequently
available, but tend to come without annotation,
rendering direct use for system development diffi-
cult (Brusco and Gravano, 2023). Manual labelling
is error-prone, does not scale well and quickly be-
comes prohibitively expensive (Eric et al., 2020;
Rosenbaum et al., 2022; Gung et al., 2023). De-
spite topical or domain mismatch, existing anno-
tated datasets may provide information about TOD
that can be leveraged to harness new data. For this
reason, we are interested in utilising existing la-
belled TOD datasets to automatically generate a
full ontology for new, yet-unlabelled, data.

Automatic dialogue ontology construction typ-
ically consists of two steps, dialogue term extrac-
tion (Vukovic et al., 2022) and hierarchy establish-
ment. Although hierarchy establishment is often
done via clustering (Hudeček et al., 2021; Yu et al.,
2022) we approach it via relation extraction (RE),
which is more similar to common information ex-
traction pipelines (Genest et al., 2022; Xu et al.,
2023). We call this task dialogue ontology relation
extraction (DORE). A hierarchy is established by
inferring in which level extracted terms lie, and by
connecting terms across levels.

Although large language models (LLMs) have
demonstrated considerable task transfer abili-
ties (Brown et al., 2020; Ouyang et al., 2022),

https://gitlab.cs.uni-duesseldorf.de/general/dsml/dialogue-ontology-relation-extraction-via-constrained-chain-of-thought-decoding
https://gitlab.cs.uni-duesseldorf.de/general/dsml/dialogue-ontology-relation-extraction-via-constrained-chain-of-thought-decoding
https://gitlab.cs.uni-duesseldorf.de/general/dsml/dialogue-ontology-relation-extraction-via-constrained-chain-of-thought-decoding
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Dialogue Input:
"user": "am looking for a place to to stay that has cheap price 
range it should be in a type of hotel" 
"system": "okay , do you have a specific area you want to stay in 
?" 
"user": "no , i just need to make sure it ' s cheap . oh , and i
need parking" 
"system": "i found 1 cheap hotel for you that includes parking . 
do you like me to book it ?" 
"user": "yes , please . 6 people 3 nights starting on tuesday ." 
"system": "i am sorry but i wasn ' t able to book that for you for 
tuesday . is there another day you would like to stay or perhaps 
a shorter stay ?" 
"user": "how about only 2 nights ." 
"system": "booking was successful . reference number is : 
7gawk763 . anything else i can do for you ?" 
"user": "no , that will be all . good bye .”
"system": "thank you for using our services ."

Prompt: For the listed terms in the dialogue predict
the “has value” relation between slots and values in 
the format [slot, has value, value].

LLM Output:
Branch 0: 
[hotel, has value, price range]
...

Branch 1: 
Here are the relations between slots and values: 
[price range, has value, cheap]
...

Branch 2: 
[system, is serving, user] constrain to given terms
and relations à [nights, has value, 3]
...

low confidence high confidence

Prompt LLM

Generate completions
for top-! most likely
first tokens of the
generation

Figure 1: Example of constrained CoT-decoding for dialogue ontology extraction for a dialogue from MultiWOZ
2.1 (Eric et al., 2020). Domains are highlighted in green, slots in yellow and values in red. Branch 0 predicts an
incorrect relation (hotel misclassified as slot) with lower confidence. Branch 1 has the highest confidence in the
relation prediction, which is why it is selected as the final response. Also, it contains a form of reasoning that
stresses the type of terms that are part of the relations to be predicted, i.e., slots and values. Branch 2 visualises
constrained decoding, where the prediction of terms and relations is not possible if they are not present in the input.

they still lack behind specialised systems in TOD
modelling when appropriate training data is avail-
able (Heck et al., 2023; Hudeček and Dusek, 2023).

In this work, we assume that some labelled out-
of-domain source dialogue data is available to fa-
cilitate transfer learning. We examine two strate-
gies of providing source data to an instruction-
tuned LLM; 1) as one-shot examples in the prompt,
and 2) as data for an additional round of super-
vised fine-tuning. We establish a challenging trans-
fer setup by conducting experiments on two well-
established medium to large scale multi-domain
task-oriented dialogue benchmark datasets: Mul-
tiWOZ 2.1 (Budzianowski et al., 2018; Eric et al.,
2020) and the Schema-Guided Dialogue (SGD;
Rastogi et al., 2020) dataset. Since our focus is
solely on DORE, we assume that the results of the
first step of ontology construction, namely term
extraction, are provided.

We propose to improve the decoding mechanism
of an LLM in order to better leverage task-specific
knowledge. Concretely, we constrain the genera-
tion to terms and relation types given in the model
input to force the model to consider terms from the
target data and output the desired format. We fur-
ther adapt chain-of-thought (CoT) decoding (Wang
and Zhou, 2024), which was recently proposed for
logical reasoning, for DORE. Traditionally, CoT
methods prompt or train the model to generate rea-
soning paths before giving the final answer (Wei

et al., 2022; Kim et al., 2023). CoT-decoding on
the other hand exploits the observation that the
presence of CoT-paths is correlated with higher
confidence in the predicted answer in logical rea-
soning. We extend CoT-decoding to DORE by
selecting the final answer based on the confidence
of predicted relations in multiple generated model
answer branches. Our final proposal, constrained
CoT-decoding for dialogue ontology extraction, is
the combination of our CoT-decoding approach to
RE with constrained decoding, see Fig. 1. Empiri-
cally, this new decoding mechanism significantly
outperforms both source one-shot and source fine-
tuned baselines on the target data. Our contribu-
tions are as follows:

• We propose to induce an ontological hierarchy
by accumulating ontology relation predictions
from the dialogues in a TOD dataset.

• To the best of our knowledge, we are the first
to apply CoT-decoding to dialogue ontology
relation extraction.

• We develop an extension, called constrained
CoT-decoding, for multi-relation extraction
from task-oriented dialogues.

• Constrained CoT-decoding significantly im-
proves the quality of relation predictions on
the target dataset for both source one-shot and
source fine-tuned baselines.
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2 Related Work

Dialogue Ontology Construction We divide di-
alogue ontology construction into term extraction
and relation extraction. Vukovic et al. (2022) im-
prove out-of-domain generalisation of a dialogue
term extraction model by making use of topological
properties of the language model embedding space.
Nguyen et al. (2023) improve phrasal segmenta-
tion of ontology terms via language model probing
and contrastive learning. Since we evaluate the
hierarchy on a global level based on relations, our
approach is not directly comparable to clustering-
based approaches such as Hudeček et al. (2021); Yu
et al. (2022). In contrast to these methods, we view
hierarchy establishment in isolation as a relation
extraction task.

Yu et al. (2020) present DialogRE, a popular
dataset for RE in short chit-chat dialogues. Closest
to our approach, Albalak et al. (2022) jointly op-
timise RE and explanation generation to improve
performance with a model-agnostic framework. Xu
and Chen (2023) propose a zero-shot approach for
extracting trigger words for dialogue relation ex-
traction on DialogRE. However, these works focus
on chit-chat dialogues, which do not include ontol-
ogy relations.

Relation Extraction with LLMs LLMs
show promising transfer capabilities out of the
box (Laskar et al., 2023). Direct application to our
task however is not promising, as it has been shown
that aligned LLMs such as ChatGPT (OpenAI,
2022) do not perform well on extracting multiple
relations at once (Lilong et al., 2024). This
shortcoming has been linked to the influence
of pre-training data distribution on downstream
task performance (McCoy et al., 2023). RE
data in particular amounts to a mere 0.5% of
instruction-tuning datasets, and is hardly utilised
for model selection (Wang et al., 2022; Zhang
et al., 2023).

Traditionally, RE is performed in a pairwise man-
ner (Zhang et al., 2023), resulting in quadratic com-
plexity given the number of terms. This becomes
intractable for generative LLMs when querying
the LLM separately for each pair of terms. Alter-
natively, one may extract all relations present in a
given input with a single LLM query, as is common
in multi-relation extraction tasks such as document-
level RE. For example, Lilong et al. (2024) extract
relations by either predicting relations directly, or
first predicting possible head entities in a docu-

ment. Zhang et al. (2023) align LLMs for zero-
shot RE by transforming RE into a question an-
swering (QA) task, which is more frequent in the
instruction-tuning data.

Constrained Decoding Constrained decoding
limits the tokens that can be generated. It is typi-
cally applied to LLMs to improve downstream task
performance, reduce hallucination and ensure cer-
tain output formats. Bogoychev and Chen (2023)
constrain decoding for translation to ensure that
certain terminology is used. Roy et al. (2024) use
constrained decoding with a lookahead heuristic to
speed up adaptation of LLMs to plan generation
according to a given API in TOD. We want to force
the model to use its inherent task knowledge while
transferring abilities to new data.

Chain-of-Thought Reasoning LLM perfor-
mance on complex reasoning tasks improves when
the model generates a chain of thought (CoT). Wei
et al. (2022) include examples of multi-step reason-
ing in the prompt, and Kojima et al. (2022) prompt
the model in a zero-shot fashion to “think step by
step”. Reasoning capabilities can be further en-
hanced via specific training on CoT-data (Chung
et al., 2024), or via teaching the model to rea-
son (Zelikman et al., 2022). In contrast to this,
we focus on eliciting model-inherent reasoning ca-
pabilities, without the need for specific prompts or
training. As described in Sec. 3.2, we leverage the
fact that a top-k decoding beam usually contains a
CoT (Wang and Zhou, 2024).

3 Constrained Chain-of-Thought
Decoding for Ontology Relation
Extraction

3.1 Problem Definition

Dialogue ontology relation extraction (DORE)
aims at extracting all relations between different
terms in a TOD dataset. As seen in Figure 1, for
each dialogue paired with a list of ontology terms,
the output is a set of relations similar to document-
level relation extraction (Tan et al., 2022). How-
ever, we consider the joint relation prediction set
accumulated from all dialogue-level predictions,
rather than the dialogue-level performance. In the
DORE task, the model receives as input a task-
oriented dialogue D annotated with a list of on-
tology terms T present in this dialogue. The out-
put are valid ontology relations RD,T between the
terms, which includes predicting whether a term
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Relation Verbaliser Example

Domain-Slot [Domain, has slot, Slot] [hotel, has slot, price range]
Slot-Value [Slot, has value, Value] [price range, has value, cheap]

Value-Domain [Value, has domain, Domain] [cheap, has domain, hotel]
Equivalence [Term1, refers to same concept as, Term2] [cheap, refers to same concept as, low budget]

Table 1: Hierarchical dialogue ontology relation task definition with examples.

is a domain, slot, or value. A relation is denoted
by a relational triplet with a head term, the relation
and a tail term. Finally, the predicted relations for
each dialogue are unified to form the final ontology
relation set.

We consider 4 types of relation between ontol-
ogy terms: domain-slot, slot-value, value-domain
and equivalent term relations (see Table 1 for ex-
amples). Here, all relations except the equivalence
relation are directed relations with a head and a tail
term. Domains are general topics, such as hotel or
restaurant, slots are types of information for enti-
ties in a domain, such as price range or area and
values are concrete instantiations of slots, such as
“cheap” or “west”. The equivalence relation con-
nects terms from the same hierarchy level that point
to the same ontological concept, e.g. “expensive”
and “high-end” both represent a high price. In the
prompt and labels, we denote the relation types
through different verbalisers, shown in Table 1.
Verbalisers are descriptions of task-specific labels
in natural language. They align the task closer with
the pre-training distribution of the LLM (Schick
and Schütze, 2021; Mosbach et al., 2023).

Our hypothesis is that the general definitions of
the ontology hierarchy relations enable seamless
transfer to new data in order to construct a simi-
larly structured ontology on the new data. Based on
these relations, we focus on transferring the struc-
tural information about ontologies from a source
dataset to a target dataset. Here, we consider a
one-shot and a fine-tuning approach.

3.2 Chain-of-Thought Decoding

CoT reasoning in LLMs has demonstrated im-
proved performance in various complex reason-
ing tasks (Sec. 2). The results of Wang and Zhou
(2024) show that LLMs inherently possess reason-
ing capabilities, which can be elicited without ex-
plicit prompting through Chain-of-Thought decod-
ing. Concretely, they experiment on pre-trained
and instruction-tuned versions of PaLM 2 (Anil
et al., 2023) and Mistral-7B (Jiang et al., 2023).
They observe that although the greedily decoded

response might not always exhibit reasoning, one of
the top-k beams usually contains a CoT. This CoT
not only shows higher confidence in the answer,
but also exhibits greater accuracy. They propose to
consider the top-k probability tokens at the start of
the predicted response. From there, k completions,
called branches, are generated, resulting in k-times
computational complexity during inference. The
final response is chosen based on the confidence of
the tokens that belong to the answer in each branch,
i.e., the average confidence of the answer tokens.
In logical reasoning, there is only one answer in
each branch, which is a number. In that case, they
identify the answer by prompting the model with
“So the answer is:” at the end and match the fol-
lowing number to one in the preceding response.
In our case, there are multiple answers per branch,
which we identify based on the fact that relations
are supposed to be predicted between brackets.

CoT-Decoding for DORE In this paper, we ex-
tend CoT decoding to handle the multi-answer sce-
nario in the DORE task. We compute the confi-
dence of answer tokens by utilising their structure,
which, in our case, involves predicting relational
triplets in the format [headterm, relation, tailterm]
and the notion of disparity. The disparity of a prob-
ability distribution is the difference between the
probability of the most likely outcome and the next
most likely outcome. The confidence for each an-
swer token for a given branch is measured by the
average disparity of its tokens. Formally this is
given by

∆i,a =
1

n

∑
xt∈a

p(x
top
t | x<t)− p(xnext

t | x<t), (1)

where a is an answer (in our case the triplet), i is a
branch, xt are the answer tokens belonging to the
answer in branch i, xtop

t is the most likely token
on position t and xnext

t the next most likely token
on position t. x<t are the tokens in branch i on
positions preceding t, i.e. the context so far.

In DORE, answer tokens are those that form
terms and relations in the predicted relational
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triplets, which means there are three disparities per
relation. This approach relies on detecting answer
tokens in a generated response for confidence esti-
mation, and we leave an extension to arbitrary an-
swer structures to future work. The resulting triplet
disparities are denoted as ∆a = [∆h,∆r,∆t]. We
explored mean, median, maximum, and minimum
as aggregation strategies for relational triplet men-
tions, finding that all of them lead to similar results.
For simplicity, we choose the mean to aggregate
the disparity for a relational triplet in branch i, i.e.
∆i,a = 1

3(∆h,i +∆r,i +∆t,i).
We select the branch with the highest average

disparity over the relations predicted in each branch
to get the final set of relation predictions for a dia-
logue. The average disparity for branch i is given
by

∆i =
1

na,i

∑
a∈Ri

∆i,a (2)

where a is a relational triplet, Ri is the set of rela-
tions and na,i is the number of relations in branch
i. The final set of predicted relations is then given
by

R∆max
= {Ri | i = argmax{∆0, . . . ,∆k}} (3)

We also experiment with a confidence threshold
based approach for relation selection. Here, the
average disparity of a relation is computed across
occurrences in different branches:

∆̃a =
1

na

∑
i∈{1,...,k}

∆i,a, (4)

where ∆i,a is the disparity of the answer a in the
i-th branch and na is the number of occurrences
of a across the different branches. The final set of
predicted relations R∆>∆threshold is then

R∆>∆threshold = {a | ∆̃a > ∆threshold} (5)

3.3 Constrained Decoding
We constrain the generation of the relation terms
and relation types if the beginning of a relational
triplet is predicted to ensure the structure and miti-
gate term and relation hallucination (see Figure 1).
This means for a relational triplet, [h, r, t], we en-
sure that h, t ∈ T and r ∈ R, where T is the set
of terms for the current dialogue and R is the set
of relation types given in the prompt. Note that
we only constrain the generation when an open-
ing bracket is predicted by the model, and resume
to non-constrained generation after the generated
relational triplet.

4 Experiments

4.1 Experimental Setup
We utilise the open-source Gemma 2B (Mesnard
et al., 2024) instruction-tuned model with context
size of 4096 for all experiments. In CoT-decoding
we set k = 5. For a more thorough analysis of
the impact of k in CoT decoding, resort to Wang
and Zhou (2024). We always branch at the first
token; branching at later tokens did not show im-
provements. For all CoT-decoding experiments,
we select the relations from the branch with the
highest disparity, as the threshold based method
works worse and also adds a new hyperparameter.
In the one-shot prompts, we use a combination of
an instruction with simple natural language with
a preceding example (Brown et al., 2020; Sahoo
et al., 2024). For fine-tuning, we remove the exam-
ple from the prompt.

Datasets For the source dataset, we employ the
MultiWOZ 2.1 dataset (Eric et al., 2020). It has
7 domains and over 10,000 dialogues. We use the
training set for training and select from it one ran-
dom dialogue with relation annotation as one-shot
exemplar. The target dataset is the schema-guided
dialogue (SGD) dataset (Rastogi et al., 2020). It
comprises more than 20,000 dialogues and 20 do-
mains. We use the SGD test split for evaluation in
the main results, which contains 4,201 dialogues
and 18 domains. In the test set, there are 134
domain-slot relations, 6,162 slot-value relations,
8,233 value-domain relations and 330 equivalence
relations. It is worth noting the SGD test set con-
tains dialogues from different domains than the
SGD training set, as well as a significant amount of
unseen ontology relations. We use ConvLab-3 (Zhu
et al., 2023b) for loading all the datasets.

Training For both fine-tuning and one-shot
prompting, we utilise the original Gemma prompt
template (Mesnard et al., 2024). For training, we
utilise Low-rank adaptation (LoRA, Hu et al., 2022)
with the default parameters in the peft library (Man-
grulkar et al., 2022). We train the model on a single
NVIDIA RTX8000 GPU and do inference with all
models on one NVIDIA RTX6000 GPU.

We only consider a one-shot approach due to
context size constraints, as the relational triplets in
the exemplars contain brackets. Brackets are con-
sidered individual tokens, increasing the number
of tokens significantly. Because of this a maxi-
mum of three exemplars fits in the context size,
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Approach F1-Score Precision Recall

One-shot example from MultiWOZ

Baseline: Separate relation prediction 7.4 8.8 6.4
+ constrained decoding 8.5* 5.7 17.3*‡
+ CoT decoding 9.2* 8.8 9.6*
+ constrained CoT decoding 9.2* 6.4 15.9*

Fine-tuning on MultiWOZ

Baseline: Fine-tuning on MultiWOZ 10.9 6.8 28.8
+ constrained decoding 12.0† 7.4 32.3‡
+ CoT decoding 10.6 7.6 17.6
+ constrained CoT decoding 13.7†‡ 9.8† 23.0 ‡

Upper Bounds using SGD Data

One-shot example from SGD + separate relation prediction 12.9 10.7 16.4
Fine-tuning on SGD 37.3 27.9 57.2

Table 2: Ontology Relation Prediction Results on the SGD test set. Results that are statistically significant over the
baseline are highlighted in bold. Additionally, significant results based on dialogue-level evaluation for one-shot
prompts are marked with *. Significant results for fine-tuned models, evaluated globally based on five random seeds,
are marked with †. Significant improvement over the one-shot model from the SGD upper bound on dialogue-level
is marked with ‡. All significance tests are performed at a 5% level of significance.

which do not improve performance however, while
increasing computational complexity. In the one-
shot approach, we predict each relation type sepa-
rately, since we found that the LLM struggles with
jointly predicting all relation types. We also exper-
imented with a zero-shot approach that performs
significantly worse than one-shot.

We fine-tune the LLM via pattern-based fine-
tuning (Schick and Schütze, 2021; Ma et al., 2023)
with a prompt for all relation types on the Multi-
WOZ training split. We consider two upper bounds:
an LLM trained on the SGD training split and a
model utilising a one-shot exemplar from SGD.

4.2 Evaluation

In evaluation, we only consider relations
within dialogues in the ground truth, i.e.,
both terms of a relation occur in the same
dialogue. Relations from equivalent terms to
other terms have to be found at least once.
If [term1, refers to same concept as, term2] ∈
Rgroundtruth, then [term1, r, t] = [term2, r, t], where
Rgroundtruth is the set of ground truth relations,
r ̸= ‘refers to same concept as’ is another relation
type and t ∈ T is a third related term. E.g., the
relations [price range, has value, high-end] and
[price range, has value, expensive] are equivalent,
since [expensive, refers to the same concept as,
high-end]. Thus, the prediction of the former
relation counts as a prediction for the latter and
vice versa.

To compute the global micro F1 score, we com-
pare the accumulated set of relations predicted from
all the dialogues with the ground truth ontology re-
lations. Note that we only consider exactly match-
ing terms in relations to be correct.

For significance tests on the one-shot prompted
models, we employ a pairwise t-test on dialogue
level. For fine-tuned models, we use 5 random
seeds for training and an independent t-test.

4.3 Results
Table 2 shows the full results on the target test set,
see Appendix A for results for each relation type.

Source One-Shot Approach We found that
when predicting all relations at once in a one-shot
fashion the model is completely unable to fulfil the
task, so we resort to predicting one relation at a
time. The one-shot approach is mainly improved
through constrained decoding, although the com-
bination with CoT-decoding is also significantly
better than the baseline. Note that the source one-
shot model is able to get closer to the performance
of a model with a one-shot example from the target
data with constrained CoT-decoding.

Source Fine-tuning Approach For the source
fine-tuned model, constrained CoT-decoding leads
to significant improvements over the baseline. Fur-
thermore, it significantly outperforms a model us-
ing a one-shot exemplar from the target data on
all metrics. Constraining CoT-decoding helps per-
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Figure 2: Different relation confidence thresholds
across branches compared to the highest disparity
branch approach for mean aggregation. Displayed
are recall and precision for the MWOZ fine-tuned con-
strained CoT decoding model.

formance, since the constraints mitigate overconfi-
dence on the source data after fine-tuning.

Interestingly, although the target fine-tuned
model is the best model, it is not able to find all re-
lations on the test set. As mentioned in Section 4.1,
the SGD test set contains domains different to the
SGD training set, which makes this task particu-
larly difficult. In contrast to the excellent perfor-
mance of LLMs on a variety of tasks, there is a lot
of room for improvement on this task.

4.4 Calibration Analysis

In Figure 2, we see that an absolute confidence
threshold is not as meaningful and adds the prob-
lem of choosing the correct threshold as hyper-
parameter. Moreover, a high threshold leads to
only a small increase in precision, while losing
a significant amount of recall. Our results are in
line with recent findings about instruction-tuned
LLMs (Kapoor et al., 2024) being overconfident.
We find that the model’s confidence on predicted
relations is generally on a high level, indicating
overconfidence, as the significant changes in per-
formance happen at high confidence thresholds.
For lower thresholds, the performance remains un-
changed, as most confidences are quite high and
hence the set of predicted relations stays the same.
Although this shows that the thresholds are less
meaningful, the relative confidence of the branches
is meaningful, since choosing the highest disparity
branch leads to good performance.

4.5 How useful are predictions from the
additional branches?

In line with the findings from Wang and Zhou
(2024), we find that for the instruction-tuned

1 2 3 4 5
Number of Branches (k)

5

10

15

20

25

Sc
or

e

F1 Score
Precision
Recall

Figure 3: MWOZ fine-tuned constrained CoT decoding
model with different choices for the number of branches
k for the highest disparity branch method. Shown are
SGD test set F1 score, precision, and recall.

Gemma model, the gain in performance can be
mainly attributed to the first additional branch (see
Figure 3). While the F1 score is increased slightly
up to k = 3, the jump in recall from k = 2 to
k = 3 is more significant. This also shows that
the branches from lower ranked first tokens lead to
responses with higher total confidence across the
relation predicted in the respective branch, which is
why they are chosen in the highest disparity branch
selection method.

4.6 Qualitative Analysis
Wang and Zhou (2024) found that LLMs strug-
gle to generate CoTs for less frequent tasks in the
pre-training data. In our analysis, we found that
higher confidence completions often follow a recap
of the type of terms and relations that should be
predicted. Illustrated in Figure 4 is an example
of a response to the one-shot equivalence predic-
tion prompt with constrained CoT-decoding (see
Appendix B for completions of the other decod-
ing approaches). Here, branches 0 and 1 contain a
repetition of the information given in the prompt.
In branch 1 however, the focus on the equivalence
mentioned in the prompt is followed by a response
that does not use the proper format for the answer
to be parsed correctly. The last branch has the
highest confidence and is chosen ultimately. Here,
the focus on the task relation and the provided di-
alogue is part of the generated introduction to the
response.

As seen in Table 3, for the fine-tuned models,
there are no such reasonings observed, although the
constrained CoT decoding significantly improves
performance. We hypothesise that the additional
branches together with the constraints in decod-
ing force the model to use task knowledge from
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BRANCH 0: 
**Domain:** Hotel

**Slot:** Type of hotel
**Value:** Price range
- [price per night,refers to same concept as,135 carlingview drive 

etobicoke] 
....

BRANCH 1: 
## Synonyms/Semantically Equivalent Terms:
**Domain:** Hotel
- best western plus toronto airport carlingview hotel
- ....
BRANCH 2: 
1.**price range** [1, refers to same concept as, price]...
BRANCH 3: 
• **price range** [1, refers to same concept as, price]
• ...
BRANCH 4 (highest confidence): 
Here are the predicted synonyms or semantically equivalent terms 
from the provided dialogue:
**Price range:**
- [price per night,refers to same concept as,cost]
....
**Day:**
- [tuesday next week,refers to same concept as,check in date]

PROMPT: <EXAMPLE> Predict the relations between equivalent
terms in the form [term1, refers to same concept as, term2] as in 
the example given above.

RESPONSE:

Figure 4: Example of constrained CoT decoding for
one-shot equivalence relation prediction. Branch 4 adds
focus on the relation type. It has the highest average
confidence in the predicted relations and is chosen as
the final response. Some response parts are left out for
illustration purposes (“....”).

fine-tuning, rather than what it has learned about
the source data distribution. This can be observed
when comparing CoT-decoding with constrained
CoT-decoding, where the unconstrained version
mainly generates terms it has seen on MultiWOZ,
such as the “reference number” slot that is not
present in SGD. The constrained version on the
other hand forces the model to use task knowledge
instead of distributional knowledge, leading to a
much better coverage of the terms mentioned in
the dataset, if the correct branch is chosen based
on confidence. When observing completions to
other dialogues, we found that the qualitatively best
branches are not necessarily those with the high-
est confidence, indicating that a more sophisticated
branch selection strategy might boost performance
further. We leave such an improvement to future
work. When comparing constrained decoding with
vanilla greedy decoding, it becomes apparent that
constraining the generation greatly improves the
output structure and the utilisation of mentioned
terms in the target dataset.

5 Discussion

Although the performance of the fine-tuned model
is improved by constrained CoT-decoding, it is not
clear where the improvement comes from based on
qualitative analysis alone, as this model generates
no reasoning paths. The workings and explain-
ability of constrained CoT-decoding for fine-tuned
models have not been investigated yet, but are rele-
vant future research directions.

Our results imply that for tasks that are not fre-
quently used in instruction-tuning data, it can be
useful to utilise existing TOD data for training an
LLM rather than annotating a few examples on the
target data for the DORE task (see Section 4.3).
Due to the length of examples in the DORE task,
the amount of annotated examples that can fit in
the prompt is highly limited, aggravating the appli-
cability of few-shot approaches.

The results strengthen the finding that annotated
data should be used if available (Zhu et al., 2023a).
Constrained CoT-decoding only improves perfor-
mance on the target data, where task knowledge is
more useful than distributional knowledge about
the source data. Mahowald et al. (2024) state that
for learning tasks where language is used in a func-
tional way to accomplish certain goals, such as
DORE, self-supervised next-token prediction is not
sufficient. Instead, the model needs to learn task-
specific information via specialised fine-tuning to
solve such tasks, which are not frequently present
in pre-training data and involve task-specific rea-
soning. DORE can only be solved by knowing
the specific relationship definition provided in the
task descriptions, which the model cannot handle
if it was not trained on the task. In summary, the
presented results reinforce the observation that fine-
tuning and specialised architectures are still needed
to solve functional language-based tasks that can-
not be solved by pattern matching alone.

The computational complexity of CoT-decoding
is k times higher than regular greedy decoding,
however, decoding of the different branches can be
done in parallel. Nonetheless, one should note that
only one run of ontology construction is needed,
as the ontology can be repeatedly used for other
dialogue modelling tasks such as state tracking. It
is worth stressing that CoT-decoding only increases
inference cost, while training cost remains the same.
Compared to few-shot prompting, which also in-
creases inference cost due to longer input context,
there is no additional annotation cost.
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Approach Response

Baseline - [price per night, has domain], [best western plus toronto north york hotel & suites, has domain], ’$
63’, ’hotel’, ’has slot’, ’has domain’, ’hotel’ ] nessunize "$ 63" $ 117’ - [best western plus toronto
north york hotel & suites, has domain], ’has slot’, ’hotel’, ’has domain’, ’attraction’ ] - [hotel, has
slot],’refers to same concept as’,’stay’ ] - [hotel, has slot], ’has domain’, ’hotel’ ] ...

Constrained De-
coding

- [price per night,has value,$ 117] - [hotel,has slot,price per night] - [best western plus toronto north
york hotel, has domain, hotel] - [hotel,has slot,address] - [best western plus toronto north york hotel,
has domain, restaurant]... [hotel,has slot,date] ...

CoT-Decoding [1, has domain, hotel] [best western plus toronto north york hotel & suites, has domain, hotel] [1, has
domain, address] [best western premier toronto airport carlingview hotel, has domain, hotel] [hotel, has
slot, day] [best western plus toronto north york hotel, has domain, hotel] [hotel, has slot, name] [hotel,
has slot, room] [hotel, has slot, area] [hotel, has slot, reference number] ...

Constrained
CoT-Decoding

[1, has domain, hotel] ... [hotel,has slot,price per night] [best western plus toronto north york hotel,
has domain, restaurant] [best western plus toronto north york hotel, has domain, hotel] [hotel,has
slot,address] [hotel,has slot,check in date] [hotel,has slot,street address] [hotel,has slot,date] [hotel,has
slot,tuesday next week] [hotel,has slot,check in date] ...

Table 3: MWOZ fine-tuned model example response excerpts for the different decodings on SDG test dialogue 100.
For CoT-decoding methods, only the chosen branch is displayed.

6 Conclusion

We propose constrained chain-of-thought (CoT)-
decoding, a new decoding mechanism for dia-
logue ontology generation (DORE) in a transfer
set-up. An LLM using a one-shot example from
the source data is significantly improved using the
proposed constrained CoT-decoding mechanism.
Fine-tuning an LLM on the source data and using
constrained CoT-decoding for inference on the tar-
get data outperforms a one-shot target data model
significantly.

The results warrant further research into DORE
in particular, and into eliciting reasoning in LLMs
by adapting the decoding mechanism in general.
Moreover, we offer a method for applying LLMs
to tasks that are underrepresented in pre-training
and where the vanilla LLMs perform poorly. Our
method is appealing as it does not necessitate la-
belling new examples. Future research directions
include explainability of constrained CoT-decoding
in fine-tuned LLMs and including CoT-decoding
during fine-tuning.

7 Limitations

In this work we assume a pipeline approach, how-
ever with the raise of LLMs, end-to-end solutions
tend to be more accurate. We leave the task of
jointly extracting dialogue terms and relations for
future investigation. Due to constraints in computa-
tional infrastructure, we were not able to run open-
source LLMs with the size of ChatGPT, which
might be promising however. We abstained from
utilising proprietary models, such as ChatGPT, for

increased transparency and reduced risk of training
data contamination.

Furthermore, the need for an annotated source
dataset limits the application to low-resource lan-
guages and tasks. The reliance on a specific answer
structure for confidence estimation limits applica-
tion to less structured tasks.

Finally, what we consider the upper bound,
which was trained on the target dataset, can be
argued to be a low bar too, reaching only an F1 of
37. This warrants more research on this task also
on the same data setting.
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Approach Relation Type F1-Score Precision Recall

One-shot example from MultiWOZ

Baseline: Separate relation prediction

all 7.4 8.8 6.4
domain-slot 3.9 2.1 41.0
slot-value 9.4 18.8 6.3

value-domain 8.0 12.7 5.9
equivalence 1.8 1.0 6.9

+ constrained decoding

all 8.5 5.7 17.3
domain-slot 1.1 0.5 50.7
slot-value 9.3 7.0 13.8

value-domain 14.4 11.5 19.5
equivalence 1.4 0.7 16.1

+ CoT decoding

all 9.2 8.8 9.6
domain-slot 2.5 1.3 50.7
slot-value 16.0 18.4 14.2

value-domain 7.7 12.7 5.5
equivalence 1.8 1.0 7.3

+ constrained CoT decoding

all 9.2 6.4 15.9
domain-slot 1.2 0.6 50.7
slot-value 13.4 10.3 19.2

value-domain 12.3 11.6 13.1
equivalence 1.2 0.7 10.3

Fine-tuning on MultiWOZ

Baseline: Fine-tuning on MultiWOZ

all 10.8 6.7 28.4
domain-slot 5.9 3.2 49.3
slot-value 6.5 3.7 25.3

value-domain 20.5 15.3 30.8
equivalence 4.3 2.5 18.8

+ constrained decoding

all 11.1 6.8 30.4
domain-slot 4.7 2.5 52.9
slot-value 6.8 3.9 25.5

value-domain 19.8 13.9 34.1
equivalence 3.9 2.1 21.5

+ CoT decoding

all 9.3 6.3 17.4
domain-slot 3.9 2.0 49.3
slot-value 5.7 3.5 15.5

value-domain 16.7 14.8 18.9
equivalence 2.3 4.4 1.5

+ constrained CoT decoding

all 14.4 10.0 25.8
domain-slot 3.2 1.6 64.9
slot-value 12.1 9.0 18.4

value-domain 19.2 13.9 30.9
equivalence 4.7 2.8 16.7

Upper Bounds using SGD Data

One-shot example from SGD + separate
relation prediction

all 12.9 10.7 16.4
domain-slot 3.4 1.8 46.3
slot-value 17.7 20.9 15.4

value-domain 13.4 11.0 17.1
equivalence 2.5 1.4 9.1

Fine-tuning on SGD

all 36.8 26.4 60.9
domain-slot 7.3 3.8 88.8
slot-value 30.6 20.7 58.9

value-domain 53.5 46.9 62.1
equivalence 12.3 6.9 57.6

Table 4: Ontology Relation Prediction Results for each relation type on the SGD test set.
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Approach Response

Baseline Greedy Decoding **Domain:** Hotel
**Slot:** Type of hotel
**Value:** Price range
- [price range, refers to same concept as, price] - [reference number, refers to same concept
as, reference]
**Domain:** Price
**Slot:** Cost per night
**Value:** $ 63
- [cost per night, refers to same concept as, price]
**Domain:** Location
**Slot:** Street address
**Value:** 135 carlingview drive etobicoke, ontario m9w 5e7, canada
- [street address, refers to same concept as, location] ...

Constrained Decoding **Domain:** Hotel
**Slot:** Type of hotel
**Value:** Price range
- [price per night,refers to same concept as,135 carlingview drive etobicoke, ontario m9w
5e7, canada]
- [best western plus toronto north york hotel,refers to same concept as,best western plus
toronto north york hotel & suites] ...

CoT-Decoding Here are the predicted synonyms or semantically equivalent terms from the provided
dialogue:
**Price range:**
- [price range, refers to same concept as, price]
**Reference number:**
- [reference number, refers to same concept as, reference]
**Hotel:**
- [hotel, refers to same concept as, best western plus toronto north york hotel & suites]
**Stay:**
- [stay, refers to same concept as, nights]
**Price:**
- [price, refers to same concept as, cost]<eos>

Constrained CoT-Decoding Here are the predicted synonyms or semantically equivalent terms from the provided
dialogue:
**Price range:**
- [price per night,refers to same concept as,cost]
**Reference number:**
- [price per night,refers to same concept as,check in date]
**Hotel:**
- [hotel,refers to same concept as,best western premier toronto airport carlingview hotel]
**Day:**
- [tuesday next week,refers to same concept as,check in date]<eos>

Table 5: MWOZ one-shot only equivalence model example response excerpts for the different encodings on SDG
test dialogue 100. For CoT-decoding methods, only the chosen branch is displayed.
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